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Theorem 10.2.A. The Baire Category Theorem

Theorem 10.2.A. The Baire Category Theorem

Theorem 10.2.A. The Baire Category Theorem.
Let X be a complete metric space.

(i) Let {On}∞n−1 be a countable collection of open dense subsets
of X . Then the intersection ∩∞n=1On is also dense.

(ii) Let {Fn}∞n=1 be a countable collection of closed hollow
subsets of X . Then the union ∪∞n=1Fn also is hollow.

Proof. A set is dense if and only if its complement is hollow by Note
10.2.A. A set is open if and only if its complement is closed. Then by De
Morgan’s Identities, (i) and (ii) are equivalent, so it is sufficient to prove
(i). Let x0 ∈ X and let r0 > 0. To show that ∩∞n=1On is dense, we need to
show that B(x0, r0) contains a point of ∩∞n=1On.

Since O1 is dense in X , then there is some x1 ∈ B(x0, r0) ∩ O1. Choose r1
where 0 < r1 < 1 for which B1(x1, r1) ⊆ B(x0, r0) ∩ O1 (this can be done
by Note 10.2.B); denote B1 = B(x1, r1).
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Theorem 10.2.A. The Baire Category Theorem

Theorem 10.2.A. The Baire Category Theorem (continued)

Proof (continued). We now inductively create a contracting sequence of
closed balls, the intersection of which will give and element of ∩∞n=1On in
B(x0, r0). Suppose n ∈ N and the descending collection of open balls
{Bk}nk=1 has been chosen with the property that for 1 ≤ k ≤ n, Bk has
radius less than 1/k and Bk ⊆ Ok (the base case if given by B1 above).
The set Bn ∩On+1 is nonempty since On+1 is dense in X . Let xn+1 belong
to the open set B(xn, rn) ∩ On. Choose rn+1 such that
0 < rn+1 < 1/(n + 1) for which Bn+1(xn+1, rn+1) ⊆ Bn ∩ On+1 (this can
be done by Note 10.2.B); denote Bn+1 = B(xn+1, rn+1). This inductively
defines a contracting sequence of closed sets {Bn}∞n=1 with the property
that for each n, Bn ⊆ On. The metric space X is complete by hypothesis,
so from the Cantor Intersection Theorem we have that ∩∞n=1Bn is
nonempty.

Let x∗ belong to this intersection. Then x∗ ∈ ∩∞n=1On. Since
B1 ⊆ B(x0, r0)∩O1, then we have x∗ ∈ B(x0, r0) also. Open ball B(x0, r0)
is an arbitrary open ball and we have that b(x0, r0) contains a point of
∩∞n=1On, so that ∩∞n=1On is dense, as claimed.
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Corollary 10.5

Corollary 10.5

Corollary 10.5. Let X be a complete metric space and {Fn}∞n=1 a
countable collection of closed subsets of X . Then ∪∞n=1bd(Fn) is hollow.

Proof. In Problem 10.15 it is to be shown that the boundary of any set is
itself a closed set, and the boundary of a closed set E is hollow. Therefore,
for each n ∈ N, bd(Fn) is closed and hollow. Then by the Baire Category
Theorem (Theorem 10.2.A), ∪∞n=1bd(Fn) is hollow, as claimed.
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Theorem 10.6

Theorem 10.6

Theorem 10.6. Let F be a family of continuous real-valued functions on
a complete metric space X that is pointwise bounded in the sense that for
each x ∈ X , there is a constant Mx for which |f (x)| ≤ Mx for all f ∈ F .
Then there is a nonempty open subset O of X on which F is uniformly
bounded in the sense that there is a constant M for which |f | ≤ M on O
for all f ∈ F .

Proof. For each n ∈ N, define En = {x ∈ X | |f (x)| ≤ n for all f ∈ F}.
Then f −1([−n, n]) is closed for each function in F since each such
function is continuous (by Problem 9.36) and hence
En = ∩f ∈F f −1(−n, n]) is closed. Since F is pointwise bounded by
hypothesis, then for each x ∈ X there is n ∈ N such that |f (x)| ≤ n for all
f ∈ F ; that is, x ∈ En. Hence, since x is an arbitrary element of X , we
have X = ∪∞n=1En.

Since X is a complete metric space by hypothesis, then
by Corollary 10.4 (the “in particular” part) there is n ∈ N for which En

contains an open ball B(x , r) (that is, some En has nonempty interior).
The claim now holds with open set O = B(x , r) and bound M = n.
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Theorem 10.7

Theorem 10.7

Theorem 10.7. Let X be a complete metric space and {fn} a sequence of
continuous real-valued functions on X that converges pointwise on X to
the real-valued function f . Then there is a dense subset D of X for which
{fn} is equicontinuous at each point in D.

