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Section 4.2. Types of Differentiation

Note. In this section we define differentiation of various structures with respect

to a scalar, a vector, and a matrix.

Definition. Let vector y be a function of scalar variable x so that y = y(z) =
Y1, Y2, - -, Yn] = [y1(2), y2(2), . .., yn(z)]. The derivative of vector y with respect to

scalar x is the vector

Oy _ (9 Oy Oun| i A
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Let matrix Y be a function of scalar variable z so that Y = Y (z) = [y;;(x)]. The

derivative of matriz Y with respect to scalar x is the matrix

oY ayij
Ox
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Note. To define differentiation with respect to a vector x of an object ® which is

a function of a vector, we use the usual definition:

lim O(x + ty) — O(x)
t—0 t

where y is any conformable vector with x (this will give the derivative of ® “in the
direction” of y). Notice that we can use the usual €/§ definition of limit, provided

we have a metric on the objects ®. We start with scalar valued functions.
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Definition. Let f : R" — R be a scalar valued function of a vector. The derivative

of scalar valued function f with respect to vector x = |x1,xs,...,T,] is

or o5 or o1
or |0z’ 0xy’ Oz, |

This derivative is the gradient of f, denoted V f (sometimes read “dell f”).

Note. Let A be a given (constant) n x n matrix and x € R"”. The quadratic form
a? Az is a scalar and the derivative of the quadratic form in the direction vy is

(z +ty)TA(z + ty) — 2T Az (2T +ty") Az + ty) — 2T Ax

lim = lim
t—0 t t—=0 t
. o7 Az + tyT Az + taT Ay + t2yT Ay — 2T Ax
= lim
t—0 t

= Pn&(yTA:U + 2T AY 4+ ty" Ay) = yT Az + 27 Ay
= yT Az + (27 Ay)T since 27 Ay is a 1 x 1 matrix
and so is symmetric

= yAr+y' Ale =y (A+ ANz

Notice that ||z||3 = 272 = 27Tz so this example shows that the directional deriva-

tive of the Euclidean norm exists in all directions y.

Note. We now consider derivatives of vector valued functions of vectors, f : R" —

R™.
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Definition. Let f : S — R"™ where S C R". With

f=flry,x0,.. . xn) = (fi(x, @, .., 20), o, o, o)y ooy (@1, e, 0 2)),

define the matrixz gradient Of /0x as the n x m matrix with (7, j) entry Jf;/0x;:

oh 0 .. Ofm
81‘1 81‘1 81‘1
%: 81‘2 81)2 8.%‘2
ox
Oh 0L .. 9m
| Oz, Oz, oz,

This is also sometimes denoted V f (Gentle uses the notation df7 /0z). The m x n
matrix 0f0x)T = (Vf)T is the Jacobian of f (denoted by Gentle as df/0xT).

Note. You have seen the Jacobian when dealing with substitution in a multiple
integral (it sort of plays the role of “du” in one variable u-substitution). See my

online Calculus 3 (MATH 2110) notes on 15.8. Substitutions in Multiple Integrals.

Definition. Let Y be a p x ¢ matrix of functions f;; : R* — R, Y = [f;;] where

oY
fij = fij(x1,22,...,2). Define the derivative of Y as i [V fi;]. That is,
x

dY/0x is a three dimensional object (or a matrix of vectors) of dimension p X ¢ x n

where the (7, j, k) entry is 0f;;/0x). For fixed k* we denote the p x ¢ matrix with
(,7) entry as the (i, j, k*) entry of 0Y/0x as 0Y/Oxj-.


http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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Note. The linearity and chain rule properties of partial derivatives allow us to
establish rules of differentiation in these new settings. For example, if Y = [fi;]

where f;; : R" — R is a square nonsingular matrix then we show in Exercise 4.3

o _ -y! <8—Y) Y1

that

Ox Ox
: 0 Y
In Exercise 4.2.A we show for Y = [f;;] that %[tr(Y)] = tr (%) :

