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Section 3.3. Matrix Rank and the Inverse

of a Full Rank Matrix

Note. The lengthy section (21 pages in the text) gives a thorough study of the

rank of a matrix (and matrix products) and considers inverses of matrices briefly

at the end.

Note. Recall that the row space of a matrix A is the span of the row vectors of

A and the row rank of A is the dimension of this row space. Similarly, the column

space of A is the span of the column vectors of A and the column rank is the

dimension of this column space. You will recall that the dimension of the column

space and the dimension of the row space of a given matrix are the same (see

Theorem 2.4 of Fraleigh and Beauregard’s Linear Algebra, 3rd Edition, Addison-

Wesley Publishing Company, 1995, in 2.2. The Rank of a Matrix). We now give a

proof of this based in part on Gentle’s argument and on Peter Lancaster’s Theory

of Matrices, Academic Press (1969), page 42. First, we need a lemma.

Lemma 3.3.1. Let {ai}k
i=1 = {[ai

1, a
i
2, . . . , a

i
n]}k

i=1 be a set of vectors in Rn and let

π ∈ Sn. Then the set of vectors {ai}k
i=1 is linearly independent if and only if the set

of vectors {[ai
π(1), a

i
π(2), . . . , a

i
π(n)]}k

i=1 is linearly independent. That is, permuting

all the entries in a set of vectors by the same permutation preserves the linear

dependence/independence of the set.
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Theorem 3.3.2. Let A be an n ×m matrix. Then the row rank of A equals the

column rank of A. This common quantity is called the rank of A.

Note. Recall that V(A) denotes the column space of matrix A (see page 41 of

the text) and so V(AT ) is the row space of A. So from the definition of rank and

Theorem 3.3.2, we can conclude that rank(A) = dim(V(A)), rank(A) = rank(AT ),

and dim(V(A)) = dim(V(AT )).

Definition. A matrix is of full rank if its rank is the same as its smaller dimension.

A matrix that is not full rank is rank deficient and the rank deficiency is the

difference between its smaller dimension and the rank. A full rank matrix which is

square is nonsingular. A square matrix which is not nonsingular is singular.

Note. The previous definition of singular/nonsingular may be new to you. Later

we will relate nonsingular and invertibility, as you expect (see Note 3.3.A below).

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) =

rank(A).

Note. Since the rank of In is n, then Theorem 3.3.3 implies with A = In that each

elementary matrix is full rank.
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Note. Recall that Exercise 2.1.G states: Let A be a set of n-vectors.

(i) If B ⊂ A then dim(span(B)) ≤ dim(span(A)).

(ii) If A = A1 ∪ A2 then dim(span(A)) ≤ dim(span(A1)) + dim(span(A2)).

(iii) If A = A1 ⊕ A2 (so that A1 ⊥ A2) for vector spaces A, A1, and A2, then

dim(A) = dim(A1) + dim(A2).

These observations are useful in proving the next theorem.

Theorem 3.3.4. Let A be a matrix partitioned as A =

 A11 A12

A21 A22

. Then

(i) rank(Aij) ≤ rank(A) for i, j ∈ {1, 2}.

(ii) rank(A) ≤ rank([A11|A12]) + rank([A21|A22]).

(iii) rank(A) ≤ rank

 A11

A21

 + rank

 A12

A22

.

(iv) If V([A11|A12]
T ) ⊥ V([A21|A22]

T ) then rank(A) = rank([A11|A12])+rank([A21|A22])

and if V

 A11

A21

 ⊥ V

 A12

A22

 then

rank(A) = rank

 A11

A21

 + rank

 A12

A22

 .

Note. In Exercise 3.3.C, it is to be shown using Theorem 3.3.4(iv) that for a block

diagonal matrix A = diag(A11, A22, . . . , Akk) (see Section 3.1), we have rank(A) =

rank(A11) + rank(A22) + · · ·+ rank(Akk).
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Theorem 3.3.5. Let A be an n × k matrix and B be a k × m matrix. Then

rank(AB) ≤ min{rank(A), rank(B)}.

