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Section 5.4. Givens Transformations (Rotations)

Note. We consider a transformation that leaves all but two entries of a vector

fixed and maps one of the remaining entries to 0 (the Givens transformation). We

then apply the matrix representing this transformation to matrices in such a way

as to leave all but two rows and columns fixed and to map a diagonal entry to a

given value.

Note. In R2, we can use a rotation to map x = [x1, x2]
T to x̃ = [x̃1, 0]T where

x̃1 = ‖x‖. We simply need cos(−θ) = x1/‖x‖ and sin(−θ) = x2/‖x‖ in the rotation

represented by

 cos θ − sin θ

sin θ cos θ

 of Section 5.2. That is, we consider

 x1/‖x‖ x2/‖x‖

−x2/‖x‖ x1/‖x‖

 =
1

‖x‖

 x1 x2

−x2 x1

 :

Then

Qx =
1

‖x‖

 x1 x2

−x2 x1

 x1

x2

 =

 ‖x‖

0

 = x̃.

Notice that we could perform a similar rotation of a plane, even if the plane was

embedded in a higher dimensional space; if there was a z-axis added to the figure

above, for example, the z component of a rotated vector would remain the same in

the rotation while the y component goes to 0 and the x component is modified.



5.4. Givens Transformations (Rotations) 2

Note. We now generalize the above idea by mapping x = [x1, x2, . . . , xp, . . . , xq, . . . xn]
T

to x̃ = [x1, x2, . . . , xp−1, x̃p, xp+1, . . . xq−1, 0, xq+1, . . . xn]
T . So x̃ has the same entries

as x, except that the pth entry of x̃ is x̃p =
√

x2
p + x2

q, and the qth entry of x̃ is 0.

With n = 2, p = 1, and q = 2 this reduces to the example above. Think of this

mapping as a rotation of the (xp, xq)-plane that leaves the perp space of this plane

fixed (just as the rotation of the xy-plane above can be thought of as leaving the

z-axis fixed).

Definition. A transformation mapping x = [x1, x2, . . . , xp, . . . , xq, . . . xn]
T to

x̃ = [x1, x2, . . . , xp−1, x̃p, xp+1, . . . xq−1, 0, xq+1, . . . xn]
T

(as above) is a Givens transformation.

Theorem 5.4.1. A matrix which produces the Givens Transformation is

Gpq =



1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0 0 0 · · · 0

...
... . . . ...

...
... · · · ...

...
... · · · ...

0 0 · · · 1 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 c 0 · · · 0 s 0 · · · 0

0 0 · · · 0 0 1 · · · 0 0 0 · · · 0

...
... · · · ...

...
... . . . ...

...
... · · · ...

0 0 · · · 0 0 0 · · · 1 0 0 · · · 0

0 0 · · · 0 −s 0 · · · 0 c 0 · · · 0

0 0 · · · 0 0 0 · · · 0 0 1 · · · 0

...
... · · · ...

...
... · · · ...

...
... . . . ...

0 0 · · · 0 0 0 · · · 0 0 0 · · · 1



,
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where c = xp/
√

x2
p + x2

q, s = xq/
√

x2
p + x2

q, gpp = gqq = c, gpq = −gqp = s, and

x̃p = cxp + sxq = (x2
p + x2

q)/
√

x2
p + x2

q =
√

x2
p + x2

q.

Proof. With x = [x1, x2, . . . , xp, . . . , xq, . . . , xn]
T we have

Gpqx = [x1, x2, . . . , xp−1, cxp + sxq, xp+1, . . . , xq−1,−sxp + cxq, xq+1, . . . , xn]
T

= [x1, x2, . . . , xp−1, x̃p, xp+1, . . . xq−1, 0, xq+1, . . . xn]
T = x̃,

as claimed.

Note. More generally, we can use the matrix Gpq representing the Givens trans-

formation to transform a symmetric matrix X into a symmetric matrix X̃ with the

same rows and columns as X, except for the pth and qth rows and columns. We

require the (p, p) entry of X̃ be some given value, say x̃pp = a. We want a matrix

Gpq as given in Theorem 5.2.1 such that X̃ = GT
pqXGpq. We need only consider

x̃pp, since Gpq and GT
pq will preserve all rows and columns of X, except possibly for

the pth and qth rows and columns. So we need c s

−s c

T  xpp xpq

xpq xqq

 c s

−s c

 =

 a x̃pq

x̃pq x̃qq


where c2 + s2 = 1. Now c −s

s c

 xpp xpq

xpq xqq

 c s

−s c

 =

 cxpp − sxpq cxpq − sxqq

sxpp + cxpq sxpq + cxqq

 c s

−s c


 c(cxpp − sxpq)− s(cxpq − sxqq) s(cxpp − sxpq) + c(cxpq − sxqq)

c(sxpp + cxpq)− s(sxpq + cxqq) s(sxpp + cxpq) + c(sxpq + cxqq)


and so we need

a = c2xpp − csxpq − csxpq + s2xqq = c2xpp − 2csxpq + s2xqq.
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Now

a = c2xpp − 2csxpq + s2xqq = c2(xpp − 2(s/c)xpq + (s/c)2xqq)

= c2(xpp − 2txpq + t2xqq) where t = s/c

=
1

1 + t2
(xpp − 2txpq + t2xqq) since 1 + t2 = 1 + s2/c2

= (c2 + s2)/c2 = 1/c2 and so 1/(1 + t2) = c2,

and so we need

xpp − 2txpq + t2xqq = (1 + t2)a

or

(xqq − a)t2 − 2xpqt + (xpp − a) = 0.

The values of t satisfying this equation are

t =
2xpq ±

√
4x2

pq − 4(xqq − a)(xpp − a)

2(xqq − a)
=

xpq ±
√

x2
pq − (xqq − a)(xpp − a)

(xqq − a)
,

and there are real solutions if and only if

x2
pq ≥ (xpp − a)(xqq − a).

If this condition holds, then choose the value for t of

t =
xpq +

√
x2

pq − (xqq − a)(xpp − a)

(xqq − a)
.

Next, let c = 1/
√

1 + t2 and, since t = s/c, let s = ct. Then Gpq with these values

of c and s yield the desired transformation. We summarize this in a theorem.
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Theorem 5.4.2. Let X be a symmetric matrix and 1 ≤ p < q ≤ n. For given

a ∈ R, if x2
pq ≥ (xqq − a)(xpp − a) then with c = 1/

√
1 + t2 and s = ct, where

t =
xpq +

√
x2

pq − (xqq − a)(xpp − a)

(xqq − a)
,

we have X̃ = GT
pqXGpq (where Gpq is the matrix from Theorem 5.4.1) is a symmetric

matrix with the same rows and columns as X, except for the pth and qth rows and

columns, and x̃pp = a.
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