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Lemma 9.2. The Arzelà-Ascoli Lemma.
Let X be a separable metric space and {fn} an equicontinuous sequence in
C (X ) that is pointwise bounded. Then a subsequence of {fn} converges
pointwise on all of X to a real-valued function f on X .

Proof. Let {xj}∞j=1 be an enumeration of a dense subset D of separable
metric space X . Since {fn} is pointwise bounded, the the sequence of real
numbers defined by n 7→ fn(x1) is bounded. Therefore, by the
Bolzano-Weierstrass Theorem (see my online notes for Analysis 1 [MATH
4217/5217] on Section 2.3. Bolzano-Weierstrass Theorem) this sequence
has a convergent subsequence. That is, there is a strictly increasing
sequence of natural numbers {s(1, n)} (which act as indices) and a umber
a1 for which limn→∞ fs(1,n)(x1) = a1. Similarly, the sequence
n 7→ fs(1,n)(x2) is bounded and so there is a subsequence {s(2, n)} of
{s(1, n)} and a number a2 for which limn→∞ fs(2,n)(x2) = a2.
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Lemma 9.2. The Arzelà-Ascoli Lemma (continued 1)

Lemma 9.2. The Arzelà-Ascoli Lemma.
Let X be a separable metric space and {fn} an equicontinuous sequence in
C (X ) that is pointwise bounded. Then a subsequence of {fn} converges
pointwise on all of X to a real-valued function f on X .

Proof (continued). Continuing inductively, we obtain a countable
collection of strictly increasing sequences of natural numbers
{{s(j , n)}}∞j=1 and a sequence of numbers {aj} such that for each j ,

{s(j + 1, n)} is a subsequence of {s(j , n)} and lim
n→∞

fs(j ,n)(xj) = aj .

Next, we define function f . First, for each index j , define f (xj) = aj .
Consider the “diagonal” subsequence (of sequence {fn}) {fnk

} obtained by
setting nk = s(k, k) for each index k. For each j , {nk}∞k=j = {ns(k,k)}∞k=j

is a subsequence of the jth subsequence of natural numbers {s(j , n)}.
Since limn→∞ fs(j ,n)(xj) = aj , then limk→∞ fxk

(xj) = aj = f (xj). Thus
{fnk

} converges pointwise on D to f .
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Lemma 9.2. The Arzelà-Ascoli Lemma.
Let X be a separable metric space and {fn} an equicontinuous sequence in
C (X ) that is pointwise bounded. Then a subsequence of {fn} converges
pointwise on all of X to a real-valued function f on X .

Proof (continued). For “notational convenience,” assume the whole
sequence of {fn} converges pointwise on F to f (so that we don’t have to
refer to subsequence {fnk

} = {fns(k,k)
}). Let x0 be any point in X . We

claim that {fn(x0)} is Cauchy. Let ε > 0. By the equicontinuity of {fn} at
x0, we may choose δ > 0 such that |fn(x)− fn(x0)| < ε/3 for all indices n
and all x ∈ X for which ρ(x , x0) < δ. Since D is dense, there is a point
x ∈ D such that ρ(x , x0) < δ. Moreover, since sequence {fn(x)} converges
(to f (x) since x ∈ D), then it must be Cauchy, so that we can choose N
so large that

|fn(x)− fm(x)| < ε for all m, n ≥ N.
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Lemma 9.2. The Arzelà-Ascoli Lemma (continued 3)

Lemma 9.2. The Arzelà-Ascoli Lemma.
Let X be a separable metric space and {fn} an equicontinuous sequence in
C (X ) that is pointwise bounded. Then a subsequence of {fn} converges
pointwise on all of X to a real-valued function f on X .

Proof (continued). Then for all m, n ≥ N we have by the Triangle
Inequality on R that

|fn(x0)− fm(x0)| ≤ |fn(x0)− fn(x)|+ |fn(x)− fm(x)|+ |fm(x)− fm(x0)|
< ε/3 + ε/3 + ε/3 = ε.

Thus sequence {fn(x0)} is a Cauchy sequence of real numbers. Since R is
complete, the sequence converges. Denote the limit by f (x0). The
sequence {fn} converges pointwise on all of X to f : X → R. (Notice that
we have not claimed that f is in C (X ), so we are done.)
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Theorem 10.1.A. The Arzelà-Ascoli Theorem.
Let X be a compact metric space and {fn} is a uniformly bounded,
equicontinuous sequence of real-valued functions on X . Then {fn} has a
subsequence that converges uniformly on X to a continuous function f on
X .

