Section 5.2. Geometric Transformations

Note. Gentle states that " \ldots a vector represents a point in space...." This is misleading. We can associate a vector in \mathbb{R}^n , $v = (x_1, x_2, \ldots, x_n)$, with a point in \mathbb{R}^n , $p = (x_1, x_2, \ldots, x_n)$ by representing the vector as an arrow in standard position with its tail at the origin and its head at point p . Often, vectors are notationally distinguished from points by using square brackets for vectors and parentheses for points: vector $v = [x_1, x_2, \ldots, x_n]$ and point $p = (x_1, x_2, \ldots, x_n)$; see my online notes for Linear Algebra (MATH 2010) on [1.1. Vectors in Euclidean Spaces.](http://faculty.etsu.edu/gardnerr/2010/c1s1.pdf) Vectors and points in \mathbb{R}^n are very different. For example, vectors can be added together and multiplied by scalars, but vectors don't have a location. Points cannot be added together nor multiplied by scalars, but points do have a location.

Definition. A transformation that preserves lengths and angles is an *isometric* transformation. A transformation that preserves angles is an *isotropic transforma*tion; a transformation that does not preserve angles is *anisotropic*. A transformation of the form mapping x to $x+t$ (where $x, t \in \mathbb{R}^n$) is a translation transformation.

Note. Gentle states that all transformations in this section "are linear transformations because they preserve straight lines" (page 175). This is unusual and a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is usually defined as satisfying $T(ax + by) =$ $aT(x) + bT(y)$ for all $a, b \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$. In this case, $T(0) = 0$ (since $T(0) = T(0 + 0) = T(0) + T(0)$, so a translation is not an example of a linear transformation in this sense. You see in Linear Algebra that all linear transformations (in this traditional sense) from \mathbb{R}^m to \mathbb{R}^n are represented by $n \times m$ matrices; see my online Linear Algebra (MATH 2010) notes on [2.3. Linear Transformations](http://faculty.etsu.edu/gardnerr/2010/c2s3.pdf) [of Euclidean Spaces.](http://faculty.etsu.edu/gardnerr/2010/c2s3.pdf)

Note. Consider a vector x in \mathbb{R}^2 with components x_1 and x_2 . In standard position in the \mathbb{R}^2 ("geometric") Cartesian plane, we can represent x as an arrow from the origin to the point (x_1, x_2) . We now find a transformation that rotates x about the origin through an angle θ . With φ as the angle between the positive x-axis and vector x we have $x_1 = ||x|| \cos \varphi$ and $x_2 = ||x|| \sin \varphi$. With x rotated through angle θ we produce \tilde{x} with endpoints at the origin and the point $(\tilde{x}_1, \tilde{x}_2)$.

Then the angle between the positive x-axis and \tilde{x} is $\varphi + \theta$ and so $\tilde{x}_1 = ||x|| \cos(\varphi + \theta)$ and $\tilde{x}_2 = ||x|| \sin(\varphi + \theta)$. The summation formulae for sine and cosine are

> $\cos(\varphi + \theta) = \cos \varphi \cos \theta - \sin \varphi \sin \theta$ $\sin(\varphi + \theta) = \sin \varphi \cos \theta + \cos \varphi \sin \theta.$

Now $\cos \varphi = x_1 / ||x||$ and $\sin \varphi = x_2 / ||x||$, so

 So

$$
\tilde{x}_1 = ||x||((x_1/||x||)\cos\theta - (x_2/||x||)\sin\theta) = x_1\cos\theta - x_2\sin\theta
$$

\n
$$
\tilde{x}_2 = ||x||((x_2/||x||)\cos\theta + (x_1/||x||)\sin\theta) = x_2\cos\theta + x_1\sin\theta.
$$

\nSo with $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ we have $\tilde{x} = Ax$. Notice that A is an orthogonal matrix.

