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Section 4.3. Optimization of Functions (Partial)

Note. We now consider f : Rn → R and attempt to find optima (local max-

ima/minima) of f . We describe some analytic and numerical techniques, but offer

(like Gentle) no proofs/justifications.

Note. For f : Rn → R, a stationary point is a point at which

∂f

∂x
=

[
∂f

∂x1
,

∂f

∂x2
, · · · , ∂f

∂xn

]
is zero. We can consider the Hessian at the stationary point to see if it is a

local maximum, local minimum, or saddle point. We assume that f is sufficiently

continuous so that ∂2f/∂xi∂xj = ∂2f/∂xj∂xi so that the Hessian of f is symmetric.

Then, by Theorem 3.8.14, the Hessian is positive definite if and only if all of its

eigenvalues are positive. So:

(1) If (but not only if) the stationary point is a local minimum then the Hessian

is nonnegative definite.

(2) If the Hessian is positive definite then the stationary point is a local minimum.

(3) If (but not only if) the stationary point is a local minimum then the Hessian

is nonpositive definite.

(4) If the Hessian is negative definite then the stationary point is a local maximum.

(5) If the Hessian has both positive and negative eigenvalues then the stationary

point is a saddle point.
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Note. Let F : Rn → R. Newton’s Method is an iterative numerical technique

that estimates a stationary point of f(x) (that is, a point where ∇f(x) = 0). We

start with an initial guess x(0) as an estimate of a solution and then revise it for

k = 1, 2, . . . by solving the linear system

∇2f(x(k))p(k+1) = −∇f(x(k))

and updating the estimated solution as

x(k+1) = x(k) + p(k+1).

The process is then iterated.

Note. This looks somewhat different from the Newton’s Method you encoun-

tered in Calculus 1 (see, for example, my online Calculus 1 notes on 4.7. Newton’s

Method). There, you were likely looking for zeros of a function f . Here you are

looking for zeros of the derivative ∇f (which is why in Calculus 1 you only used

the function and its derivative, but here you use the derivative ∇f and the sec-

ond derivative ∇2f). You may also be aware that the stationary point to which

Newton’s Method is attracted likely depends on the initial guess x(0) and that

Newton’s Method can produce unexpected behavior (like cycling around instead of

approaching a stationary point or acting in a chaotic way).

http://faculty.etsu.edu/gardnerr/1910/Notes-12E/c4s7.pdf
http://faculty.etsu.edu/gardnerr/1910/Notes-12E/c4s7.pdf
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Note. In a least squares fit of a linear model, y = Xβ+ε, where y is an n-vector (of

“output values” or dependent values), X is an n×m matrix, and β is an m-vector

(of “input values” or independent values), we replace β with variable vector b and

define the residual vector r = y−Xb (notice that this is a difference of an “observed

value” y and a “predicted value” Xb). We want to minimize the Euclidean norm

of the residual vector f(b) = 〈r, r〉 = rTr = (y − Xb)T (y − Xb). Notice that this

is the sum of squares (since we use the Euclidean norm) of the difference between

observed and predicted values. So we differentiate f(b) to get

∂

∂b
[f(b)] =

∂

∂b

[
(y −Xb)T (y −Xb)

]
=

∂

∂b
[yTy − yTXb− bTXTy + bTXTXb]

= 0− (yTX)T −XTy + (XTX + (XTX)T )b by the differentiation

properties given in Section 4.2

= −2XTy + 2XTXb.

Setting ∂f/∂b = 0 implies XTXb = XTy. So a solution b of the system XTXb =

XTy is a stationary point of f(b). Now ∂2f/∂b2 = 2XTX. Gentle states that

XTX � 0 (presumably based on some hypothesis on the linear system y = Xβ + ε

that guarantees a unique solution to XTXb = XTy) and then concludes that, since

the Hessian is positive definite, stationary point b corresponds to a minimum of

f(b) and so b minimizes the Euclidean norm of the residual vector.
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Note. For a geometric argument of the least squares technique, see my online

Linear Algebra (MATH 2010) notes on 6.5 The Method of Least Squares. The

desired vector (denoted r in these notes) results from a projection of a vector onto

a subspace; this projection then minimizes the residual vector. This technique

yields the same result as Gentle’s approach.

Note. We omit the rest of this section since we do not need it for the rest of the

course.
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