Section 5.9. Factorizations of Nonnegative Definite Matrices

Note. We address the square root of a symmetric nonnegative definite matrix again and define the Cholesky factorization.

Note. Recall from Theorem 3.8.15 that for symmetric positive definite matrix A there is orthogonal V and nonnegative definite S such that $(VSV^T)^2 = A$. Matrix VSV^T is the square root of A, denoted $A^{1/2}$. We have not yet established the uniqueness of $A^{1/2}$ and we do so now.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2 = A$. Then $B = VC^{1/2}V^T =$ $V S V^T$ where $S = C^{1/2} = \text{diag}(c_1^{1/2})$ $\frac{1}{2}$, $c_2^{1/2}$ $2^{1/2}, \ldots, c_n^{1/2}$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Definition. Let A be a symmetric positive definite matrix. If $A = T^T T$ where T is an upper triangular matrix with positive diagonal entries, then $A = T^{T}T$ is a Cholesky factorization of A.

Note. The following two theorems, Theorem 5.9.2 and Theorem 5.9.A, on Cholesky factorizations are based on Markus Garsmair's online document [On the Existence](https://wiki.math.ntnu.no/_media/ma2501/2014v/cholesky.pdf) [of a Cholesky Factorization](https://wiki.math.ntnu.no/_media/ma2501/2014v/cholesky.pdf) (accessed 4/25/2020).

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Note. Gentle gives an algorithm to calculate matrix T in the Cholesky factorization of symmetric positive definite $n \times n$ matrix A as follows. We let $T = [t_{ij}]$ be the $n \times n$ upper triangular matrix with entries defined recursively as follows:

Define $t_{11} =$ √ $\overline{a_{11}}$. Define $t_{1j} = a_{1j}/t_{11}$ for $j = 2, 3, ..., n$ (notice that A is positive definite so $a_{11} \neq 0$ and $t_{11} \neq 0$). Define $t_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} t_{ki}^2\right)^{1/2}$ for $i = 1, 2, 3, ..., n$. Define $t_{ij}=\left(a_{ij}-\sum_{k=1}^{i-1}t_{ki}t_{kj}\right)\Big/$ t_{ii} for $i=2,3,\ldots,n$ and $j=i+1,i+2,\ldots,n.$ Define all other t_{ij} as 0 (so T is upper triangular).

Note. For an invertible matrix A, the converse of Theorem 5.9.2 holds, as follows.

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Note. In Exercise 5.9.B, it is to be shown that the Cholesky factorization of a symmetric positive definite matrix is unique.

Note. We now make a few observations about the Grammian matrix $X^T X$.

Note. $X^T X$ is symmetric, so by Theorem 3.8.A is orthogonally diagonalizable: $X^T X = V C V^T$ where V is orthogonal (notice Theorem 3.7.1, $V^{-1} = V^T$).

Note. If X has a QR factorization (where Q is orthogonal and R is upper triangular with positive diagonal entries), which is the case if X is full column rank by Theorem 5.7.C, then $X^TX = (QR)^TQR = R^TQ^TQR = R^TR$, since $Q^TQ = \mathcal{I}$ because Q is orthogonal (by Theorem 3.7.1). So X^TX has the Cholesky factorization R^TR .

Note. Every matrix has a singular value decomposition by Theorem 3.8.16, so $X = UDV^T$ where U and V are orthogonal and D is diagonal. So

$$
X^T X = (UDV^T)^T (UDV^T) = VD^T U^T U D V^T
$$

= $V D^T D V^T$ since U is orthogonal (Theorem 3.7.1)

and $X^T X = (DV^T)^T (DV^T)$. Now $D^T D$ is diagonal, so $X^T X = V (D^T D) V^T$ is an orthogonal diagonalization of the Grammian matrix X^TX . By Theorem 3.8.7(4), the real eigenvalues of X^TX are the squares of the eigenvalues of X.