Note. By Theorem 3.3.5, for x ∈ Rn and y ∈ Rm, the outer product xyT satisfies

rank(xyT ) ≤ min{rank(x), rank(yT )} = 1.

Theorem 3.3.6. Let A and B be n×m matrices. Then

|rank(A)− rank(B)| ≤ rank(A + B) ≤ rank(A) + rank(B).

Note. If n × m matrix A is of rank r, then it has r linearly independent rows.

So there is a permutation matrix Eπ1
such that Eπ1

A is a matrix whose first r

rows are linearly independent (and certainly the choice of Eπ1
is not unique). Since

Eπ1
A is rank r (by Theorem 3.3.3), it has r linearly independent columns (by

Theorem 3.3.2) and there is permutation matrix Eπ2
such that Eπ1

AEπ2
is a matrix

whose first r columns are linearly independent. The matrix B = Eπ1
AEπ2

can

then be partitioned in a way that isolates linearly independent “sub-rows” and

“sub-columns.”

Definition. Let B be an n × m matrix of rank r whose first r rows are linearly

independent and whose first r columns are linearly independent. Then the par-

titioning of B as B =

 W X

Y Z

, where W is a r × r full rank submatrix, X is

r× (m− r), Y is (n− r)× r, and Z is (n− r)× (m− r), is a full rank partitioning

of B.
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Note. If n × m matrix A is of rank r then for any q ≤ r (with Eπ1
and Eπ2

as

described in the previous note) we have Eπ1
AEπ2

=

 S T

U V

 where S is a q × q

full rank matrix, T is q × (m− q), U is (n− q)× q, and V is (n− q)× (m− q).

Note. A system of n linear equations in m unknowns x1, x2, . . . , xm is a system of

the form

a11x1 + a12x2 + · · · + a1mxm = b1

a21x1 + a22x2 + · · · + a2mxm = b2

...
...

an1x1 + an2x2 + · · · + anmxm = bn.

With A = [aij], b ∈ Rn with entries bi, and x ∈ Rm with entries xj (so that b and x

are column vectors by our convention, see Section 3.2), the system can be written

as Ax = b. A is the coefficient matrix. For a given A and b, a vector x ∈ Rm

for which Ax = b is a solution to the system of equations. If a solution exists,

the system of equations is consistent. If a solution does not exists, the system of

equations is inconsistent.

Note. In sophomore linear algebra, you used elementary row operations to explore

solutions to systems of equations. Here, we use the rank of the coefficient matrix

and the existence of an inverse of the coefficient matrix to explore solutions to

systems of equations.
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Note. Recall from Section 3.2 (see page 5 of the class notes) that with a1, a2, . . . , am

as the columns of A and x ∈ Rm a vector of scalars x1, x2, . . . , xm we have Ax =∑m
i=1 xiai. So for any given x ∈ Rm, the vector Ax is a linear combination of the

columns of A and so having a solution x to the system Ax = b is equivalent to

saying that b is in the column space, V(A), of A.

Note. A system Ax = b is consistent if and only if rank([A | b]) = rank(A). This

holds because of b ∈ V(A) implies rank(A) = rank([A | b]) and rank([A | b]) =

rank(A) implies b ∈ V(A). Also, if for n × m matrix A, where n ≤ m, we have

rank(A) = n (so that A is of full row rank), then rank([A | b]) = n (since [A | b] is

n× (m + 1)) and so, in this case, the system Ax = b is consistent for any b ∈ Rn.

The matrix [A | b] is called the augmented matrix for the system Ax = b.

Note. Let A be a n × n nonsingular matrix (that is, A is square and full rank).

Then for the ith unit vector ei ∈ Rn, ei ∈ V(A) and so Axi = ei has a solution xi for

i = 1, 2, . . . , n. Creating n×n matrix X with columns xi and In (with columns ei),

we can write these n systems of equations as the matrix equation AX = In. Since

AX = In, X is a “right inverse” of A. Since rank(In) ≤ min{rank(A), rank(X)} by

Theorem 3.3.5, and n = rank(In) = rank(A), then it must be that rank(X) = n.

