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Section 3.2. Multiplication of Matrices and

Multiplication of Vectors and Matrices

Note. In this section, we define the product of matrices, elementary matrices, and

explore how these interact with trace and determinant. We also introduce inner

products of matrices.

Definition. Let A = [aij] be an m×n matrix and let B = [bij] be an n×s matrix.

The matrix product (or “Cayley product”) is the m × s matrix C = [cij] where

cij =
∑n

k=1 aikbkj, denoted C = AB. When matrices A and B are of dimensions so

that the product AB is defined, then A and B are conformable for multiplication.

Theorem 3.2.1. Properties of Matrix Multiplication.

(1) Let A = [aij] be m× n and let B = [bij] be n× s. Then (AB)T = BTAT .

(2) Let A = [aij] be m × n, B = [bij] be n × s, and C = [cij] be s × t. Then

A(BC) = (AB)C. That is, matrix multiplication is associative.

(3) Let A = [aij] be m × n and let B = [bij] and C = [cij] be n × s. Then

A(B + C) = AB + AC. Let A = [aij] be m× n and let B = [bij] and C = [cij]

be n×m matrices. Then (B+C)A = BA+CA. That is, matrix multiplication

distributes over matrix addition.

(4) Let A = [aij] and B = [bij] be n × n matrices. If A and B are diagonal then

AB is diagonal. If A and B are upper triangular then AB is upper triangular.

If A and B are lower triangular then AB is lower triangular.
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Definition. The n × n matrix which is diagonal with all diagonal entries of 1 is

the identity matrix of order n, denoted In or just I.

Note. If A is n×m then InA = AIm = A.

Definition. If p =
∑n

k=0 bkx
k is a polynomial and A is a square matrix then define

p(A) = b0I + b1A + b2A
2 + · · ·+ bnA

n.

Note. In the study of systems of linear differential equations with constant coeffi-

cients of the form ~x ′(t) = A~x(t), where t is the variable, the solution is ~x(t) = ~x0e
tA

and the exponentiation of a matrix is defined in terms of the power series for the

exponential function (which is a limit of a polynomial); of course convergence be-

comes an issue. This is one reason to consider the diagonalization of a matrix,

which we consider in Section 3.8.

Theorem 3.2.2. Consider partitioned matrices

 A B

C D

 and

 E F

G H

 where

A = [aij] is k× `, B = [bij] is k×m, C = [cij] is n× `, D = [dij] is n×m, E = [eij]

is ` × p, F = [fij] is ` × q, G = [gij] is m × p, and H = [hij] is m × q. Then the

product of the partitioned matrices is the partitioned matrix A B

C D

 E F

G H

 =

 AE + BG AF + BH

CE + DG CF + DH

 .

Notice that the dimensions of the matrices insure that all matrix products involve

matrices conformable for multiplication.
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Definition. For a given matrix A, we may perform the following operations:

Row Interchange: Form matrix B by interchanging row i and row j of matrix

A, denoted A
Ri↔Rj

˜ B.

Row Scaling: Form matrix B by multiplying the ith row of A be a nonzero scalar

s, denoted A
Ri→sRi

˜ B.

Row Addition: Form matrix B by adding to the ith row of A s times the jth

row of A, denoted A
Ri→Ri+sRj

˜ B.

These three operations on matrix A are the elementary row operations. We can

define the elementary column operations similarly by forming matrix B from matrix

A by column manipulations.

Note. We will see that each elementary row operation can be performed on a

matrix by multiplying it on the left by an appropriate (“elementary”) matrix.

Similarly, elementary column operations can be performed in a matrix by multi-

plying it on the right be an appropriate matrix. Gentle calls multiplying a matrix

on the left “premultiplication” and multiplying on the right “postmultiplication”

(see page 62). In these notes, we use the terminology “multiply on the left/right.”

Definition. An elementary matrix (or elementary transformation matrix or ele-

mentary operator matrix) is an n × n matrix which is formed by performing one

elementary row operation or one elementary column operation on the n×n identity

matrix In. If the operation is row or column interchange, the resulting matrix is
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an elementary permutation matrix; if the pth and qth row or (equivalently) column

of In have been interchanged then the elementary permutation matrix is denoted

Epq. A product of elementary permutation matrices is a permutation matrix.

