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Section 3.9. Matrix Norm

Note. We define several matrix norms, some similar to vector norms and some

reflecting how multiplication by a matrix affects the norm of a vector. We use

matrix norms to discuss the convergence of sequences and series of matrices.

Definition. Consider the vector space Rn×m of all n×m matrices with real entries.

A matrix norm on Rn×m is a mapping ‖·‖ : Rn×m → R such that for all A, B ∈ Rn×m

and a ∈ R:

(1) Nonnegativity and Mapping of the Identity: If A 6= 0 then ‖A‖ > 0 and

‖0‖ = 0.

(2) Relation of Real Scalar Multiplication to Real Multiplication: ‖aA‖ = |a|‖A‖.

(3) Triangle Inequality: ‖A + B‖ ≤ ‖A‖+ ‖B‖.

(4) Consistence Property: ‖AB‖ ≤ ‖A‖‖B‖.

A matrix norm ‖ · ‖ is orthogonally invariant if for A and B orthogonally similar

we have ‖A‖ = ‖B‖. The consistence property is commonly called the “submulti-

plicative property.”

Note. We briefly denote the norm of a vector as ‖ · ‖v and the norm of a matrix

as ‖ · ‖M .

Definition. The matrix norm on Rn×m is ‖A‖M = sup
x6=0

‖Ax‖v

‖x‖v
where A ∈ Rn×m

and x ∈ Rm. This is also called the matrix norm induced by the vector norm ‖ · ‖v,

or the operator norm.



3.9. Matrix Norm 2

Note. Gentle uses “max” in place of “sup” but this cannot be done since Rm

contains an infinite number of nonzero vectors. In Exercise 3.22 (modified) you are

to show that the matrix norm actually is a norm.

Theorem 3.9.1. The vector norm and its induced matrix norm satisfy:

(1) ‖Ax‖ ≤ ‖A‖‖x‖.

(2) ‖A‖ = sup‖x‖=1 ‖Ax‖.

Note. The proof of Theorem 3.9.1 is to be given in Exercise 3.23. In Rm, {x |

‖x‖ = 1} is a compact set and so it is correct to define ‖A‖ = max‖x‖=1 ‖Ax‖.

However, in infinite dimensional vector spaces, the set {x | ‖x‖ = 1} is not compact

and in that case “sup” is necessary. (Implicit in this observation is the fact that

‖ · ‖ : Rm → R is continuous.) For related ideas in a more general (and potentially

infinite dimensional) setting, see my online notes for Fundamentals of Functional

Analysis (MATH 5740) on 2.4. Bounded Linear Operators.

Definition. If we use the `p norm on Rn and Rm (see Section 2.1), then the induced

matrix norm is the `p matrix norm ‖A‖p = max‖x‖p=1 ‖Ax‖p.

Theorem 3.9.2. For n × m matrix A = [aij], the `1 norm satisfies ‖A‖1 =

max1≤j≤m {
∑n

i=1 |aij|} and so it is also called the column-sum norm. The `∞ norm

satisfies ‖A‖∞ = max1≤i≤n

{∑m
j=1 |aij|

}
and so it is also called the row-sum norm.

https://faculty.etsu.edu/gardnerr/Func/notes/2-4.pdf
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Note. Theorem 3.9.2 immediately implies that for any A ∈ Rn×m, we have

‖AT‖∞ = ‖A‖1. If A is symmetric then ‖A‖1 = ‖A‖∞.

Theorem 3.9.3. The `2 matrix norm and spectral radius are related as:

‖A‖2 =
√

ρ(ATA).

Note. The proof of Theorem 3.9.3 is to be given in Exercise 3.24.

Note. In Exercise 3.25(a), it is shown that for orthogonal Q that ‖Qx‖2 = ‖x‖2;

that is, the matrix transformation Q : Rm → Rn is an “isometry” and orthogonal

matrices are examples of “isometric matrices.” Notice that this gives ‖Q‖2 = 1.

More generally, if A and B are orthogonally similar then (by the Consistency

Property) ‖A‖2 = ‖B‖2.

Definition. For A ∈ Rn×m, the Frobenius norm is

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

(aij)2

(also called the Euclidean matrix norm).

