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Section 4.2. Types of Differentiation

Note. In this section we define differentiation of various structures with respect

to a scalar, a vector, and a matrix.

Definition. Let vector y be a function of scalar variable x so that y = y(x) =

[y1, y2, . . . , yn] = [y1(x), y2(x), . . . , yn(x)]. The derivative of vector y with respect to

scalar x is the vector

∂y

∂x
=

[
∂y1

∂x
,
∂y2

∂x
, . . . ,

∂yn

∂x

]
= [y′1, y

′
2, . . . , y

′
n].

Let matrix Y be a function of scalar variable x so that Y = Y (x) = [yij(x)]. The

derivative of matrix Y with respect to scalar x is the matrix

∂Y

∂x
=

[
∂yij

∂x

]
= [y′ij].

Note. To define differentiation with respect to a vector x of an object Φ which is

a function of a vector, we use the usual definition:

lim
t→0

Φ(x + ty)− Φ(x)

t

where y is any conformable vector with x (this will give the derivative of Φ “in the

direction” of y). Notice that we can use the usual ε/δ definition of limit, provided

we have a metric on the objects Φ. We start with scalar valued functions.
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Definition. Let f : Rn → R be a scalar valued function of a vector. The derivative

of scalar valued function f with respect to vector x = [x1, x2, . . . , xn] is

∂f

∂x
=

[
∂f

∂x1
,

∂f

∂x2
, · · · , ∂f

∂xn

]
.

This derivative is the gradient of f , denoted ∇f (sometimes read “dell f”).

Note. Let A be a given (constant) n× n matrix and x ∈ Rn. The quadratic form

xTAx is a scalar and the derivative of the quadratic form in the direction y is

lim
t→0

(x + ty)TA(x + ty)− xTAx

t
= lim

t→0

(xT + tyT )A(x + ty)− xTAx

t

= lim
t→0

xTAx + tyTAx + txTAy + t2yTAy − xTAx

t

= lim
t→0

(yTAx + xTAY + tyTAy) = yTAx + xTAy

= yTAx + (xTAy)T since xTAy is a 1× 1 matrix

and so is symmetric

= yTAx + yTATx = yT (A + AT )x.

Notice that ‖x‖2
2 = xTx = xTIx so this example shows that the directional deriva-

tive of the Euclidean norm exists in all directions y.

Note. We now consider derivatives of vector valued functions of vectors, f : Rn →

Rm.
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Definition. Let f : S → Rm where S ⊂ Rn. With

f = f(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)),

define the matrix gradient ∂f/∂x as the n×m matrix with (i, j) entry ∂fi/∂xj:

∂f

∂x
=



∂f1

∂x1

∂f2

∂x1
· · · ∂fm

∂x1

∂f1

∂x2

∂f2

∂x2
· · · ∂fm

∂x2

...
... . . . ...

∂f1

∂xn

∂f2

∂xn
· · · ∂fm

∂xn

 .

This is also sometimes denoted ∇f (Gentle uses the notation ∂fT/∂x). The m×n

matrix ∂f∂x)T = (∇f)T is the Jacobian of f (denoted by Gentle as ∂f/∂xT ).

Note. You have seen the Jacobian when dealing with substitution in a multiple

integral (it sort of plays the role of “du” in one variable u-substitution). See my

online Calculus 3 (MATH 2110) notes on 15.8. Substitutions in Multiple Integrals.

Definition. Let Y be a p × q matrix of functions fij : Rn → R, Y = [fij] where

fij = fij(x1, x2, . . . , xm). Define the derivative of Y as
∂Y

∂x
= [∇fij]. That is,

∂Y/∂x is a three dimensional object (or a matrix of vectors) of dimension p× q×n

where the (i, j, k) entry is ∂fij/∂xk. For fixed k∗ we denote the p× q matrix with

(i, j) entry as the (i, j, k∗) entry of ∂Y/∂x as ∂Y/∂xk∗.

http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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Note. The linearity and chain rule properties of partial derivatives allow us to

establish rules of differentiation in these new settings. For example, if Y = [fij]

where fij : Rn → R is a square nonsingular matrix then we show in Exercise 4.3

that
∂Y −1

∂x
= −Y −1

(
∂Y

∂x

)
Y −1.

