Section 4.4. Multiparameter Likelihood Functions

Note. Consider a discrete probability space (Y, p) so that Y is finite or countable and $p: Y \to [0,1]$ with the property that $\sum_{y \in Y} p(y) = 1$. For a "sample" $y = (y_1, y_2, \ldots, y_n)$, where each $y_i \in Y$, the likelihood function is $L(y) = \prod_{i=1}^n p(y_i)$. The log likelihood function is

$$\ell(y) = \log(L(y)) = \log\left(\prod_{i=1}^{n} p(y_i)\right) = \sum_{i=1}^{n} \log(p(y_i)).$$

Note. Gentle states that "if the distribution is the d-variate normal distribution with mean d-vector μ and $d \times d$ positive definite variance-covariance matrix Σ " (page 163) then the likelihood function is

$$L(\mu, \Sigma; y) = \frac{1}{((2\pi)^{d/2} \det(\Sigma)^{1/2})^n} \exp\left(\frac{-1}{2} \sum_{i=1}^n (y_i - \mu)^T \Sigma^{-1} (y_i - \mu)\right).$$

So this gives the log likelihood function

$$\ell(\mu, \Sigma; y) = \log \left((2\pi)^{-nd/2} \det(\Sigma)^{-n/2} \exp\left(\frac{-1}{2} \sum_{i=1}^{n} (y_i - \mu)^T \Sigma^{-1} (y_i - \mu) \right) \right)$$
$$= \frac{-nd}{2} \log(2\pi) - \frac{n}{2} \log(\det(\Sigma)) - \frac{1}{2} \sum_{i=1}^{n} (y_i - \mu)^T \Sigma^{-1} (y_i - \mu).$$

Now a quadratic form $x^T A x$ is a scalar (or a $1 \times t$ matrix), so $x^T A x = \operatorname{tr}(X^T A x)$. By Exercise 3.2.E, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ so $x^T A x = \operatorname{tr}(x^T A x) = \operatorname{tr}A x x^T$). This implies

$$(y_i - \mu)^T \Sigma^{-1} (y_i - \mu) = \operatorname{tr}(\Sigma^{01} (y_i - \mu) (y_i - \mu)^T).$$

So we can rewrite the log likelihood function as

$$\ell(\mu, \Sigma; y) = c - \frac{n}{2} \log(\det(\Sigma)) = \frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \sum_{i=1}^{n} (y_i - \mu) (y_i \mu)^T \right)$$

where $c = (-nd/2)\log(2\pi)$. As seen in Section 2.3, $||x||^2 = ||\overline{x}||^2 + ||x - \overline{x}||^2$, so with $x = y - \mu$ we have

$$||x||^{2} = ||y - \mu||^{2} = \langle y - \mu, y - \mu \rangle = \sum_{i=1}^{n} (y_{i} - \mu)(y_{i} - \mu)^{T}$$

$$= ||\overline{x}||^{2} + ||x - \overline{x}||^{2} = ||\overline{y} - \mu||^{2} + ||(y - \mu) - (\overline{y} - \mu)||^{2}$$

$$= ||\overline{y} - \mu||^{2} + ||y - \overline{y}||^{2}$$

$$= (\overline{y} - \mu)(\overline{y} - \mu)^{T} + \sum_{i=1}^{n} (y_{i} - \overline{y})(y_{i} - \overline{y})^{T}.$$

So we can also write

$$\ell(\mu, \Sigma; y) = c - \frac{n}{2} \log(\det(\Sigma))$$

$$-\frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \left((\overline{y} - \mu)(\overline{y} - \mu)^T + \sum_{i=1}^n (y_i - \overline{y})(y_i - \overline{y})^T \right) \right)$$

$$= c - \frac{n}{2} \log(\det(\Sigma)) - \frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \sum_{i=1}^n (y_i - \overline{y})(y_i - \overline{y})^T \right)$$

$$-\frac{1}{2} \operatorname{tr} (\Sigma^{-1} (\overline{y} - \mu)(\overline{y} - \mu)^T)$$

Note. In maximum likelihood estimates the likelihood function is maximized (or, equivalently, the log likelihood is maximized) by keeping sample y fixed and manipulating the parameters of the probability distribution (such as μ and Σ in the d-variate normal distribution above). Exercise 4.5 illustrates this.

Revised: 4/25/2018