Section 5.9. Factorizations of Nonnegative Definite Matrices

Note. We address the square root of a symmetric nonnegative definite matrix again and define the Cholesky factorization.

Note. Recall from Theorem 3.8.15 that for symmetric positive definite matrix A there is orthogonal V and nonnegative definite S such that $(VSV^T)^2 = A$. Matrix VSV^T is the square root of A, denoted $A^{1/2}$. We have not yet established the uniqueness of $A^{1/2}$ and we do so now.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2 = A$. Then $B = VC^{1/2}V^T = VSV^T$ where $S = C^{1/2} = \text{diag}(c_1^{1/2}, c_2^{1/2}, \ldots, c_n^{1/2})$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Definition. Let A be a symmetric positive definite matrix. If $A = T^T T$ where T is an upper triangular matrix with positive diagonal entries, then $A = T^T T$ is a *Cholesky factorization* of A.

Note. The following two theorems, Theorem 5.9.2 and Theorem 5.9.A, on Cholesky factorizations are based on Markus Garsmair's online document On the Existence of a Cholesky Factorization (accessed 4/25/2020).

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Note. Gentle gives an algorithm to calculate matrix T in the Cholesky factorization of symmetric positive definite $n \times n$ matrix A as follows. We let $T = [t_{ij}]$ be the $n \times n$ upper triangular matrix with entries defined recursively as follows:

Define $t_{11} = \sqrt{a_{11}}$. Define $t_{1j} = a_{1j}/t_{11}$ for j = 2, 3, ..., n (notice that A is positive definite so $a_{11} \neq 0$ and $t_{11} \neq 0$). Define $t_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} t_{ki}^2\right)^{1/2}$ for i = 1, 2, 3, ..., n. Define $t_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} t_{ki} t_{kj}\right) / t_{ii}$ for i = 2, 3, ..., n and j = i+1, i+2, ..., n. Define all other t_{ij} as 0 (so T is upper triangular).

Note. For an invertible matrix A, the converse of Theorem 5.9.2 holds, as follows.

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Note. In Exercise 5.9.B, it is to be shown that the Cholesky factorization of a symmetric positive definite matrix is unique.

Note. We now make a few observations about the Grammian matrix $X^T X$.

Note. $X^T X$ is symmetric, so by Theorem 3.8.A is orthogonally diagonalizable: $X^T X = V C V^T$ where V is orthogonal (notice Theorem 3.7.1, $V^{-1} = V^T$).

Note. If X has a QR factorization (where Q is orthogonal and R is upper triangular with positive diagonal entries), which is the case if X is full column rank by Theorem 5.7.C, then $X^T X = (QR)^T QR = R^T Q^T QR = R^T R$, since $Q^T Q = \mathcal{I}$ because Q is orthogonal (by Theorem 3.7.1). So $X^T X$ has the Cholesky factorization $R^T R$.

Note. Every matrix has a singular value decomposition by Theorem 3.8.16, so $X = UDV^T$ where U and V are orthogonal and D is diagonal. So

$$X^{T}X = (UDV^{T})^{T}(UDV^{T}) = VD^{T}U^{T}UDV^{T}$$
$$= VD^{T}DV^{T} \text{ since } U \text{ is orthogonal (Theorem 3.7.1)}$$

and $X^T X = (DV^T)^T (DV^T)$. Now $D^T D$ is diagonal, so $X^T X = V (D^T D) V^T$ is an orthogonal diagonalization of the Grammian matrix $X^T X$. By Theorem 3.8.7(4), the real eigenvalues of $X^T X$ are the squares of the eigenvalues of X.