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Theorem 10.2.A. The Baire Category Theorem

Theorem 10.2.A. The Baire Category Theorem.
Let X be a complete metric space.
(i) Let {O,}2°; be a countable collection of open dense subsets
of X. Then the intersection N2, O, is also dense.
(ii) Let {Fp}52; be a countable collection of closed hollow
subsets of X. Then the union U7 F, also is hollow.
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Theorem 10.2.A. The Baire Category Theorem

Theorem 10.2.A. The Baire Category Theorem.
Let X be a complete metric space.

(i) Let {O,}2°; be a countable collection of open dense subsets
of X. Then the intersection N2, O, is also dense.

(ii) Let {Fp}52; be a countable collection of closed hollow
subsets of X. Then the union U7 F, also is hollow.

Proof. A set is dense if and only if its complement is hollow by Note
10.2.A. A set is open if and only if its complement is closed. Then by De
Morgan's Identities, (i) and (ii) are equivalent, so it is sufficient to prove
(i). Let xo € X and let rp > 0. To show that N2 ; O, is dense, we need to
show that B(xp, ro) contains a point of N Op,.
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Theorem 10.2.A. The Baire Category Theorem

Theorem 10.2.A. The Baire Category Theorem.
Let X be a complete metric space.

(i) Let {O,}2°; be a countable collection of open dense subsets
of X. Then the intersection N2, O, is also dense.

(ii) Let {Fp}52; be a countable collection of closed hollow
subsets of X. Then the union U7 F, also is hollow.

Proof. A set is dense if and only if its complement is hollow by Note
10.2.A. A set is open if and only if its complement is closed. Then by De
Morgan's Identities, (i) and (ii) are equivalent, so it is sufficient to prove
(i). Let xo € X and let rp > 0. To show that N2 ; O, is dense, we need to
show that B(xp, ro) contains a point of N Op,.

Since Oy is dense in X, then there is some x| € B(x0,r0) N O1. Choose r
where 0 < r; < 1 for which Bi(x1, 1) C B(xp, ro) N Oy (this can be done
by Note 10.2.B); denote B; = B(xiy, ).
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Theorem 10.2.A. The Baire Category Theorem (continued)

Proof (continued). We now inductively create a contracting sequence of
closed balls, the intersection of which will give and element of N72 ;O in
B(xo, rp). Suppose n € N and the descending collection of open balls
{B}}_, has been chosen with the property that for 1 < k < n, By has
radius less than 1/k and By C Oy (the base case if given by By above).
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Theorem 10.2.A. The Baire Category Theorem (continued)

Proof (continued). We now inductively create a contracting sequence of
closed balls, the intersection of which will give and element of N72 ;O in
B(xo, rp). Suppose n € N and the descending collection of open balls
{B}}_, has been chosen with the property that for 1 < k < n, By has
radius less than 1/k and By C Oy (the base case if given by By above).
The set B, N Opy1 is nonempty since Op11 is dense in X. Let x,41 belong
to the open set B(xp, rn) N On. Choose ry41 such that

0 < rpr1 < 1/(n+ 1) for which Byy1(Xnt1, fas1) € Ba N Opypq (this can
be done by Note 10.2.B); denote B,11 = B(Xnt1, fa+1)- This inductively
defines a contracting sequence of closed sets {B,}2°; with the property
that for each n, B, C O,. The metric space X is complete by hypothesis,
so from the Cantor Intersection Theorem we have that ﬂﬁ"zlgn is
nonempty.
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Theorem 10.2.A. The Baire Category Theorem (continued)

Proof (continued). We now inductively create a contracting sequence of
closed balls, the intersection of which will give and element of N72 ;O in
B(xo, rp). Suppose n € N and the descending collection of open balls
{B}}_, has been chosen with the property that for 1 < k < n, By has
radius less than 1/k and By C Oy (the base case if given by By above).
The set B, N Opy1 is nonempty since Op11 is dense in X. Let x,41 belong
to the open set B(xp, rn) N On. Choose ry41 such that

