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Section 5.9. Factorizations of

Nonnegative Definite Matrices

Note. We address the square root of a symmetric nonnegative definite matrix

again and define the Cholesky factorization.

Note. Recall from Theorem 3.8.15 that for symmetric positive definite matrix A

there is orthogonal V and nonnegative definite S such that (V SV T )2 = A. Matrix

V SV T is the square root of A, denoted A1/2. We have not yet established the

uniqueness of A1/2 and we do so now.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be

a symmetric nonnegative definite matrix such that B2 = A. Then B = V C1/2V T =

V SV T where S = C1/2 = diag(c
1/2
1 , c

1/2
2 , . . . , c

1/2
n ) where c1, c2, . . . , cn are the eigen-

values of A and V is orthogonal.

Definition. Let A be a symmetric positive definite matrix. If A = T TT where T

is an upper triangular matrix with positive diagonal entries, then A = T TT is a

Cholesky factorization of A.
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Note. The following two theorems, Theorem 5.9.2 and Theorem 5.9.A, on Cholesky

factorizations are based on Markus Garsmair’s online document On the Existence

of a Cholesky Factorization (accessed 4/25/2020).

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a

Cholesky factorization.

Note. Gentle gives an algorithm to calculate matrix T in the Cholesky factoriza-

tion of symmetric positive definite n × n matrix A as follows. We let T = [tij] be

the n× n upper triangular matrix with entries defined recursively as follows:

Define t11 =
√

a11.

Define t1j = a1j/t11 for j = 2, 3, . . . , n (notice that A is positive definite so

a11 6= 0 and t11 6= 0).

Define tii =
(
aii −

∑i−1
k=1 t2ki

)1/2
for i = 1, 2, 3, . . . , n.

Define tij =
(
aij −

∑i−1
k=1 tkitkj

)/
tii for i = 2, 3, . . . , n and j = i+1, i+2, . . . , n.

Define all other tij as 0 (so T is upper triangular).

Note. For an invertible matrix A, the converse of Theorem 5.9.2 holds, as follows.

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only

if A is symmetric and positive definite.

https://wiki.math.ntnu.no/_media/ma2501/2014v/cholesky.pdf
https://wiki.math.ntnu.no/_media/ma2501/2014v/cholesky.pdf
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Note. In Exercise 5.9.B, it is to be shown that the Cholesky factorization of a

symmetric positive definite matrix is unique.

Note. We now make a few observations about the Grammian matrix XTX.

Note. XTX is symmetric, so by Theorem 3.8.A is orthogonally diagonalizable:

XTX = V CV T where V is orthogonal (notice Theorem 3.7.1, V −1 = V T ).

Note. If X has a QR factorization (where Q is orthogonal and R is upper trian-

gular with positive diagonal entries), which is the case if X is full column rank by

Theorem 5.7.C, then XTX = (QR)TQR = RTQTQR = RTR, since QTQ = I be-

cause Q is orthogonal (by Theorem 3.7.1). So XTX has the Cholesky factorization

RTR.

Note. Every matrix has a singular value decomposition by Theorem 3.8.16, so

X = UDV T where U and V are orthogonal and D is diagonal. So

XTX = (UDV T )T (UDV T ) = V DTUTUDV T

= V DTDV T since U is orthogonal (Theorem 3.7.1)

and XTX = (DV T )T (DV T ). Now DTD is diagonal, so XTX = V (DTD)V T is an

orthogonal diagonalization of the Grammian matrix XTX. By Theorem 3.8.7(4),

the real eigenvalues of XTX are the squares of the eigenvalues of X.
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