Theorem 3.2.3. Each of the three elementary row operations on n×m matrix A

can be accomplished by multiplication on the left by an elementary matrix which

is formed by performing the same elementary row operation on the n× n identity

matrix. Each of the three elementary column operations on n × m matrix A can

be accomplished by multiplication on the right by an elementary matrix which is

formed by performing the same elementary column operation on the m×m identity

matrix.

Note. We can use the results of Section 3.1 to find the determinants of each of the

three types of elementary matrices. Recall that det(In) = 1. For row interchange,

we have In

Rp↔Rq

˜ Epq, and so det(Epq) = −1 by Theorem 3.1.C. For row scaling,

we have In

Rp→sRp

˜ Esp, and so det(Esp) = s by Theorem 3.1.B. For row addition,

we have In

Rp→Rp+sRq

˜ Epsq, and so det(Epsq) = 1 by Theorem 3.1.E.

Theorem 3.2.4. For n× n matrices A and B, det(AB) = det(A)det(B).

Note. By convention we now consider vectors in Rn as column vectors (or n× 1

matrices). So the vector x will represent the matrix [x1, x2, . . . , xn]
T . In this way,

for n × m matrix A and vector x ∈ Rm, Ax is defined and is n × 1. For n × m

matrix A and vector x ∈ Rn, xTA is defined and is 1×m.
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Note. If we denote the m columns of n×m matrix A as a1, a2, . . . , am and consider

x ∈ Rm as a vector of scalars then Ax =
∑m

i=1 xiai is a linear combination of the

columns of A with coefficients of the entries of vector x. That is, Ax is an element

of the column space of A. So searching for solutions x to the equation Ax = b is

equivalent to determining if b is in the column space of A.

Definition. For vectors x ∈ Rn and y ∈ Rm, the outer product is the n×m matrix

xyT .

Note. Unlike the inner product, the outer product is not in general commutative

(consider the case m 6= n). If we consider xxT for x ∈ Rn, we have an n×n matrix

with (i, j)th entry

n∑
k=1

xikx
t
kj =

n∑
k=1

xikxjk =
n∑

k=1

xjkxik =
n∑

k=1

xjkx
t
ki

which is the (j, i)th entry of the n× n matrix (where xt
kj = xjk); that is, xxT is a

symmetric matrix.

Definition. For x ∈ Rn, y ∈ Rm, and A an n×m matrix, the product xTAy is a

bilinear form (notice that xTAy is 1× 1). When x ∈ Rn and A is n× n, xTAx is a

quadratic form.
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Note. Fraleigh and Beauregard’s Linear Algebra, 3rd Edition, Addison-Wesley

Publishing Company (1995) defines a quadratic form of a vector x ∈ Rn as a

function of the form f(x) =
∑n

i≤j;i,j=1 uijxixj. So with n = 3 we get

u11x
2
1 + u12x1x2 + u13x1x3 + u22x

2
2 + u23x2x3 + u33x

2
3.

They then show that for every quadratic form, there is a symmetric n×n matrix A

such that the quadratic form is given by xTAx (this is also shown in our Exercise

3.3). As a result, we concentrate on quadratic forms xTAx for symmetric square

matrices. For applications of quadratic forms to 2 and 3 dimensional geometry, see

Fraleigh and Beauregard’s Section 8.2. Applications to Geometry.

Definition. The n× n symmetric matrix A is nonnegative definite (or commonly

positive semidefinite) if for each x ∈ Rn we have that the quadratic form satisfies

xTAx ≥ 0. This is denoted A � 0. The n × n symmetric matrix A is positive

definite if for each x ∈ Rn with x 6= 0 we have that the quadratic form satisfies

xTAx > 0. This is denoted A � 0. When A and B are n × n symmetric matrices

and A − B � 0, we denote this as A � B. When A and B are n × n symmetric

matrices and A−B � 0, we denote this as A � B.

