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Real Analysis J Theorem 10.3.B. The Banach Contraction Principle.
Let X be a complete metric space and the mapping 7 : X — X be a
Chapter 10. Metric Spaces: Three Fundamental Theorem contract. Then T : X — X has exactly one fixed point.
10.3. The Banach Contraction Principle—Proofs of Theorems Proof. Let ¢ be a number with 0 < ¢ < 1 that is a Lipschitz constant for

mapping T. Select any point in X and label it xp. Define the sequence
{xx} inductively be defining x; = T(0x) and, if k € N is such that xx is
defined, then define xx41 = T(xx). The sequence {x,} is properly defined
REAL since T(x) is a subset of X. We will show that {x,} converges to a fixed

ANALYSIS point of T.

Since T is a contraction with Lipschitz constant ¢, we have
p(x2,x1) = p(T(x1), T(%0)) = p(T(T(x0)), T(x0)) < ¢ p(T(x0), ),
and similarly
P(Xit1, %) = p(T (xi), T(xk—1)) < x p(xic; xie—1) if k > 2.
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Proof (continued). These two inequalities imply, by induction, that Proof (continued). Since 0 < ¢ < 1, then p(xm, xk) < 1C_ CP(T(XO),XO)
p(Xier1, x6) < € p(T(x0), x0) for every k € N. if m > k. But lim,_ ck =0, so that the inequality implies that {x;} is a

Cauchy sequence.
Hence if m, k € N with m > k, then

By hypothesis, the metric space S is complete. Thus there is a point
P(Xmy xk) < p(Xmy Xm—1) + P(Xm—1,Xm—2) + -+ + p(Xka1, Xk) x € X to which the sequence {xx} converges. Since T is Lipschitz, it is
continuous (let § = ¢/c in the €/§ Criterion for Continuity, Theorem

by the Triangle Inequality for p
9.3.A). Therefore

m—1 m—2 k
- (C te Tt ) ( ( )’XO) T(X) = Iimk_>oo T(Xk) = T(llmk_wo Xk) = Iimk_,oo Xk+1 = X. Thus the
= fl+c+ +c’"”)( (x0), x0) i ixed poi
X0); X0 mapping T : X — X has at least one fixed point. ASSUME that v and v
1—cmk ’ 1 — ¢l are two different fixed points such that T(v) = v and T(v) = v. Then
_ k
- S T1 ¢ P(T(x0), x0) since Z R P forc# 1. 0 < p(u,v)=p(T(u), T(v)) < cp(u,v), so that since 0 < c < 1, we
must have p(u,v) = 0. But then u = v, a CONTRADICTION. So the
ck _ assumption that there are two different fixed points is false, and hence T
Since 0 < ¢ <1, then p(xm, xi) < 1_ p(T(XO)vXO) it m> k. has exactly one fixed point, as claimed. O
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Theorem 10.3.C. The Picard Local Existence Theorem.

Let O be an open subset of the plane R? containing the point (xp, yo).
Suppose the function g : © — R? is continuous and there is a positive
number M for which the following Lipschitz property in the second
variable holds uniformly with respect to the first variable:

lg(x, y1)—&(x,2)| < M|y1—ys| for all points (x,y1) and (x,y»2) in O. (16)

Then there is an open interval / containing xp on which the following
differential equation has a unique solution:

f'(x) = g(x,f(x)) forall x e/ (14)
f(x) = yo.

Proof. For ¢ a positive number, define /; to be the closed interval

[xo — £, x0 + £]. By Note 10.3.C, we have a solution of differential equation

(14) if and only if we have a solution of integral equation (15).
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Proof (continued). A solution of the integral equation (15) is a fixed
point of the mapping T : X, — C(/;). Since C(/;) is a complete metric
space by Proposition 9.10 (where the norm on C(/y) has the max norm)
and Xy is a closed subset of C(/y) by Proposition 9.11, then X, is a
complete metric space by Proposition 9.12(iii). We will show that if £ is
chosen sufficiently small, then T(X;) C Xy and T : X; — X; is a contract.
The Banach Contraction Principle will then imply that 7 : X; — X; has a
unique fixed point, and hence integral equation (15) and differential
equation (14) have unique solutions.

Since rectangle R = [xo — a,x0 + a] X [yo — b, yo + b| is compact (by the
Heine-Borel Theorem) and g is continuous by hypothesis, then g is the
Extreme Value Theorem (Proposition 9.22) there is a positive number K
such that |g(x,y)| < K for all (x,y) € R.

December 17, 2022 8 /10

Theorem 10.3.C. The Picard Local Existence Theorem
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Proof (continued). So, it suffices to show that ¢ can be chosen so that
there is exactly one continuous function f : [, — R with the property that

f(x) =y +/ g(t, f(t))dt for all x € /.

X0

Since O is open, we may choose positive numbers a and b such that the
closed rectangle R = [xg — a,x0 + a] X [yo — b, yo + b] is contained in O.
Now for each positive number £ with £ < a, define X; to be the subspace
of the metric space C(/y) consisting of those continuous functions

f :lp — R such that |f(x) — yo| < b for all x € l;. That is, X; consists of
all continuous functions on Iy (since X; is a subspace of C(/ly)) that have a
graph contained in the rectangle Iy x [yo — b, yo + b].

For f € Xy, define the function T(f) € C(/;) by

X

T(f)(X)zyo+/ g(t, £(t)) dt for all x € I,.

X0
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Theorem 10.3.C (continued 3)

Proof (continued). For f € X; and x € I, we have, by the definition of T,

16—l = | [ " g(t F(1)) dt

0
so that T(Xy) C X, if /K < b. Observe that for functions f1,, € X, and
x € Iy, by hypothesized inequality (16) we have
\g(x, ﬂ(X)) - g(X’ f2(X))| < Mpmax(fh '(2) since
lyi — y2| = |f(x1) — f(x2)| < pmax(fi, f2). So by the linearity and
monotonicity of integrals, we have

[ et fe) - (e p(e)]ae

|x — x0|Mpmax(f1, f2) by the previous inequality
M pmax(fi, 2) since x € Iy = [xo — €, x0 + ).

<K,

[ T(h)(x) = T(R)(X)| =

<
<

This inequality, together with the inclusion T(X;) C X; if (K < b, implies
that T : X, — X, is a contraction if /K < b and /M < 1.
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Theorem 10.3.C. The Picard Local Existence Theorem.

Let O be an open subset of the plane R? containing the point (xp, yo).
Suppose the function g : © — R? is continuous and there is a positive
number M for which the following Lipschitz property in the second
variable holds uniformly with respect to the first variable:

lg(x, y1)—&(x,y2)| < M|y1—y»| for all points (x,y1) and (x,y») in O. (16)

Then there is an open interval / containing xp on which the following
differential equation has a unique solution:

f'(x) = g(x,f(x)) forall x e/
f(x0) = yo.
Proof (continued). So we define ¢ = min{b/K,1/(2M)}. Then the
Banach Contraction Principle applied to T : X; — X, implies that T has a

unique fixed point and, as described above, the integral equation (15) and
the differential equation (14) each have a unique solution, as claimed. [

(14)



