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Section 4.5. Integration and Expectation

Note. In this section we consider integrals of scalar valued functions of a vector
and matrix valued functions of a scalar. We touch briefly on the topics of random

variables and distribution functions.

Note. For change of variables in the setting of scalar valued functions of a 2-
vector or 3-vector, we refer to my online Calculus 3 (MATH 2110) notes on 15.8.

Substitution in Multiple Integrals.

Note. Suppose that a region G in the wv-plane is transformed one-to-one into the

region R n the xy-plane by equations of the form

r = g(u,v), y = h(u,v).

We call R the image of G under the transformation, and G the preimage of R. Any
function f(z,y) defined on R can be thought of as a function f(g(u,v),h(u,v))
defined on G as well. How is the integral of f(x,) over R related to the integral of
f(g(u,v), h(u,v)) over G? The answer is: If g, h, and f have continuous partials

derivatives and J(u,v) is zero only at isolated points, then

[ [ swwardy= [ [ st o) mtw ool dua

The factor J(u,v), whose absolute value appears above, is the Jacobian of the
coordinate transformation. It measures how much the transformation is expanding

or contracting the area around a point in G' as G is transformed into R.


http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf
http://faculty.etsu.edu/gardnerr/2110/notes-12e/c15s8.pdf

4.5. Integration and Expectation 2

®(u,v)

0

Cartesian «v-plane

x = g(u, v)
y = h(u, v)

y

a4n
) 4

Cartesian xy-plane

Figure 15.53, Page 905 of Thomas’ Calculus, 12th edition

Definition. The Jacobian determinant or Jacobian of the coordinate transforma-
tion z = g(u,v), y = h(u,v) is
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Figure 15.56, Page 907 of Thomas’ Calculus, 12th edition

Solution. Based on the figure above, we take z = g(u,v) = u/3 — v/3 and
y = h(u,v) = 2u/3 + v/3, but we need to interchange the roles of x and y (since

the integral is with respect to y and then x), so
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So
/0 1 /0 - VI +yly —2z)* dyde = / / Gf(g(u,v),h<u,v))|J<v,u)|dvdu
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Note. Suppose that a region GG in uvw-space is transformed one-to-one into the

region D in xyz-space by differentiable equations of the form
r=g(u,v,w), y=h(u,v,w), z=k(u,v,w).

Then any function F(z,y, z) defined on D can be thought of as a function
F(g(u,v,w), h(u,v,w), k(u,v,w)) = H(u,v,w)

defined on G. If g, h, and k£ have continuous first partial derivatives, then the
integral of F(x,y,z) over D is related to the integral of H(u,v,w) over G by the

equation

///DF(x,y,z)dxdydz:///GH(u,v,w)U(u,U,w)‘dudvdw.

The factor J(u, v, w) whose absolute value appears in this equation, is the Jacobian

determinant

J(u,v,w)=| % % %

This determinant measures how much the volume near a point in G is being ex-

panded or contracted by the transformation from (u,v,w) to (z,y, z) coordinates.

Note. Just as we differentiated a matrix function of a single variable, A(z) =

la;j(x)], we can also integrate A(x) for z € [a,b] to produce matrix

/:A(x) dz = Uabaij(x) dx] .
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Here and throughout, we assume that all functions are integrable over the domain

of integration set.

Theorem 4.5.1. For A(x) = [a;j(x)] an n x n matrix function of scalar variable

/ab tr(A(2)) do = tr (/:A(a:) dx) .

x, we have

Note. Gentle claims the following result is a consequence of the Lebesgue Domi-
nated Convergence Theorem (see page 3 of my notes from Real Analysis 1 (MATH
5210) on 4.4. The General Lebesgue Integral and any standard text on real analysis,
though it is in neither Royden and Fitzpatrick’s Real Analysis, 4th Edition [which
we use in Real Analysis 1 and 2, MATH 5210/5220] nor Walter Rudin’s Real &
Complex Analysis, 3rd Edition). But it is nice to see this reference to a measure

theoretic result!

Theorem 4.5.2. Let X be an open set in R" and let f(x,y) and 0f/0x be scalar-
valued functions that are continuous on X x ) for some set ) in R". Suppose there

are scalar functions go(y) and g;(y) such that

1f(z,9)| < g0(y)

12 50| for all (z,y) € X x Y,
or T,y

/go(y) dy < oo and /91(y) dy < oo.
y y


http://faculty.etsu.edu/gardnerr/5210/notes/4-4.pdf
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Definition. A vector random wariable is a function from some sample space X
into R™. A matrix random variable is a function from a sample space into R™*™. A
distribution function is associated with each random variable which integrates to 1

over the whole sample space.

Definition. The d-variate normal distribution is

1 Ty—1
— —(z—p)" 7 (z—p)/2
@)= e

where Y71 is a symmetric positive definite d x d matris, x is a constant d-vector,

and x € R%.

Note. We expect the integral of the d-variate dimension over all of R? to be 1.

The following result establishes this.

Theorem 4.5.3. Atiken’s Integral.
For ¥7! a symmetric positive definite d x d matrix, is a constant d-vector, and

x € R? we have

[ et e iy — (o) der(5)
Rd
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Definition. The expected value of function f of a vector-valued random variable

/pr

where px(x) is the probability density function.

X where X ranges over domain D(X) i

Theorem 4.5.4. The expected value of f(z) = x with respect to the d-variate

normal distribution
px(z) = (21) Y2 (det (%)) /2e~ (e = @ /2

is . (Notice that X = R? here.)

Note. A proof of Theorem 4.5.4 is to be given in Exercise 4.5.A.

Definition. The variance of vector valued random variable X is the matrix

V(X) = B((X - E(X))(X - E(X)").

Theorem 4.5.5. The variance of X with respect to the d-variate normal distribu-

tion is ..

Note. A proof of Theorem 4.5.5 is to be given in Exercise 4.5.B.
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