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Section 3.5. Linear Systems of Equations

Note. Recall that we represent a system of n linear equations in m unknowns as

Ax = b where A is an n × m matrix, x is an m-vector of unknowns and b is an

n-vector.

Definition. The system of equations Ax = b where b = 0 is homogeneous.

Definition. If there is a solution x to the system Ax = b then the system is

consistent. If there is no solution then the system is inconsistent.

Note 3.5.A. In the system Ax = b, if A is invertible (and hence square) then there

is a unique solution to the system, namely x = A−1b.

Definition. A consistent system Ax = b of n equations in m unknowns (so A is

n × m) is underdetermined if rank(A) < m.

Theorem 3.5.1. If Ax = b is an underdetermined system then there are an infinite

number of solutions to the system.

Note. Since an underdetermined system of equations has multiple solutions, we

might want to choose a “best” solution in some way that optimizes additional

desirable properties.
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Definition. A system Ax = b of n equations in m unknowns where n > m and

rank([A | b]) > rank(A) is overdetermined.

Note. In an overdetermined system, the condition rank([A | b]) > rank(A) implies

that b is not in the column space of A and so there is no solution of the system

Ax = b. In an overdetermined system, we might seek an approximate solution; one

approach to this is the method of least squares to be explored in Section 9.2.

Definition. A matrix G such that AGA = A is a generalized inverse of A, denoted

G = A−.

Note. If A is n × m then a generalized inverse of A must be m × n. If A is

nonsingular (and hence is square and of full rank) then A− = A−1. In Section 3.6

we’ll see that an A− exists for any matrix A.

Theorem 3.5.2. Properties of the Generalized Inverse.

(1) If A− is a generalized inverse of A then (A−)T is a generalized inverse of AT .

(2) (A−A)(A−A) = A−A; that is, A−A is idempotent.

(3) rank(A−A) = rank(A).

(4) (I − A−A)(A−A) = 0 and (I − A−A)(I − A−A) = (I − A−A).

(5) rank(I − A−A) = m − rank(A) where A is n × m.
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Theorem 3.5.3. Let Ax = b be a consistent system of equations and let A− be a

generalized inverse of A.

(1) x = A−b is a solution.

(2) If x = Gb is a solution of system Ax = b for all b such that a solution exists,

then AGA = A; that is, G is a generalized inverse of A.

(3) For any z ∈ R
m, A−b + (I − A−A)z is a solution.

(4) Every solution is of the form x = A−b + (I − A−A)z for some z ∈ R
m.

Note. Gentle’s statement of (2) in Theorem 3.5.3 is not correct (see page 99).

The correct statement given here is Exercise 7 from Section 3 of the Introduction

(on page 3) of A. Ben-Isreal and T. Greville’s Generalized Inverses: Theory and

Applications, 2nd Edition, Springer (2003).

Note. From Theorem 3.5.3 (3 and 4) we see that the number of linearly indepen-

dent solutions to Ax = b (for a given b) is the rank of I −A−A which by Theorem

3.5.2(5) is m − rank(A).

Definition. For n × m matrix A, the set of all vectors generated by all solutions

x of the homogeneous system Ax = 0 is the null space of A, denoted N (A). The

dimension of the null space is the nullity of A.
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Note. By the definition of vector space (see Section 2.1) we need only show that

for x, y ∈ N (A) and for a, b ∈ R we have ax + by ∈ N (A) (which is “clear”). See

also Theorem 2.2.2.

Theorem 3.5.4. The nullity of n×m matrix A satisfies dim(N (A)) = m−rank(A).

Note. The result of Theorem 3.5.4 can be rearranged to give the rank-nullity

equation:

rank(A) + nullity(A) = # columns of A.

Note. By Theorem 3.3.5, for square matrix A,

rank(A) ≥ rank(A2) ≥ rank(A3) ≥ · · · .

So by Theorem 3.5.4,

dim(N (A)) ≤ dim(N (A2)) ≤ dim(N (A3)) ≤ · · · .

In fact, N (A) ⊂ N (A2) ⊂ N (A3) ⊂ · · · since for any x with Aix = 0 we also have

Ai+1x = A(Aix) = A0 = 0.
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Theorem 3.5.5.

(1) If system Ax = b is consistent, then any solution is of the form x = A−b + z

for some z ∈ N (A).

(2) For matrix A, the null space of A is orthogonal to the row space of A: N (A) ⊥

V(AT).

(3) For matrix A, N (A) ⊕ V(AT ) = R
m.

Note. Since N (A) ⊂ N (A2) ⊂ N (A3) ⊂ · · · and N (A) ⊕ V(AT) = R
m, then row

spaces satisfy V(AT ) ⊃ V((AT)2) ⊃ V((AT)3) ⊂ · · ·.

Note. By Theorem 3.5.5(1), the general solution to consistent system Ax = b is

x = A−b + z where A− is some general inverse of A and z is any element of N (A).

Here, A−b is a “particular solution” to Ax = b and the “general solution” to Ax = 0

is N (A). We treat A−b as a “translation vector” and then the general solution of

Ax = b can be expressed as a translation of the null space: A−b+N (A). Of course,

A−b + N (A) is not itself a vector space unless A−b ∈ N (A) in which case it must

be that b = 0. In the language of Section 2.2, A−b + N (A) is a “flat” or “affine

space” in R
m.
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