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Section 5.2. Geometric Transformations

Note. Gentle states that “. . . a vector represents a point in space. . . .” This is

misleading. We can associate a vector in Rn, v = (x1, x2, . . . , xn), with a point in

Rn, p = (x1, x2, . . . , xn) by representing the vector as an arrow in standard position

with its tail at the origin and its head at point p. Often, vectors are notationally

distinguished from points by using square brackets for vectors and parentheses for

points: vector v = [x1, x2, . . . , xn] and point p = (x1, x2, . . . , xn); see my online notes

for Linear Algebra (MATH 2010) on 1.1. Vectors in Euclidean Spaces. Vectors and

points in Rn are very different. For example, vectors can be added together and

multiplied by scalars, but vectors don’t have a location. Points cannot be added

together nor multiplied by scalars, but points do have a location.

Definition. A transformation that preserves lengths and angles is an isometric

transformation. A transformation that preserves angles is an isotropic transforma-

tion; a transformation that does not preserve angles is anisotropic. A transforma-

tion of the form mapping x to x+t (where x, t ∈ Rn) is a translation transformation.

Note. Gentle states that all transformations in this section “are linear transfor-

mations because they preserve straight lines” (page 175). This is unusual and a

linear transformation T : Rn → Rm is usually defined as satisfying T (ax + by) =

aT (x) + bT (y) for all a, b ∈ R and x, y ∈ Rn. In this case, T (0) = 0 (since

T (0) = T (0 + 0) = T (0) + T (0)), so a translation is not an example of a linear

transformation in this sense. You see in Linear Algebra that all linear transforma-

tions (in this traditional sense) from Rm to Rn are represented by n×m matrices;

see my online Linear Algebra (MATH 2010) notes on 2.3. Linear Transformations

of Euclidean Spaces.

http://faculty.etsu.edu/gardnerr/2010/c1s1.pdf
http://faculty.etsu.edu/gardnerr/2010/c2s3.pdf
http://faculty.etsu.edu/gardnerr/2010/c2s3.pdf
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Note. Consider a vector x in R2 with components x1 and x2. In standard position

in the R2 (“geometric”) Cartesian plane, we can represent x as an arrow from the

origin to the point (x1, x2). We now find a transformation that rotates x about the

origin through an angle θ. With ϕ as the angle between the positive x-axis and

vector x we have x1 = ‖x‖ cos ϕ and x2 = ‖x‖ sin ϕ. With x rotated through angle

θ we produce x̃ with endpoints at the origin and the point (x̃1, x̃2).

Then the angle between the positive x-axis and x̃ is ϕ+θ and so x̃1 = ‖x‖ cos(ϕ+θ)

and x̃2 = ‖x‖ sin(ϕ + θ). The summation formulae for sine and cosine are

cos(ϕ + θ) = cos ϕ cos θ − sin ϕ sin θ

sin(ϕ + θ) = sin ϕ cos θ + cos ϕ sin θ.

Now cos ϕ = x1/‖x‖ and sin ϕ = x2/‖x‖, so

x̃1 = ‖x‖((x1/‖x‖) cos θ − (x2/‖x‖) sin θ) = x1 cos θ − x2 sin θ

x̃2 = ‖x‖((x2/‖x‖) cos θ + (x1/‖x‖) sin θ) = x2 cos θ + x1 sin θ.

So with A =

 cos θ − sin θ

sin θ cos θ

 we have x̃ = Ax. Notice that A is an orthogonal

matrix.
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Note. In R3, to rotate a 3-vector about the y-axis we use

B =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 .

The reason for the signs of the sines (!) is that in a right hand coordinate system

if we rotate the xz-plane into the xy-plane as given in the image above then the

y-axis points down into the image. Then a positive angle in the image represents

a negative rotation about the y-axis (so to generate B we add a middle row and

column to A with entries 0, 1, 0 [in this order] and then replace θ with −θ in the

trig functions). Similarly, to rotate a 3-vector about the x-axis we use

C =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .

Of course a rotation about the z-axis in R3 results from
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

Euler’s Rotation Theorem implies that a rotation in R3 about any axis (through

the origin) is a combination of rotations about the x, y, and z axis. In fact, the

collection of all rotation matrices form an infinite group called the “3D rotation

group” or the “ group of special orthogonal 3 × 3 matrices” denoted SO(3). The

elements of SO(3) are all orthogonal 3 × 3 matrices of determinant 1. The group

of all 3× 3 orthogonal matrices form the “orthogonal group” O(3).
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Note. In sophomore Linear Algebra (MATH 2010) you encounter reflections in

R2 about the x-axis, y-axis, and the line y = x (see my online Linear Algebra

notes on 2.4. Linear Transformations of the Plane). This idea can be generalized

to reflections about any line in any direction using unit vectors.

Definition. Let u and v for orthonormal vectors and let x be a vector in the

space spanned by u and v (in which case we can represent the span of u and v as a

two-dimensional plane). Then x = c1u+ c2v for some scalars c1 and c2. The vector

x̃ = −c1u + c2v is the reflection of x about v in the direction u.

Note. Geometrically, the reflection of x about v in the direction u can be repre-

sented as:

Note. As commented above, translations are not (in the usual sense) linear trans-

formations and so cannot be represented by matrix multiplication. We introduce

a new set of coordinates which allows us to “translate” vectors into the new coor-

dinates and then represent translation by matrix multiplication in the new coordi-

nates.

Definition. For point (x1, x2, . . . , xd) ∈ Rd we introduce homogeneous coordinates

(xh
0 , x

h
1 , x

h
2 , . . . , x

h
d) ∈ Rd+1 where xh

1 = xh
0x1, xh

2 = xh
0x2, . . . , xh

d = xh
0xd.

http://faculty.etsu.edu/gardnerr/2010/c2s4.pdf
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Note. Homogeneous coordinates in Rd+1 represent points in Rd. When xh
0 = 1,

we have xh
i = xi for 1 ≤ i ≤ d. When xh

0 = 0 the homogeneous coordinate

corresponds to no point in Rd; Gentle says that the collection of all homogeneous

coordinate elements of Rd+1 where xh
0 = 0 corresponds in projective geometry to

the “hyperplane at infinity” (page 179).

Note. We now represent the translation transformation mapping x to x + t = x̃,

where x, t ∈ Rd, x = [x1, x2, . . . , xd]
T , and t = [t1, t2, . . . , td]

T , with matrix multipli-

cation and homogeneous coordinates. First we represent the point (x1, x2, . . . , xd)

in homogeneous coordinates as (1, x1, x2, . . . , xd). Then for the (d + 1) × (d + 1)

matrix

T =


1 0 · · · 0

t1 1 · · · 0

...
... . . . ...

td 0 · · · 1

 ,

the vector xh = [1, x1, x2, . . . , xd]
T satisfies Txh = [1, x1 + t1, x2 + t2, . . . , xd + td]

T =

x̃h. Now x̃h is “associated” with the point (1, x1 + t1, x2 + t2, . . . , xd + td) which is

the homogeneous coordinates associated with the vector x+t = x̃ ∈ Rd. Therefore,

translation by any vector t ∈ Rd is represented by matrix multiplication by T , but

we must first convert/associate x with homogeneous coordinates, then perform the

matrix multiplication, and finally convert/associate the homogeneous coordinates

with the vector x + t in Rd. As Gentle insightfully states: “We must be careful to

distinguish the point x from the vector that represents the point” (page 179).
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