Proof. Since X is a compact metric space, then by Proposition 9.24 X is
separable. So we can apply the Arzelà-Ascoli Lemma (Lemma 9.2) to {fn}
(since the sequence is equicontinuous, then each fn is in C (X )) to
conclude that it has a subsequence that converges pointwise on all of X to
a real-valued function f . Again for notational convenience, assume the
whole sequence {fn} converges pointwise on X (to avoid repeated
reference to the subsequence). Therefore, for each x ∈ X , the sequence
{fn(x)} is a Cauchy sequence of real numbers. We use this and
equicontinuity to show that {fn} is a Cauchy sequence in C (X ).
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Theorem 10.1.A. The Arzelà-Ascoli Theorem

Theorem 10.1.A. The Arzelà-Ascoli Theorem (continued 1)

Proof (continued). Let ε > 0. By the uniform equicontinuity of {fn} on
X , there is a δ > 0 such that for all n ∈ N

|fn(u)− fn(v)| < ε/3 for all u, v ∈ X such that ρ(u, v) < δ. (1)

Since X is a compact metric space, by the Characterization of
Compactness for a Metric Space (Theorem 9.16; the (ii) implies (i) part)),
then X is totally bounded. Therefore there is a finite number of points
x1, x2, . . . , xk in X for which X is covered by {B(xi , δ)}k

i=1. For 1 ≤ i ≤ k,
{fn(xi )} is a Cauchy sequence of real numbers (since it converges to f (x)),
so there is an index N ∈ N such that

|fn(xi )− fm(v)| < ε/3 for 1 ≤ i ≤ k and all n,m ≥ N. (2)

Since {B(xi , δ)}k
i=1 covers X , then for any x ∈ X there is an i with

1 ≤ i ≤ k, such that ρ(x , xi ) < δ.
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Theorem 10.1.A. The Arzelà-Ascoli Theorem

Theorem 10.1.A. The Arzelà-Ascoli Theorem (continued 2)

Theorem 10.1.A. The Arzelà-Ascoli Theorem.
Let X be a compact metric space and {fn} is a uniformly bounded,
equicontinuous sequence of real-valued functions on X . Then {fn} has a
subsequence that converges uniformly on X to a continuous function f on
X .

Proof (continued). Therefore for n,m ≥ N, we have by the Triangle
Inequality, (1), and (2) that

|fn(x)− fm(x)| ≤ |fn(x)− fn(xi )|+ |fn(xi )− fm(xi )|+ |fm(xi )− fm(x)|
< ε/3 + ε/3 + ε/3 = ε.

Thus {fn} is uniformly Cauchy. Therefore, since C (X ) is complete, then
{fn} converges uniformly on X to some function f . A uniform limit of a
sequence of continuous functions is continuous, so that the limit function
f is continuous on X , as claimed.
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Theorem 10.3. Let X be a compact metric space and F a subset of
C (X ). Then F is a compact subspace of C (X ) if and only if F is closed,
uniformly bounded, and equicontinuous.

Proof. First, suppose that F is closed, uniformly bounded, and
equicontinuous. Let {fn} be a sequence in F . By the Arzelà-Ascoli
Theorem (Theorem 10.1.A), a subsequence of {fn} converges uniformly to
a function f ∈ C (X ). Since F is closed, then f ∈ F . Since {fn} is an
arbitrary sequence in F , then (by definition of “sequentially compact”) F
is sequentially compact and, therefore, compact by Characterization of
Compactness for a Metric Space (Theorem 9.16; the (iii) implies (ii) part),
as claimed.

Second, suppose that F is compact. We leave it as an exercise (Problem
10.1.A) to show that F is uniformly bounded and is a closed subset of
C (X ), so we now only need to show equicontinuity of F . ASSUME that F
is not equicontinuous at some point x ∈ X .
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Theorem 10.3 (continued 1)

Proof (continued). Then there is an ε0 > 0 such that for each n ∈ N,
there is a function in F , which we denote as fn, and a point xn ∈ X for
which

|fn(xn)− fn(x)| ≥ ε0 even though ρ(xn, x) < 1/n. (3)

This gives us a sequence {fn} in F . Since F is a compact metric space,
then it is sequentially compact by the Characterization of Compactness for
a Metric Space (Theorem 9.16; the (ii) implies (iii) part). Therefore there
is a subsequence {fnk

} of {fn} that converges on X . Since F ⊆ C (X ) and
C (X ) has norm ρmax, then the convergence of sequence {fnk

} to {fn} is
uniform. Therefore the limit of {fnk

} is a function f continuous on X ; that
is, f ∈ C (X ).
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Theorem 10.3 (continued 2)

Theorem 10.3. Let X be a compact metric space and F a subset of
C (X ). Then F is a compact subspace of C (X ) if and only if F is closed,
uniformly bounded, and equicontinuous.

Proof (continued). Since {fnk
} converges to f in C (X ) under ρmax, then

we can choose an index K such that ρmax(f , fnk
) < ε0/3 for k ≥ K . By

replacing xn with xnk
in (3), we have

|fn(xnk
)− f (x)| ≥ ε0/3 even though ρ(xnk

, x) < 1/nk . (4)

But this CONTRADICTS the fact that f is continuous at point x ∈ X .
This contradiction shows that the assumption that F is not equicontinuous
at x ∈ X is false. Therefore F is equicontinuous on X , as claimed.
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