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Section 5.9. Factorizations of

Nonnegative Definite Matrices

Note. We address the square root of a symmetric nonnegative definite matrix

again and define the Cholesky factorization.

Note. Recall from Theorem 3.8.15 that for symmetric positive definite matrix A
there is orthogonal V and nonnegative definite S such that (V.SV7T)? = A. Matrix
VSVT is the square root of A, denoted AY2. We have not yet established the

uniqueness of A2 and we do so now.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be
a symmetric nonnegative definite matrix such that B> = A. Then B = VCY2V7T =
VSVT where S = C1/2 = diag(c%ﬂ, 05/2, o ,0711/2) where c1, o, ..., ¢, are the eigen-

values of A and V is orthogonal.

Definition. Let A be a symmetric positive definite matrix. If A = T7T where T
is an upper triangular matrix with positive diagonal entries, then A = T7T is a

Cholesky factorization of A.
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Note. The following two theorems, Theorem 5.9.2 and Theorem 5.9.A, on Cholesky
factorizations are based on Markus Garsmair’s online document On the Existence

of a Cholesky Factorization (accessed 4/25/2020).

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a

Cholesky factorization.

Note. Gentle gives an algorithm to calculate matrix 7" in the Cholesky factoriza-
tion of symmetric positive definite n x n matrix A as follows. We let T' = [t;;] be
the n X n upper triangular matrix with entries defined recursively as follows:

Define 211 = y/a11.

Define t1; = a1j/t11 for j =2,3,...,n (notice that A is positive definite so

a;; # 0 and t1; # 0).
Define t;; = (aii — 2_:11 t%i)l/z fort=1,2,3,...,n.
Define ¢;; = (aij — 2_:11 t;m-tkj>/tn~ fori=2,3,...,nand j =i+1,2+2,...,n.

Define all other ¢;; as 0 (so T is upper triangular).
Note. For an invertible matrix A, the converse of Theorem 5.9.2 holds, as follows.

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only

if A is symmetric and positive definite.


https://wiki.math.ntnu.no/_media/ma2501/2014v/cholesky.pdf
https://wiki.math.ntnu.no/_media/ma2501/2014v/cholesky.pdf
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Note. In Exercise 5.9.B, it is to be shown that the Cholesky factorization of a

symmetric positive definite matrix is unique.

Note. We now make a few observations about the Grammian matrix X< X.

Note. XX is symmetric, so by Theorem 3.8.A is orthogonally diagonalizable:
XTX =VCVT where V is orthogonal (notice Theorem 3.7.1, V~1 = V7T).

Note. If X has a QR factorization (where @ is orthogonal and R is upper trian-
gular with positive diagonal entries), which is the case if X is full column rank by
Theorem 5.7.C, then X7X = (QR)TQR = RTQTQR = RTR, since QTQ = T be-
cause @ is orthogonal (by Theorem 3.7.1). So X7 X has the Cholesky factorization
RTR.

Note. Every matrix has a singular value decomposition by Theorem 3.8.16, so

X = UDVT where U and V are orthogonal and D is diagonal. So
X'x = (wpvHTwpvh =vDT'UTuDv”
= VDTDV? since U is orthogonal (Theorem 3.7.1)

and XTX = (DVT)T(DVT). Now DD is diagonal, so XTX = V(DTD)VT is an
orthogonal diagonalization of the Grammian matrix X7 X. By Theorem 3.8.7(4),

the real eigenvalues of X7 X are the squares of the eigenvalues of X.
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