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Section 4.5. Integration and Expectation

Note. In this section we consider integrals of scalar valued functions of a vector

and matrix valued functions of a scalar. We touch briefly on the topics of random

variables and distribution functions.

Note. For change of variables in the setting of scalar valued functions of a 2-

vector or 3-vector, we refer to my online Calculus 3 (MATH 2110) notes on 15.8.

Substitution in Multiple Integrals.

Note. Suppose that a region G in the uv-plane is transformed one-to-one into the

region R n the xy-plane by equations of the form

x = g(u, v), y = h(u, v).

We call R the image of G under the transformation, and G the preimage of R. Any

function f(x, y) defined on R can be thought of as a function f(g(u, v), h(u, v))

defined on G as well. How is the integral of f(x, ) over R related to the integral of

f(g(u, v), h(u, v)) over G? The answer is: If g, h, and f have continuous partials

derivatives and J(u, v) is zero only at isolated points, then∫ ∫
R

f(x, y) dx dy =

∫ ∫
G

f(g(u, v), h(u, v))|J(u, v)| du dv.

The factor J(u, v), whose absolute value appears above, is the Jacobian of the

coordinate transformation. It measures how much the transformation is expanding

or contracting the area around a point in G as G is transformed into R.

http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
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Figure 15.53, Page 905 of Thomas’ Calculus, 12th edition

Definition. The Jacobian determinant or Jacobian of the coordinate transforma-

tion x = g(u, v), y = h(u, v) is

J(u, v) =
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Example. Example 3, page 907. Evaluate

∫ 1

0

∫ 1−x

0

√
x + y(y − 2x)2 dy dx.

Figure 15.56, Page 907 of Thomas’ Calculus, 12th edition

Solution. Based on the figure above, we take x = g(u, v) = u/3 − v/3 and

y = h(u, v) = 2u/3 + v/3, but we need to interchange the roles of x and y (since

the integral is with respect to y and then x), so

J(v, u) =
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So ∫ 1

0

∫ 1−x

0

√
x + y(y − 2x)2 dy dx =

∫ ∫
G

f(g(u, v), h(u, v))|J(v, u)| dv du

=
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∫ 1

0
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=
1

9

∫ 1
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Note. Suppose that a region G in uvw-space is transformed one-to-one into the

region D in xyz-space by differentiable equations of the form

x = g(u, v, w), y = h(u, v, w), z = k(u, v, w).

Then any function F (x, y, z) defined on D can be thought of as a function

F (g(u, v, w), h(u, v, w), k(u, v, w)) = H(u, v, w)

defined on G. If g, h, and k have continuous first partial derivatives, then the

integral of F (x, y, z) over D is related to the integral of H(u, v, w) over G by the

equation∫ ∫ ∫
D

F (x, y, z) dx dy dz =

∫ ∫ ∫
G

H(u, v, w)|J(u, v, w)| du dv dw.

The factor J(u, v, w) whose absolute value appears in this equation, is the Jacobian

determinant

J(u, v, w) =

∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣ .

This determinant measures how much the volume near a point in G is being ex-

panded or contracted by the transformation from (u, v, w) to (x, y, z) coordinates.

Note. Just as we differentiated a matrix function of a single variable, A(x) =

[aij(x)], we can also integrate A(x) for x ∈ [a, b] to produce matrix∫ b

a

A(x) dx =

[∫ b

a

aij(x) dx

]
.
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Here and throughout, we assume that all functions are integrable over the domain

of integration set.

Theorem 4.5.1. For A(x) = [aij(x)] an n × n matrix function of scalar variable

x, we have ∫ b

a

tr(A(x)) dx = tr

(∫ b

a

A(x) dx

)
.

Note. Gentle claims the following result is a consequence of the Lebesgue Domi-

nated Convergence Theorem (see page 3 of my notes from Real Analysis 1 (MATH

5210) on 4.4. The General Lebesgue Integral and any standard text on real analysis,

though it is in neither Royden and Fitzpatrick’s Real Analysis, 4th Edition [which

we use in Real Analysis 1 and 2, MATH 5210/5220] nor Walter Rudin’s Real &

Complex Analysis, 3rd Edition). But it is nice to see this reference to a measure

theoretic result!

Theorem 4.5.2. Let X be an open set in Rn and let f(x, y) and ∂f/∂x be scalar-

valued functions that are continuous on X ×Y for some set Y in Rn. Suppose there

are scalar functions g0(y) and g1(y) such that

|f(x, y)| ≤ g0(y)∥∥ ∂
∂xf(x, y)

∥∥
 for all (x, y) ∈ X × Y ,

∫
Y

g0(y) dy < ∞ and

∫
Y

g1(y) dy < ∞.

http://faculty.etsu.edu/gardnerr/5210/notes/4-4.pdf
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Then
∂

∂x

∫
Y

f(x, y) fy =

∫
Y

∂

∂x
f(x, y) dy.

Definition. A vector random variable is a function from some sample space X

into Rn. A matrix random variable is a function from a sample space into Rn×m. A

distribution function is associated with each random variable which integrates to 1

over the whole sample space.

Definition. The d-variate normal distribution is

f(x) =
1

(2π)d/2(det(Σ))1/2e
−(x−µ)T Σ−1(x−µ)/2

where Σ−1 is a symmetric positive definite d × d matris, µ is a constant d-vector,

and x ∈ Rd.

Note. We expect the integral of the d-variate dimension over all of Rd to be 1.

The following result establishes this.

Theorem 4.5.3. Atiken’s Integral.

For Σ−1 a symmetric positive definite d × d matrix, is a constant d-vector, and

x ∈ Rd we have ∫
Rd

e−(x−µ)T Σ−1(x−µ)/2 dx = (2π)d/2(det(Σ))1/2.
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Definition. The expected value of function f of a vector-valued random variable

X where X ranges over domain D(X) is

E(f(X)) =

∫
D(X)

f(x)pX(x) dx

where pX(x) is the probability density function.

Theorem 4.5.4. The expected value of f(x) = x with respect to the d-variate

normal distribution

pX(x) = (2π)−d/2(det(Σ))1/2e−(x−µ)T Σ−1(x−µ)/2

is µ. (Notice that X = Rd here.)

Note. A proof of Theorem 4.5.4 is to be given in Exercise 4.5.A.

Definition. The variance of vector valued random variable X is the matrix

V (X) = E((X − E(X))(X − E(X)T ).

Theorem 4.5.5. The variance of X with respect to the d-variate normal distribu-

tion is Σ.

Note. A proof of Theorem 4.5.5 is to be given in Exercise 4.5.B.
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