Section 3.4. More on Partitioned Square Matrices: The Schur Complement

Note. In this section, we associate a quantity with a partitioned matrix and express the inverse (when it exists) and the determinant of a matrix in terms of this quantity.

Note. Recall that a full rank partitioning of a square $n \times n$ matrix A of rank r is $A =$ $\sqrt{ }$ $\overline{}$ W X Y Z 1 where W is an $r \times r$ full rank matrix, X is $r \times (n-r)$, Y is $(n-r) \times r$, and \overline{Z} is $(n-r) \times (n-r)$. So [W X] is of full row rank r and the rows of $[W X]$ span the row space of A. Also, $\sqrt{ }$ $\overline{}$ W Y 1 is of full column rank r and the columns of $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ span the column space of A. So the rows of $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array} \end{array} \\ \end{array}$ $\lceil W \rceil$ as linear combinations of the rows of $[W X]$ and so there is some $(n-r) \times r$ matrix T such that $[Y Z] = T[W X]$. Similarly, there is $r \times (n - r)$ matrix S such that $\sqrt{ }$ $\overline{}$ \boldsymbol{X} Z $\overline{}$ $\Big\} =$ $\sqrt{ }$ $\overline{1}$ W Y $\overline{}$ S. So we have $Y = TW$, $Z = TX$, $X = WS$, and $Z = YS$, so that $Z = TX = TWS$. Since W is of full rank, then W^{-1} exists so that $T = YW^{-1}$, $S = W^{-1}X$, and $Z = YS = YW^{-1}X$ (or, equivalently, $Z = TX = YW^{-1}X$). So a full rank partitioning can be written in terms of W, X , and Y only as

$$
A = \begin{bmatrix} W & X \\ Y & YW^{-1}X \end{bmatrix} . \qquad (*)
$$

Definition. If A is a square matrix partitioned as $A =$ $\sqrt{ }$ $\overline{1}$ A_{11} A_{12} A_{21} A_{22} 1 where A_{11} is nonsingular, then $Z = A_{22} - A_{21}A_{11}^{-1}A_{12}$ is the *Schur complement* of A_{11} in A.

Note. If A_{11} is of full rank and rank (A_{11}) = rank (A) , then from (*) we see that $A_{22} = A_{21}A_{11}^{-1}A_{12}$ and so in this case $Z = 0$.

Note. As described in the note after Theorem 3.3.6, for any $n \times m$ matrix A of rank $r > 0$, there is a $n \times n$ permutation matrix E_{π_1} and a $m \times m$ permutation matrix E_{π_2} such that $E_{\pi_1}AE_{\pi_2}$ can be partitioned as $E_{\pi_1}AE_{\pi_2} =$ $\sqrt{ }$ $\overline{}$ B_{11} B_{12} B_{21} B_{22} 1 where B_{11} is a $r \times r$ full rank matrix. So from (*) we have $E_{\pi_1} A E_{\pi_2} =$ $\sqrt{ }$ $\overline{1}$ B_{11} B_{12} B_{21} $B_{21}B_{11}^{-1}B_{12}$ 1 $\vert \cdot$ We can then factor as:

$$
\begin{bmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} B_{11} \ B_{21} \end{bmatrix} [I \ B_{11}^{-1} B_{12}]
$$

$$
= \begin{bmatrix} I \ B_{21} B_{11}^{-1} \end{bmatrix} B_{11} [I \ B_{11}^{-1} B_{12}] = \begin{bmatrix} I \ B_{21} B_{11}^{-1} \end{bmatrix} [B_{11} B_{12}].
$$

With $P = E_{\pi_1}^{-1}$ $\eta_{\pi_1}^{-1}$ and $Q = E_{\pi_2}^{-1}$ $\frac{m-1}{\pi_2}$ we have

$$
A = P\begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix} [I \ B_{11}^{-1} B_{12}] Q = \begin{bmatrix} P B_{11} \\ P B_{21} \end{bmatrix} [Q \ B_{11}^{-1} B_{12} Q] \quad (**)
$$

and

$$
A = P\begin{bmatrix} I \\ B_{21}B_{11}^{-1} \end{bmatrix} [B_{11} \ B_{12}] Q = \begin{bmatrix} P \\ P B_{21}B_{11}^{-1} \end{bmatrix} [B_{11}Q \ B_{12}Q]. \quad (***)
$$

Now P and Q are permutation matrices and so are of full rank and B_{11} is of full rank, so $\sqrt{ }$ $\overline{1}$ PB_{11} PB_{21} 1 | and $\sqrt{ }$ $\overline{1}$ P $PB_{21}B_{11}^{-1}$ 11 1 are of full column rank and $[Q \ B_{11}^{-1}B_{12}Q]$ and $[B_{11}\overline{Q} \ B_{12}\overline{Q}]$ are of full row rank. So $(**)$ and $(***)$ give two factorizations of A in the form $A = LR$ where L is a $n \times r$ full column rank matrix and R is a $r \times m$ full row rank.

Definition. If $n \times m$ matrix A of rank r can be written as $A = LR$ where L is a $n \times r$ full column rank matrix and R is a $r \times m$ full row rank matrix, then $A = LR$ is a full rank factorization of A.

Theorem 3.4.1. If A is a square nonsingular matrix and $A =$ $\sqrt{ }$ $\overline{1}$ A_{11} A_{12} A_{21} A_{22} 1 | where both A_{11} and A_{22} are nonsingular then in terms of the Schur complement of A_{11} in $A, Z = A_{22} - A_{21}A_{11}^{-1}A_{12}$, we have that the inverse of A is $A^{-1} =$ $\sqrt{ }$ $\overline{1}$ $A_{11}^{-1} + A_{11}^{-1}A_{12}Z^{-1}A_{21}A_{11}^{-1} - A_{11}^{-1}A_{12}Z^{-1}$ $-Z^{-1}A_{21}A_{11}^{-1}$ Z^{-1} 1 $\vert \cdot$

Note. The proof of Theorem 3.4.1 is to be given in Exercise 3.13.

Theorem 3.4.2. If A is a square matrix such that $A =$ $\sqrt{ }$ $\overline{1}$ X^T y^T 1 $\big|$ [X y] where X is of full column rank, then the Schur complement of $X^T X$ in A is

$$
y^T y - y^T X (X^T X)^{-1} X^T y.
$$

Theorem 3.4.3. If A is a square matrix partitioned as $A =$ $\sqrt{ }$ $\overline{}$ A_{11} A_{12} A_{21} A_{22} 1 | where A_{11} is square and nonsingular then

$$
\det(A) = \det(A_{11})\det(A_{22} - A_{21}A_{11}^{-1}A_{12}) = \det(A_{11})\det(Z)
$$

where $Z = A_{22} - A_{21}A_{11}^{-1}A_{12}$ is the Schur complement of A_{11} in A.

Revised: 7/1/2018