Note. For x, y ∈ Rn, 〈x, y〉 = xT Iny; technically, the inner product is a scalar and

matrix product is a 1×1 matrix, but “we will treat a one by one matrix or a vector

with only one element as a scalar whenever it is convenient to do so” (Gentle, page

69). We use this observation to motivate the following definition.

https://faculty.etsu.edu/gardnerr/2010/c8s2.pdf
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Definition. Vectors x, y ∈ Rn are orthogonal with respect to n × n matrix A if

xTAy = 0 and we say that x and y are A-conjugate. The elliptic norm (or conjugate

norm) with respect to symmetric positive definite matrix A is ‖x‖A =
√

xTAx.

Note. It is shown in Exercise 3.2.C that ‖ · ‖A is actually a norm. It is called

an “elliptic norm” because the unit ball may not be round under this norm, but

instead elliptical. Gentle describes this on page 71 in terms of scaling the units of

the axes of an n-dimensional space and “anisotropic spaces.”

Definition. Let A = [aij] and B = [bij] be n×m matrices. The Hadamard product

of A and B is the n × m matrix [aijbij]. Hadamard multiplication of matrices is

sometimes called “array multiplication” or “element-wise multiplication.”

Note. The identity matrix under Hadamard multiplication is the n×m matrix of

all 1s. So a matrix has an inverse under Hadamard multiplication if and only if all

of its entries are nonzero (this is Exercise 3.10).

Definition. Let A be an n×m matrix and let B be a p×q matrix. The Kronecker

product (or tensor product) of A and B is the np×mq matrix

A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB

...
... . . . ...

an1B an2B · · · anmB

 .

The Kronecker product is also called the “right direct product” or just “direct

product.”
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Note. The right identity for Kronecker multiplication is the 1 × 1 matrix [1]. To

find the (i, j)th entry of A⊗B, we need to partition the indices i and j into “pieces.”

We do so using the greatest integer function bxc. The ith row of A ⊗ B involves

a1+b(i−1)/pc,k (since B has p rows) and the (i − pb(i − 1)/pc)th row of B (we have

that b(i−1)/pc is the maximum number of multiples of p such that pb(i−1)/pc ≤ i

and so i − pb(i − 1)/pc is the remainder when i is divided by p except when the

remainder is 0 in which case i − pb(i − 1)/pc = p; so for i ∈ {1, 2, . . . , np} we

have i− pb(i− 1)/pc ∈ {1, 2, . . . , p}). Similarly, the jth column of A⊗B involves

ak,1+b(j−1)/qc (since B has q columns) and the (j− qb(j− 1)/qc)th column of B. So

the (i, j)th entry of A⊗B is

a1+b(i−1)/pc,1+b(j−1)/qcbi−pb(i−1)/pc,j−qb(j−1)/qc. (∗)

Notice the error on Gentle’s page 73, equation (3.69) which is incorrect when i is

a multiple of p or j is a multiple of q.

Theorem 3.2.5. Properties of the Kronecker Product.

Let A, B, C,D be matrices which are conformable for the addition and regular

matrix multiplication given below. Then

(1) Associativity of Scalar Multiplication:

(aA)⊗ (bB) = ab(A⊗B) = (abA)⊗B = A⊗ (abB).

(2) Distribution of ⊗ Over +: (A + B)⊗ C = A⊗ C + B ⊗ C.

(3) Associativity of ⊗: (A⊗B)⊗ C = A⊗ (B ⊗ C).

(4) Transposition of a Kronecker Product: (A⊗B)T = AT ⊗BT .
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(5) Interaction of Kronecker Products and Regular Products:

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Note. The proof of Theorem 3.2.5 is to be given in Exercise 3.6.

Theorem 3.2.6. Let A be an n× n matrix and let B be an m×m matrix. Then

det(A⊗B) = det(A)ndet(B)m.

Note. Gentle comments: “The proof of [Theorem 3.2.6], like many facts about

determinants, is straightforward but involves tedious manipulation of cofactors”

(page 73). This time we agree and an exploration of the claim would take us too

far from our core topics, so we omit it. However, a proof can be found in David

Harville’s Matrix Algebra From a Statistician’s Perspective, Springer-Verlag (1997),

pages 343–350.