Note. The fact that the Frobenius norm satisfies properties (1), (2), (3) of the

definition of matrix norm follows from the observation that for any A ∈ Rn×m there

is a vector v ∈ Rnm (and conversely) with ‖A‖2 = ‖v‖2 and that ‖ · ‖2 is a vector

norm. Proof of the Consistency Property is to be given in Exercise 3.27.
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Note. Recall that for A and B n×m matrices with the columns of A as a1, a2, . . . , am

and the columns of B as b1, b2, . . . , bm, we have the inner product

〈A, B〉 =
m∑

j=1

aT
j bj =

m∑
j=1

〈aj, bj〉.

So with A = [aij] and B = [bij], 〈A, B〉 =
∑m

j=1
∑n

i=1 aijbij and so 〈A, A〉 =∑n
i=1
∑m

j=1(aij)
2 = ‖A‖2

F . Also, by Theorem 3.2.8(5), 〈A, B〉 = tr(ATB), so we

also have ‖A‖F =
√
〈A, A〉 and hence

‖A‖F =
√

tr(ATA) =
√
〈A, A〉.

So the Frobenius norm is the norm induced by the matrix inner product (see page 74

of the text). Clearly from the definition of Frobenius norm we have ‖AT‖F = ‖A‖F

(since the entries of A and AT are collectively the same).

Theorem 3.9.4. If square matrices A and B are orthogonally similar then ‖A‖F =

‖B‖F .

Note. Since the Frobenius norm is induced by the matrix inner product and the

spectral decomposition of A is A =
∑r

i=1 diuiv
T
i where 〈uiv

T
i , ujv

T
j 〉 =

 1 if i = j

0 if i 6= j

and di = 〈A, uiv
T
i 〉 then ‖A‖2

F =
∑r

i=1 d2
i where the di are the singular values of A.

This is Parseval’s identity for the Frobenius norm (see Section 2.2 and Theorem

3.8.17).
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Note 3.9.A. In Theorem 2.1.10 we showed that all vector norms on a given finite

dimensional vector space are equivalent. In Exercise 3.28 it is to be shown that any

two matrix norms induced by vector norms are equivalent. In fact, Gentle states

that all matrix norms are equivalent (see page 133).

Theorem 3.9.5. Let A be an n×m real matrix. Then

‖A‖∞ ≤
√

m‖A‖F

‖A‖F ≤
√

min{n, m}‖A‖2

‖A‖2 ≤
√

m‖A‖1

‖A‖1 ≤
√

n‖A‖2

‖A‖2 ≤ ‖A‖F

‖A‖F ≤
√

n‖A‖∞

and each inequality is sharp (that is, there is a matrix A for which the inequality

reduces to equality).

Note. The proof of Theorem 3.9.5 is to be given in Exercise 2.30.

Theorem 3.9.6. For any matrix norm ‖ ·‖ and any square matrix A, ρ(A) ≤ ‖A‖.

Note. For square A, ‖A‖1 = max1≤j≤n {
∑n

i=1 |aij|} and ‖A‖∞ = max1≤i≤n

{∑m
j=1 |aij|

}
.

So by Theorem 3.9.6 we see that the spectral radius ρ(A) is less than or equal to

both the largest sum of absolute values of the elements in any row or column.
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Note. Since we have a matrix norm, we can use it to define limits of sequences of

matrices (of the same size). Since all matrix norms are equivalent by Note 3.9.A

we can express the definition in terms of a “generic” matrix norm ‖ · ‖.

Definition. A sequence of matrices of the same size, A1, A2, . . . converges to matrix

A if for all ε > 0 there is N ∈ N such that for all n ≥ N we have ‖A− An‖ < ε.

Theorem 3.9.7. Let A be a square matrix. Then limk→∞ Ak = 0 if and only if

ρ(A) < 1.

Note. If fact, we can express the spectral radius in terms of a limit of the matrix

norms as follows.

Theorem 3.9.8. For square matrix A, limk→∞ ‖Ak‖1/k = ρ(A).

Theorem 3.9.9. Let A be an n× n matrix with ‖A‖ < 1. Then

I + lim
k→∞

(
k∑

n=1

An

)
= (I − A)−1.

Definition. A square matrix A such that Ak = 0 and Ak−1 6= 0 for some k ∈ N is

nilpotent of index k.
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Theorem 3.9.10. Suppose A is an n×n matrix which is nilpotent of order k ∈ N.

Then:

(1) ρ(A) = 0 ( so all eigenvalues of A are 0), and

(2) tr(A) = 0, and

(3) rank(A) ≤ n− 1.

Note. The proof of Theorem 3.9.10 is to be given in Exercise 3.33.
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