So a similar argument shows that X has a right inverse, say XY = In. But then

A = AIn = A(XY ) = (AX)Y = InY = Y and so XA = XY = In, and X is also a

“left inverse” of A.
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Definition. For n× n full rank matrix A, the matrix B such that BA = AB = In

is the inverse of matrix A, denoted B = A−1. (Of course A−1 is unique for a given

matrix A.)

Theorem 3.3.7. Let A be an n× n full rank matrix. Then (A−1)T = (AT )−1.

Note. Gentle uses some unusual notation. He denotes (AT )−1 = (AT )−1 = A−T .

He “sometimes” denotes AB−1 as A/B (UGH!) and B−1A as B\A. I will avoid

this notation.

Theorem 3.3.8. n × m matrix A, where n ≤ m, has a right inverse if and only

if A is of full row rank n. n×m matrix A, where m ≤ n, has a left inverse if and

only if A has full column rank m.

Note 3.3.A. Theorem 3.3.8 shows that a square matrix is nonsingular if and only

if it is invertible.

Note. With A an n×m matrix, if n×n matrix AAT is of full rank, then (AAT )−1

exists and the right inverse of A is AT (AAT )−1 since AAT (AAT )−1 = In. Similarly,

if ATA is of full rank, then the left inverse of A is (ATA)−1AT since (ATA)−1ATA =

Im.
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Definition. Matrices A and B of the same size that have the same rank are

equivalent, denoted A ∼ B. For m × n matrix A with rank r where 0 < r ≤

min{n, m}, then the equivalent canonical form of A is the n×m matrix

 Ir 0

0 0

 .

Theorem 3.3.9. If A is an n × m matrix of rank r > 0 then there are matrices

P and Q, both products of elementary matrices, such that PAQ is the equivalent

canonical form of A, PAQ =

 Ir 0

0 0

.

Note. If A is symmetric, then the same operations in the proof of Theorem 3.3.9

are performed on the rows which are performed on the columns so that we have

PAP T =

 Ir 0

0 0

 for P a product of elementary matrices.

Note. You dealt with row equivalence in Linear Algebra. This “equivalence” is a

combination of row equivalence and column equivalence so that A ∼ B if and only

if B = PAQ where P and Q are products of some elementary matrices.

Definition. A matrix R is in row echelon form (“REF”) if

(1) rij = 0 for i > j, and

(2) if k is such that rik 6= 0 and ri` = 0 for ` < k then ri+1,j = 0 for j ≤ k.
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Note. To see that this definition of row echelon form is consistent with your

sophomore Linear Algebra experience, notice that Condition (1) implies that there

are only 0’s below the main diagonal. Condition (2) implies that rik is the first

nonzero entry in row i (called the “pivot”) and that the first nonzero entry in row

i + 1 lies to the right of pivot rik (that is, in a column of index greater than k).

Theorem 3.3.10. For any matrix A there is a matrix P a product of elementary

matrices such that PA is in row echelon form.

Note. The proof of Theorem 3.3.10 follows by applying the technique of Gauss-

Jordan elimination. An algorithmic explanation of Gauss-Jordan elimination can

be found in my online notes for Linear Algebra (MATH 2010) for 1.4. Solving

Systems of Linear Equations.

Note. Gentle does not define reduced row echelon form of a matrix in which the

matrix is in row echelon form where each pivot is 1 and all entries above the pivots

are 0. We can use Gentle’s approach to define this as follows.

Definition. A matrix R is reduced row echelon form (“RREF”) if it is in row

echelon form and

(3) if k is such that rik 6= 0 and ri` = 0 for ` < k then rik = 1 and rjk = 0 for

j < i.

http://faculty.etsu.edu/gardnerr/2010/c1s4.pdf
http://faculty.etsu.edu/gardnerr/2010/c1s4.pdf
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Definition. A (square) upper triangular matrix H is in Hermite form if

(1) hii = 0 or 1,

(2) if hii = 0 then hij = 0 for all j, and

(3) if hii = 1, then hki = 0 for all k 6= i.