Theorem 3.2.7. Let A and B be n× n matrices. Then tr(A⊗B) = tr(A)tr(B).

Definition. Let A and B be n×m matrices. Let the columns of A be the vectors

a1, a2, . . . , am and let the columns of B be the vectors b1, b2, . . . , bm. The inner

product (or dot product) of A and B is the scalar 〈A, B〉 =
∑m

j=1 aT
j bj =

∑m
j=1〈aj, bj〉.
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Note. Again, 〈A, B〉 is technically a 1 × 1 matrix, but we treat it as a scalar.

Notice that if A and B are m× 1 then the inner product of the 〈A, B〉 reduces to

the usual vector inner product.

Theorem 3.2.8. Properties of the Inner Product of Matrices.

Let A, B, and C be matrices conformable for the addition and inner products given

below. Then

(1) If A 6= 0 then 〈A, A〉 > 0 and 〈0, A〉 = 〈A, 0〉 = 〈0, 0〉 = 0.

(2) 〈A, B〉 = 〈B, A〉.

(3) 〈sA, B〉 = s〈A, B〉 = 〈A, sB〉 for scalar s ∈ R.

(4) 〈(A + B), C〉 = 〈A, C〉+ 〈B, C〉 and 〈C, (A + B)〉 = 〈C, A〉+ 〈C, B〉.

(5) 〈A, B〉 = tr(ATB).

(6) 〈A, B〉 = 〈AT , BT 〉.

(7) Schwarz Inequality: For n×m matrices A and B, |〈A, B〉| ≤ 〈A, A〉1/2〈B, B〉1/2.

Note. Theorem 3.2.8 establishes that 〈·, ·〉 actually is an inner product on the

vector space of all n × m matrices Rn×m. The Schwarz Inequality allows us to

prove the Triangle Inequality and establish that ‖A‖ = 〈A, A〉1/2 is a norm on

Rn×m. We can now extend the ideas which are based on inner products from

vectors to matrices.
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Definition. Two n×m matrices A and B are orthogonal to each other if 〈A, B〉 = 0.

A set of n × m matrices {U1, U2, . . . , Uk} is orthonormal if 〈Ui, Uj〉 = 0 for i 6= j

and 〈Ui, Uj〉 = 1 for i = j.

Note. We can use the previous definition to discuss orthonormal bases for Rn×m

and express a vector in the usual way in terms of an orthonormal basis.

Note. The term “matrix” was first used by James Joseph Sylvester (1814–1897)

in 1850 in his “Additions to the articles, ‘On a New Class of Theorems,’ and ‘On

Pascal’s Theorem’,” Philosophical Magazine, 37, 363-370 (1850). Arthur Cayley

(1821–1895) was the first to concentrate on matrices themselves and the first to

publish articles on the properties of matrices. For this reason, Cayley is credited

as the creator of the theory of matrices [Morris Kline, Mathematical Thought from

Ancient to Modern Times, Oxford University Press (1972), page 805].

James Joseph Sylvester Arthur Cayley

Cayley introduced matrices to simplify the notation in the study of invariants

under linear transformations [Kline, page 806] in “Remarques sur la notation des

fonctions algébriques,” Journal für die reine und angewandte Mathematik 50, 282–

285 (1855); a copy is available online, in French (accessed 10/11/2017). In 1858 he

http://gdz.sub.uni-goettingen.de/dms/ load/img/?PID=GDZPPN002149052
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published “A Memoir on the Theory of Matrices,” A Philosophical Transactions

of the Royal Society of London, 148, 17-37 (1858); a copy is available online at

archive.org. Cayley defined the sum and product of matrices (hence our use of the

term “Cayley product”), and the product of a matrix times a scalar. He introduced

the identity matrix, the inverse of a square matrix, and showed how inverse matrices

can be used to solve systems of equations [Israel Kleiner, A History of Abstract

Algebra, Birkhäuser (2007), page 82]. The images are from the MacTutor History

of Mathematics archive.
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