Proof. Let m, n ∈ N. Define

E (m, n) = {x ∈ X | |fj(x)− fk(x)| ≤ 1/m for all j , k ≥ n}.

The mapping x 7→ |fj(x)− fk(x)| is continuous, and
{x ∈ X | |fj(x)− fk(x)| ≤ 1/m} is the inverse image of [−1/m, 1/m]
under this mapping so that this set is closed (by Problem 9.36). Now
E (m, n) = ∩j ,k≥n{x ∈ X | |fj(x)− fk(x)| ≤ 1/m} so E (m, n) is closed.
Then by Corollary 10.5, ∪n,m∈Nbd(E (m, n)) is hollow and, by Note 10.2.A,
D = X ∼ [∪n,m∈Nbd(E (m, n))] is dense in X . If n,m ∈ N and point
x ∈ D belongs to E (m, n), then x belongs to the interior of E (m, n)
because D contains all boundary points of E (m, n).

() Real Analysis December 15, 2022 7 / 9



Theorem 10.7

Theorem 10.7

Theorem 10.7. Let X be a complete metric space and {fn} a sequence of
continuous real-valued functions on X that converges pointwise on X to
the real-valued function f . Then there is a dense subset D of X for which
{fn} is equicontinuous at each point in D.

Proof. Let m, n ∈ N. Define

E (m, n) = {x ∈ X | |fj(x)− fk(x)| ≤ 1/m for all j , k ≥ n}.

The mapping x 7→ |fj(x)− fk(x)| is continuous, and
{x ∈ X | |fj(x)− fk(x)| ≤ 1/m} is the inverse image of [−1/m, 1/m]
under this mapping so that this set is closed (by Problem 9.36). Now
E (m, n) = ∩j ,k≥n{x ∈ X | |fj(x)− fk(x)| ≤ 1/m} so E (m, n) is closed.
Then by Corollary 10.5, ∪n,m∈Nbd(E (m, n)) is hollow and, by Note 10.2.A,
D = X ∼ [∪n,m∈Nbd(E (m, n))] is dense in X . If n,m ∈ N and point
x ∈ D belongs to E (m, n), then x belongs to the interior of E (m, n)
because D contains all boundary points of E (m, n).

() Real Analysis December 15, 2022 7 / 9



Theorem 10.7

Theorem 10.7 (continued 1)

Proof (continued). We now show that {fn} is equicontinuous at each
point of D. Let x0 ∈ D and let ε > 0. Choose m ∈ N for which
1/m < ε/4. Since {fn(x0)} converges to to real number f (x0), then
{fn(x0)} is Cauchy. Hence we can choose a natural number N for which

|fj(x0)− fk(x0)| ≤ 1/m for all j , k ≥ N. (9)

Therefore x0 ∈ E (m,N). Since, as observed above, x0 belongs to the
interior of E (m,N). Choose r > 0 such that B(x0, r) ⊆ E (m,N); that is,

|fj(x)− fk(x)| ≤ 1/m for all j , k ≥ N and for all x ∈ B(x0, r). (10)

The function fN is continuous at x0. Therefore there is a δ > 0 with
0 < δ < r for which

|fN(x)− fN(x)| < 1/m for all x ∈ B(x0, δ). (11)
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Theorem 10.7

Theorem 10.7 (continued 2)

Proof (continued). Notice that for all x ∈ X and j ∈ N we have

fj(x)− fj(x0) = [fj(x)− fN(x)] + [fN(x)− fN(x0)] + [fN(x0)− fj(x0)].

We now have by the Triangle Inequality, (9), (10), (11), and the fact that
1/m < ε/4 that

|fj(x)−fj(x0)| ≤ 3/m < (3/4)ε for all j ≥ N and for all x ∈ B(x0, δ). (12)

The finite family of continuous functions {fj}N−1
j=1 is equicontinuous at x0

(we just choose the smallest of the associated δ’s). Combining this fact
with (12), we have that {fn} is equicontinuous at x0. Since x0 is an
arbitrary point of D, then {fn} is equicontinuous on D, as claimed. Since
{fn} converges pointwise to f by hypothesis, then by taking the limit as
j →∞ in (12), we have |f (x)− f (x0)| < ε for all x ∈ B(x0, δ). That is, f
is continuous at x0. Since x0 is an arbitrary point of D, then f is
continuous on dense subset D, as claimed.
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