Definition. Let f : R" — R be a scalar valued function of a vector. The matrix

2
is the Hessian of f, denoted H:

H with (¢, ) entry as

8@8;15]-
2f & .. _&f ]
0x? 0x10x2 0210z,
o*f  2f .. _0f
H = 0x2071 0%y 0x20T,
f of ... 2&f
| O0z,0x1 Ox,0s ox2
0% f

Gentle denotes the Hessian as V2f and

0xoxT

Note. In the case that f = f(x,y) then

>f  Pf 2 ¢ 92 P 2
5 O*fo°f 0*f
det(H) =det | O o0 | = 2222
ct(H) = de °f  &f 02 0y? <8x8y>
0zdy  0y?

(assuming the mixed partials are equals, which is really an assumption of continu-
ity) and det(H) is related to the curvature of the surface z = f(z,y); see online
my Differential Geometry (MATH 5510) notes on 1.6. The Gauss Curvature in

Detail (see the example on pages 3 and 4). Because of this, the Hessian (which


http://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-6.pdf
http://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-6.pdf
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is often defined as det(H) instead of H itself) can be used to find extrema and
saddle points of z = f(z,y) in a style similar to the use of the Second Derivative
Test for functions y = f(x). See my online Calculus 3 (MATH 2110) notes on 14.7.

Extreme Values and Saddle Points.

Note. Gentle lists 0f/0x for several types of functions f(x) where x is an n-
vector. Let a be a constant scalar, b a constant conformable vector, and A a
constant conformable matrix. Then we have (with corrections to Gentle as given

in the Errata):

/(@) of [0x

ax al

vl b

L’ b

Tz 2z

zal rRIT+1IQ@x
v Ax ATh
zT Ab Ab
zT Az (A+ ATz

exp((—1/2)aT Az) | —exp((—1/2)2T Ax) Az if A= AT

l[13 2%

V(x) 2x/(n —1)

The proofs of some of these are to be given in Exercise 4.2.B.


http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
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Definition. Let X be a matrix of independent variables and f a function of X so

that f = f(X) = f(|xi;]). The derivative of function f with respect to matriz X is

Cof Tof
the matrix X {85’7@'] .

Theorem 4.2.1. Differentiation of scalar valued function f satisfies the following.

) 2L (2L
oxXT  \oX)
of
(2) For X square and f(X) = tr(X), X = 7.
(3) For AX a square matrix where A is constant, w = AT
oltr(XTX)]
T
(5) With a and b constant vectors, 8[@8 )? d = ab”
() 2 — (i)
ox

Note. A quick search of the internet reveals that there are a number of definitions
for the derivative of a matrix with respect to a matrix. Inspired by Gentle’s general

approach, we take the following definition.

Definition. Let X be a matrix of independent variables and let Y be a matrix of

functions of X, Y = [y;;] = [vi;(X)]. The derivative of matriz Y with respect to
oY [ Y ]

matriz X is the matrix — =

8X aSCZ‘j
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Note. Gentle claims that that the following hold. Given his cryptic statement of

equation (4.15) on page 155, I am not totally confident that all of the following

hold under our definition of a matrix with respect to a matrix.

Note. Gentle lists f /0X for several types of functions f(X) where X is a matrix.

Let a and b be a conformable vectors, and A a constant conformable matrix. Then

we have:

f(X) |0f/0X Justification
al Xb ab? | Theorem 4.2.1(5)
tr(AX) AT | Theorem 4.2.1(3)
tr(XTX)| 2X | Theorem 4.2.1(4)
BX 1®B
XC |CTeI
BXC |CT®B

If X is square and invertible as required, then:

f(X) of /0X Justification
tr(X) T Theorem 4.2.1(2)
tr(XF) k Xk Exercise 4.2.C(1)
tr(BX10) | —(X~leBX Y
det(X) det X (X 1)T Exercise 4.2.C(2)
log(det(X)) (XHT Exercise 4.2.C(3)
det X* kdet(X)*(X—HT | Exercise 4.2.C(4)
BX71C |—(X'O)T®BX!
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