0 < rpr1 < 1/(n+ 1) for which Byy1(Xnt1, fas1) € Ba N Opypq (this can
be done by Note 10.2.B); denote B,11 = B(Xnt1, fa+1)- This inductively
defines a contracting sequence of closed sets {B,}2°; with the property
that for each n, B, C O,. The metric space X is complete by hypothesis,
so from the Cantor Intersection Theorem we have that ﬂﬁ"zlgn is
nonempty. Let x, belong to this intersection. Then x, € N°;0,. Since
B1 C B(x0, 1) N O1, then we have x, € B(xo, rp) also. Open ball B(xg, ro)
is an arbitrary open ball and we have that b(xg, rp) contains a point of
N5 1On, so that N7, O, is dense, as claimed. O
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Corollary 10.5

Corollary 10.5. Let X be a complete metric space and {F,}°°, a
countable collection of closed subsets of X. Then U2 ;bd(F,) is hollow.
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Corollary 10.5

Corollary 10.5. Let X be a complete metric space and {F,}°°, a
countable collection of closed subsets of X. Then U2 ;bd(F,) is hollow.

Proof. In Problem 10.15 it is to be shown that the boundary of any set is
itself a closed set, and the boundary of a closed set E is hollow. Therefore,
for each n € N, bd(F,) is closed and hollow. Then by the Baire Category

Theorem (Theorem 10.2.A), U ;bd(F,) is hollow, as claimed. O
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Theorem 10.6

Theorem 10.6. Let F be a family of continuous real-valued functions on
a complete metric space X that is pointwise bounded in the sense that for
each x € X, there is a constant M for which |f(x)| < M for all f € F.
Then there is a nonempty open subset O of X on which F is uniformly
bounded in the sense that there is a constant M for which |[f| < M on O
for all f € F.
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Theorem 10.6

Theorem 10.6. Let F be a family of continuous real-valued functions on
a complete metric space X that is pointwise bounded in the sense that for
each x € X, there is a constant M for which |f(x)| < M for all f € F.
Then there is a nonempty open subset O of X on which F is uniformly
bounded in the sense that there is a constant M for which |[f| < M on O
for all f € F.

Proof. For each n € N, define E, = {x € X | |f(x)| < nfor all f € F}.
Then f~1([—n, n]) is closed for each function in F since each such
function is continuous (by Problem 9.36) and hence

E, = Nferf1(—n, n]) is closed. Since F is pointwise bounded by
hypothesis, then for each x € X there is n € N such that |f(x)| < n for all
f € F,; thatis, x € E,. Hence, since x is an arbitrary element of X, we
have X = Up2, E,.
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Theorem 10.6

Theorem 10.6. Let F be a family of continuous real-valued functions on
a complete metric space X that is pointwise bounded in the sense that for
each x € X, there is a constant M for which |f(x)| < M for all f € F.
Then there is a nonempty open subset O of X on which F is uniformly
bounded in the sense that there is a constant M for which |[f| < M on O
for all f € F.

Proof. For each n € N, define E, = {x € X | |f(x)| < nfor all f € F}.
Then f~1([—n, n]) is closed for each function in F since each such
function is continuous (by Problem 9.36) and hence

E, = Nferf1(—n, n]) is closed. Since F is pointwise bounded by
hypothesis, then for each x € X there is n € N such that |f(x)| < n for all
f € F,; thatis, x € E,. Hence, since x is an arbitrary element of X, we
have X = U2 ; E,. Since X is a complete metric space by hypothesis, then
by Corollary 10.4 (the “in particular” part) there is n € N for which E,
contains an open ball B(x, r) (that is, some E, has nonempty interior).