Note. If H is in Hermite form the Condition (1) implies that the main diagonal

entries are 0’s and 1’s. Condition (2) implies that the rows containing a 0 diagonal

entry are all 0’s. Condition (3) implies that the columns containing 1 diagonal

entry has all other entries 0. Notice that a diagonal entry hii = 0 may have

nonzero entries above it in column i. For example, H =

 1 2

0 0

 is in Hermite

form. In Exercise 3.3.B it is shown that if H is in Hermite form then H2 = H.

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular) and

if B and C are conformable matrices for the multiplications AB and CA then

rank(AB) = rank(B) and rank(CA) = rank(C).

Note. In fact, Theorem 3.3.11 can be extended to nonsquare matrices as follows.

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the

multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and

C is conformable for the multiplication CA, then rank(CA) = rank(C).



3.3. Matrix Rank and the Inverse of a Full Rank Matrix 11

Note. Recall the n× n symmetric matrix A is positive definite if for each x ∈ Rn

with x 6= 0 we have that the quadratic form satisfies xTAx > 0. The next result

shows that positive definiteness is preserved under a particular type of multiplica-

tion by a full rank matrix.

Theorem 3.3.13. Let C be n× n and positive definite and let A be n×m.

(1) If C is positive definite and A is of full column rank m ≤ n then ATCA is

positive definite.

(2) If ATCA is positive definite then A is of full column rank m ≤ n.

Theorem 3.3.14. Properties of ATA.

Let A be an n×m matrix.

(1) ATA = 0 if and only if A = 0.

(2) ATA is nonnegative definite.

(3) ATA is positive definite if and only if A is of full column rank.

(4) (ATA)B = (ATA)C if and only if AB = AC, and B(ATA) = C(ATA) if and

only if BAT = CAT .

(5) ATA is of full rank if and only if A is of full column rank.

(6) rank(ATA) = rank(A).

The product ATA is called a Gramian matrix.
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Note. From Theorem 3.3.5, we have an upper bound on the rank of a product of

two matrices: rank(AB) ≤ min{rank(A), rank(B)}. We now put a lower bound on

the rank of a product.

Theorem 3.3.15. Sylvester’s Law of Nullity

If A is a n× n matrix and B is n× ` then rank(AB) ≥ rank(A) + rank(B)− n.

Note. The following result relates the value of det(A) and the invertibility of A.

Theorem 3.3.16. n× n matrix A is invertible if and only if det(A) 6= 0.

Note. Gentle motivates inverting sums and differences of matrices by referring to

regression analysis and adding or omitting data (see page 93). Thus we consider

the following, the proof of which is to be given in Exercise 3.12.

Theorem 3.3.17. Let A and B be n× n full rank matrices. Then:

(1) A(I + A)−1 = (I + A−1)−1,

(2) (A + BBT )−1B = A−1B(I + BTA−1B)−1,

(3) (A−1 + B−1)−1 = A(A + B)−1B,

(4) A− A(A + B)−1A = B −B(A + B)−1B,

(5) A−1 + B−1 = A−1(A + B)B−1,
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(6) (I + AB)−1 = I − A(I + BA)−1B,

(7) (I + AB)−1A = A(I + BA)−1,

where we require the invertibility of relevant sums and differences.

Theorem 3.3.18. If A and B are n × n full rank matrices then the Kronecker

product satisfies (A⊗B)−1 = A−1 ⊗B−1.

Note. Now, we summarize our vocabulary and results on invertible matrices.

First, A−1 exists then A must be square. A square n × n matrix A is full rank if

rank(A) = n and this value is the dimension of both the row space and column

space of A (see Theorem 3.3.2). A full rank square matrix is nonsingular (by

definition). We argued that a full rank square matrix has an inverse by considering

associated system of equations. So a nonsingular matrix is invertible. In Theorem

3.3.16 we showed that square matrix A is invertible (that is, nonsingular) if and

only if det(A) 6= 0.
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