Section 5.7. *QR* Factorization

Note. We express a matrix as a product of an orthogonal matrix and an upper triangular matrix. We mostly follow Harville's Matrix Algebra From a Statistician's Perspective (Springer, 1997; see pages 66–69). We need a preliminary result from Harville.

Theorem 5.7.A. Let $\{a_1, a_2, \ldots, a_k\}$ be a linearly independent set of vectors. There exists unique scalars x_{ij} where $1 \leq j \leq k$ and $0 < i < j$ such that the k vectors

$$
b_1 = a_1
$$

\n
$$
b_2 = a_2 - x_{12}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_j = a_j - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \cdots - x_{1j}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_m = a_m - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \cdots - x_{1m}b_1
$$

form an orthogonal set. The vectors b_1, b_2, \ldots, b_k are nonzero and $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$ for $1 \leq j \leq m$ and $0 < i < m$.

Note. We present a preliminary type of factorization which we will use in developing QR factorizations.

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank(A) = m; so we must have $n \geq m$). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that $A = BX$.

Theorem 5.7.C. Let A be an $n \times m$ matrix of full column rank (that is, rank(A) = m; so we must have $n \geq m$). Then there is a unique factorization of A as $A = BX$ where the columns of $n \times m$ matrix B are mutually orthogonal and nonzero and $m \times m$ matrix X is upper triangular with all diagonal entries 1.

Note. The proof of Theorem 5.7.C is to be given in Exercise 5.7.A.

Note 5.7.A. For full column rank $n \times m$ matrix A with factorization $A = BX$ of Theorem 5.7.C, define $m \times m$ diagonal matrix $D = \text{diag}(\Vert b_1 \Vert^{-1}, \Vert b_2 \Vert^{-1}, \dots, \Vert b_m \Vert^{-1})$ and $m \times m$ diagonal matrix $E = \text{diag}(\Vert b_1 \Vert, \Vert b_2 \Vert, \dots, \Vert b_m \Vert) = D^{-1}$. With $Q = BD$, the columns of Q are the $b_j/||b_j||$ so that Q is an orthogonal matrix. With $R = EX$ we have the (i, j) entry of R is

$$
r_{ij} = \begin{cases} \n\|b_i\|x_{ij} & \text{for } i < j \\ \n\|b_i\| & \text{for } i = j \\ \n0 & \text{for } i > j. \n\end{cases}
$$

Then R is upper triangular with positive entries on the diagonal. Notice $A =$ $BX = BDD^{-1}X = BDEX = QR.$

Definition. For full column rank $n \times m$ matrix A, a factorization $A = QR$ where Q is an $n \times m$ orthogonal matrix and R is an $m \times m$ upper triangular matrix with all diagonal entries positive is a QR factorization of A.

Theorem 5.7.D. If A is a $n \times m$ full column rank matrix (that is, rank(A) = m; so we must have $n \geq m$) then there is a unique QR factorization of A.

Note. The proof of Theorem 5.7.D is to be given in Exercise 5.7.B.

Theorem 5.7.E. Let A be a $n \times m$ matrix of rank r where $1 \leq r \leq m$. Then there is a factorization $A = Q_1 R_1$ where Q_1 is an $n \times r$ matrix with orthonormal columns (so Q_1 is orthogonal) and R_1 is an $r \times m$ submatrix of a $m \times m$ upper triangular matrix R having r positive diagonal elements and $m - r$ rows of zeros; the rows of R_1 are the r nonzero rows of R.

Note. Gentle refers to the decomposition of A as $A = Q_1 R_1$ as given in Theorem 5.7.E as a "skinny" QR factorization (see page 189). Gentle addresses "Nonfull Rank Matrices" on pages 189 and 190, but I can't follow it. He is somehow using a permutation matrix to get a result similar to Theorem 5.7.E, though the dimension of the matrices is unclear. I leave it at Theorem 5.7.E to address QR -type factorizations of nonfull rank matrices. The proof of Theorem 5.7.E is left as Exercise 5.7.C.

Revised: 7/6/2020