The claim now holds with open set O = B(x, r) and bound M = n. O
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Theorem 10.7

Theorem 10.7. Let X be a complete metric space and {f,} a sequence of
continuous real-valued functions on X that converges pointwise on X to
the real-valued function f. Then there is a dense subset D of X for which

{f,} is equicontinuous at each point in D.
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Theorem 10.7

Theorem 10.7. Let X be a complete metric space and {f,} a sequence of
continuous real-valued functions on X that converges pointwise on X to
the real-valued function f. Then there is a dense subset D of X for which
{f,} is equicontinuous at each point in D.

Proof. Let m, n € N. Define
E(m,n) = {x € X | [fi(x) — fu(x)| < 1/m for all j, k > n}.

The mapping x — |f;(x) — fi(x)| is continuous, and
{x € X | |fi(x) — f(x)| < 1/m} is the inverse image of [—-1/m,1/m]
under this mapping so that this set is closed (by Problem 9.36). Now
E(m, n) = Nji>n{x € X | [fj(x) — fi(x)| < 1/m} so E(m, n) is closed.
Then by Corollary 10.5, Up menbd(E(m, n)) is hollow and, by Note 10.2.A,
D = X ~ [Up menbd(E(m, n))] is dense in X. If n,m € N and point
x € D belongs to E(m, n), then x belongs to the interior of E(m, n)
because D contains all boundary points of E(m, n).
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Theorem 10.7 (continued 1)

Proof (continued). We now show that {f,} is equicontinuous at each
point of D. Let xp € D and let € > 0. Choose m € N for which

1/m < /4. Since {fy(x0)} converges to to real number f(xg), then
{fa(x0)} is Cauchy. Hence we can choose a natural number N for which

|fi(x0) = fi(x0)| < 1/mforall j,k = N. (9)

Therefore xp € E(m, N). Since, as observed above, xp belongs to the
interior of E(m, N). Choose r > 0 such that B(xp, r) C E(m, N); that is,

|£i(x) — fu(x)] < 1/m for all j,k > N and for all x € B(x,r).  (10)

The function fy is continuous at xg. Therefore there is a § > 0 with
0 < ¢ < r for which

|fn(x) — fu(x)| < 1/m for all x € B(xp, ). (11)

Real Analysis December 15, 2022 8 /9



Theorem 10.7 (continued 2)

Proof (continued). Notice that for all x € X and j € N we have
fi(x) = fi(x0) = [fi(x) = in(x)] + [fn(x) = fv (x0)] + [fn(x0) — £(0)]-

We now have by the Triangle Inequality, (9), (10), (11), and the fact that
1/m < /4 that

[fi(x)—fi(x0)| <3/m < (3/4)e for all j > N and for all x € B(xp,6). (12)

The finite family of continuous functions {f}N 1 is equicontinuous at xp
(we just choose the smallest of the assouated d's). Combining this fact
with (12), we have that {f,} is equicontinuous at xg. Since xp is an
arbitrary point of D, then {f,} is equicontinuous on D, as claimed.
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Theorem 10.7 (continued 2)

Proof (continued). Notice that for all x € X and j € N we have
fi(x) = fi(x0) = [fi(x) = in(x)] + [fn(x) = fv (x0)] + [fn(x0) — £(0)]-

We now have by the Triangle Inequality, (9), (10), (11), and the fact that
1/m < /4 that

[fi(x)—fi(x0)| <3/m < (3/4)e for all j > N and for all x € B(xp,6). (12)

The finite family of continuous functions {f}N 1 is equicontinuous at xp
(we just choose the smallest of the assouated d's). Combining this fact
with (12), we have that {f,} is equicontinuous at xg. Since xp is an
arbitrary point of D, then {f,} is equicontinuous on D, as claimed. Since
{fa} converges pointwise to f by hypothesis, then by taking the limit as

J — o0 in (12), we have |f(x) — f(x0)| < € for all x € B(xp,d). That is, f
is continuous at xp. Since xg is an arbitrary point of D, then f is
continuous on dense subset D, as claimed. O
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