Note. In \mathbb{R}^3 , to rotate a 3-vector about the *y*-axis we use

$$
B = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}.
$$

The reason for the signs of the sines (!) is that in a right hand coordinate system if we rotate the xz -plane into the xy -plane as given in the image above then the y-axis points down into the image. Then a positive angle in the image represents a negative rotation about the y-axis (so to generate B we add a middle row and column to A with entries 0, 1, 0 [in this order] and then replace θ with $-\theta$ in the trig functions). Similarly, to rotate a 3-vector about the x-axis we use

$$
C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}.
$$

Of course a rotation about the z-axis in \mathbb{R}^3 results from

$$
\left[\begin{array}{ccc} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{array}\right].
$$

Euler's Rotation Theorem implies that a rotation in \mathbb{R}^3 about any axis (through the origin) is a combination of rotations about the x, y, and z axis. In fact, the collection of all rotation matrices form an infinite group called the "3D rotation group" or the " group of special orthogonal 3×3 matrices" denoted $SO(3)$. The elements of $SO(3)$ are all orthogonal 3×3 matrices of determinant 1. The group of all 3×3 orthogonal matrices form the "orthogonal group" $O(3)$.

Note. In sophomore Linear Algebra (MATH 2010) you encounter reflections in \mathbb{R}^2 about the x-axis, y-axis, and the line $y = x$ (see my online Linear Algebra notes on [2.4. Linear Transformations of the Plane\)](http://faculty.etsu.edu/gardnerr/2010/c2s4.pdf). This idea can be generalized to reflections about any line in any direction using unit vectors.

Definition. Let u and v for orthonormal vectors and let x be a vector in the space spanned by u and v (in which case we can represent the span of u and v as a two-dimensional plane). Then $x = c_1u + c_2v$ for some scalars c_1 and c_2 . The vector $\tilde{x} = -c_1u + c_2v$ is the *reflection* of x about v in the direction u.

Note. Geometrically, the reflection of x about v in the direction u can be represented as:

Note. As commented above, translations are not (in the usual sense) linear transformations and so cannot be represented by matrix multiplication. We introduce a new set of coordinates which allows us to "translate" vectors into the new coordinates and then represent translation by matrix multiplication in the new coordinates.

Definition. For point $(x_1, x_2, \ldots, x_d) \in \mathbb{R}^d$ we introduce homogeneous coordinates (x_0^h) $\mathbf{b}_0^h, x_1^h, x_2^h, \ldots, x_d^h \in \mathbb{R}^{d+1}$ where $x_1^h = x_0^h x_1, x_2^h = x_0^h x_2, \ldots, x_d^h = x_0^h x_d.$

Note. Homogeneous coordinates in \mathbb{R}^{d+1} represent points in \mathbb{R}^d . When $x_0^h = 1$, we have $x_i^h = x_i$ for $1 \leq i \leq d$. When $x_0^h = 0$ the homogeneous coordinate corresponds to no point in \mathbb{R}^d ; Gentle says that the collection of all homogeneous coordinate elements of \mathbb{R}^{d+1} where $x_0^h = 0$ corresponds in projective geometry to the "hyperplane at infinity" (page 179).

Note. We now represent the translation transformation mapping x to $x + t = \tilde{x}$, where $x, t \in \mathbb{R}^d$, $x = [x_1, x_2, \dots, x_d]^T$, and $t = [t_1, t_2, \dots, t_d]^T$, with matrix multiplication and homogeneous coordinates. First we represent the point (x_1, x_2, \ldots, x_d) in homogeneous coordinates as $(1, x_1, x_2, \ldots, x_d)$. Then for the $(d + 1) \times (d + 1)$ matrix

$$
T = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ t_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ t_d & 0 & \cdots & 1 \end{bmatrix},
$$

the vector $x^h = [1, x_1, x_2, \dots, x_d]^T$ satisfies $Tx^h = [1, x_1 + t_1, x_2 + t_2, \dots, x_d + t_d]^T =$ \tilde{x}^h . Now \tilde{x}^h is "associated" with the point $(1, x_1 + t_1, x_2 + t_2, \ldots, x_d + t_d)$ which is the homogeneous coordinates associated with the vector $x + t = \tilde{x} \in \mathbb{R}^d$. Therefore, translation by any vector $t \in \mathbb{R}^d$ is represented by matrix multiplication by T, but we must first convert/associate x with homogeneous coordinates, then perform the matrix multiplication, and finally convert/associate the homogeneous coordinates with the vector $x + t$ in \mathbb{R}^d . As Gentle insightfully states: "We must be careful to distinguish the point x from the vector that represents the point" (page 179).

Revised: 7/3/2020