In Exercise 4.2.A we show for Y = [fij] that
∂

∂x
[tr(Y )] = tr

(
∂Y

∂x

)
.

Definition. Let f : Rn → R be a scalar valued function of a vector. The matrix

H with (i, j) entry as
∂2f

∂xi∂xj
is the Hessian of f , denoted H:

H =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂2x2

· · · ∂2f
∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 .

Gentle denotes the Hessian as ∇2f and
∂2f

∂x∂xT
.

Note. In the case that f = f(x, y) then

det(H) = det

 ∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =
∂2f

∂x2

∂2f

∂y2 −
(

∂2f

∂x∂y

)2

(assuming the mixed partials are equals, which is really an assumption of continu-

ity) and det(H) is related to the curvature of the surface z = f(x, y); see online

my Differential Geometry (MATH 5510) notes on 1.6. The Gauss Curvature in

Detail (see the example on pages 3 and 4). Because of this, the Hessian (which

http://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-6.pdf
http://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-6.pdf
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is often defined as det(H) instead of H itself) can be used to find extrema and

saddle points of z = f(x, y) in a style similar to the use of the Second Derivative

Test for functions y = f(x). See my online Calculus 3 (MATH 2110) notes on 14.7.

Extreme Values and Saddle Points.

Note. Gentle lists ∂f/∂x for several types of functions f(x) where x is an n-

vector. Let a be a constant scalar, b a constant conformable vector, and A a

constant conformable matrix. Then we have (with corrections to Gentle as given

in the Errata):

f(x) ∂f/∂x

ax aI

bTx b

xT b b

xTx 2x

xxT x⊗ I + I ⊗ x

bTAx AT b

xTAb Ab

xTAx (A + AT )x

exp((−1/2)xTAx) − exp((−1/2)xTAx)Ax if A = AT

‖x‖2
2 2x

V (x) 2x/(n− 1)

The proofs of some of these are to be given in Exercise 4.2.B.

http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c14s7.pdf
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Definition. Let X be a matrix of independent variables and f a function of X so

that f = f(X) = f([xij]). The derivative of function f with respect to matrix X is

the matrix
∂f

∂X
=

[
∂f

∂xij

]
.

Theorem 4.2.1. Differentiation of scalar valued function f satisfies the following.

(1)
∂f

∂XT
=

(
∂f

∂X

)T

.

(2) For X square and f(X) = tr(X),
∂f

∂X
= I.

(3) For AX a square matrix where A is constant,
∂[tr(AX)]

∂X
= AT .

(4)
∂[tr(XTX)]

∂X
= 2X.

(5) With a and b constant vectors,
∂[aTXb]

∂X
= abT .

(6)
∂[det(X)]

∂X
= (adj(X))T .

Note. A quick search of the internet reveals that there are a number of definitions

for the derivative of a matrix with respect to a matrix. Inspired by Gentle’s general

approach, we take the following definition.

Definition. Let X be a matrix of independent variables and let Y be a matrix of

functions of X, Y = [yij] = [yij(X)]. The derivative of matrix Y with respect to

matrix X is the matrix
∂Y

∂X
=

[
∂Y

∂xij

]
.
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Note. Gentle claims that that the following hold. Given his cryptic statement of

equation (4.15) on page 155, I am not totally confident that all of the following

hold under our definition of a matrix with respect to a matrix.

Note. Gentle lists ∂f/∂X for several types of functions f(X) where X is a matrix.

Let a and b be a conformable vectors, and A a constant conformable matrix. Then

we have:

f(X) ∂f/∂X Justification

aTXb abT Theorem 4.2.1(5)

tr(AX) AT Theorem 4.2.1(3)

tr(XTX) 2X Theorem 4.2.1(4)

BX I ⊗B

XC CT ⊗ I

BXC CT ⊗B

If X is square and invertible as required, then:

f(X) ∂f/∂X Justification

tr(X) I Theorem 4.2.1(2)

tr(Xk) kXk−1 Exercise 4.2.C(1)

tr(BX−1C) −(X−1CBX−1)T

det(X) det X(X−1)T Exercise 4.2.C(2)

log(det(X)) (X−1)T Exercise 4.2.C(3)

det Xk kdet(X)k(X−1)T Exercise 4.2.C(4)

BX−1C −(X−1C)T ⊗BX−1
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