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Theorem 10.3.B. The Banach Contraction Principle.
Let X be a complete metric space and the mapping T : X → X be a
contract. Then T : X → X has exactly one fixed point.

Proof. Let c be a number with 0 ≤ c < 1 that is a Lipschitz constant for
mapping T . Select any point in X and label it x0. Define the sequence
{xk} inductively be defining x1 = T (0x) and, if k ∈ N is such that xk is
defined, then define xk+1 = T (xk). The sequence {xn} is properly defined
since T (x) is a subset of X . We will show that {xn} converges to a fixed
point of T .

Since T is a contraction with Lipschitz constant c , we have

ρ(x2, x1) = ρ(T (x1),T (x0)) = ρ(T (T (x0)),T (x0)) ≤ c ρ(T (x0), x0),

and similarly

ρ(xk+1, xk) = ρ(T (xk),T (xk−1)) ≤ x ρ(xk , xk−1) if k ≥ 2.

() Real Analysis December 17, 2022 3 / 10



Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle.
Let X be a complete metric space and the mapping T : X → X be a
contract. Then T : X → X has exactly one fixed point.

Proof. Let c be a number with 0 ≤ c < 1 that is a Lipschitz constant for
mapping T . Select any point in X and label it x0. Define the sequence
{xk} inductively be defining x1 = T (0x) and, if k ∈ N is such that xk is
defined, then define xk+1 = T (xk). The sequence {xn} is properly defined
since T (x) is a subset of X . We will show that {xn} converges to a fixed
point of T .

Since T is a contraction with Lipschitz constant c , we have

ρ(x2, x1) = ρ(T (x1),T (x0)) = ρ(T (T (x0)),T (x0)) ≤ c ρ(T (x0), x0),

and similarly

ρ(xk+1, xk) = ρ(T (xk),T (xk−1)) ≤ x ρ(xk , xk−1) if k ≥ 2.

() Real Analysis December 17, 2022 3 / 10



Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle.
Let X be a complete metric space and the mapping T : X → X be a
contract. Then T : X → X has exactly one fixed point.

Proof. Let c be a number with 0 ≤ c < 1 that is a Lipschitz constant for
mapping T . Select any point in X and label it x0. Define the sequence
{xk} inductively be defining x1 = T (0x) and, if k ∈ N is such that xk is
defined, then define xk+1 = T (xk). The sequence {xn} is properly defined
since T (x) is a subset of X . We will show that {xn} converges to a fixed
point of T .

Since T is a contraction with Lipschitz constant c , we have

ρ(x2, x1) = ρ(T (x1),T (x0)) = ρ(T (T (x0)),T (x0)) ≤ c ρ(T (x0), x0),

and similarly

ρ(xk+1, xk) = ρ(T (xk),T (xk−1)) ≤ x ρ(xk , xk−1) if k ≥ 2.

() Real Analysis December 17, 2022 3 / 10
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Theorem 10.3.B (continued 1)

Proof (continued). These two inequalities imply, by induction, that

ρ(xk+1, xk) ≤ ck ρ(T (x0), x0) for every k ∈ N.

Hence if m, k ∈ N with m > k, then

ρ(xm, xk) ≤ ρ(xm, xm−1) + ρ(xm−1, xm−2) + · · ·+ ρ(xk+1, xk)

by the Triangle Inequality for ρ

≤ (cm−1 + cm−2 + · · ·+ ck)ρ(T (x0), x0)

= ck(1 + c + · · ·+ cm−1−k)ρ(T (x0), x0)

= ck 1− cm−k

1− c
ρ(T (x0), x0) since

n∑
k=0

ck =
1− cn+1

1− c
for c 6= 1.

Since 0 ≤ c < 1, then ρ(xm, xk) ≤ ck

1− c
ρ(T (x0), x0) if m > k.
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Theorem 10.3.B (continued 2)

Proof (continued). Since 0 ≤ c < 1, then ρ(xm, xk) ≤ ck

1− c
ρ(T (x0), x0)

if m > k. But limk→∞ ck = 0, so that the inequality implies that {xk} is a
Cauchy sequence.

By hypothesis, the metric space S is complete. Thus there is a point
x ∈ X to which the sequence {xk} converges. Since T is Lipschitz, it is
continuous (let δ = ε/c in the ε/δ Criterion for Continuity, Theorem
9.3.A). Therefore
T (x) = limk→∞ T (xk) = T (limk→∞ xk) = limk→∞ xk+1 = x . Thus the
mapping T : X → X has at least one fixed point.

ASSUME that u and v
are two different fixed points such that T (u) = u and T (v) = v . Then
0 ≤ ρ(u, v) = ρ(T (u),T (v)) ≤ c ρ(u, v), so that since 0 ≤ c < 1, we
must have ρ(u, v) = 0. But then u = v , a CONTRADICTION. So the
assumption that there are two different fixed points is false, and hence T
has exactly one fixed point, as claimed.
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Theorem 10.3.C. The Picard Local Existence Theorem.
Let O be an open subset of the plane R2 containing the point (x0, y0).
Suppose the function g : O → R2 is continuous and there is a positive
number M for which the following Lipschitz property in the second
variable holds uniformly with respect to the first variable:

|g(x , y1)−g(x , y2)| ≤ M|y1−y2| for all points (x , y1) and (x , y2) in O. (16)

Then there is an open interval I containing x0 on which the following
differential equation has a unique solution:

f ′(x) = g(x , f (x)) for all x ∈ I
f (x0) = y0.

(14)

Proof. For ` a positive number, define I` to be the closed interval
[x0 − `, x0 + `]. By Note 10.3.C, we have a solution of differential equation
(14) if and only if we have a solution of integral equation (15).
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Theorem 10.3.C. The Picard Local Existence Theorem

Theorem 10.3.C (continued 1)

Proof (continued). So, it suffices to show that ` can be chosen so that
there is exactly one continuous function f : I` → R with the property that

f (x) = y0 +

∫ x

x0

g(t, f (t)) dt for all x ∈ I`.

Since O is open, we may choose positive numbers a and b such that the
closed rectangle R = [x0 − a, x0 + a]× [y0 − b, y0 + b] is contained in O.
Now for each positive number ` with ` ≤ a, define X` to be the subspace
of the metric space C (I`) consisting of those continuous functions
f : I` → R such that |f (x)− y0| ≤ b for all x ∈ I`. That is, X` consists of
all continuous functions on I` (since X` is a subspace of C (I`)) that have a
graph contained in the rectangle I` × [y0 − b, y0 + b].

For f ∈ X`, define the function T (f ) ∈ C (I`) by

T (f )(x) = y0 +

∫ x

x0

g(t, f (t)) dt for all x ∈ I`.
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Theorem 10.3.C. The Picard Local Existence Theorem

Theorem 10.3.C (continued 2)

Proof (continued). A solution of the integral equation (15) is a fixed
point of the mapping T : X` → C (I`). Since C (I`) is a complete metric
space by Proposition 9.10 (where the norm on C (I`) has the max norm)
and X` is a closed subset of C (I`) by Proposition 9.11, then X` is a
complete metric space by Proposition 9.12(iii). We will show that if ` is
chosen sufficiently small, then T (X`) ⊆ X` and T : X` → X` is a contract.
The Banach Contraction Principle will then imply that T : X` → X` has a
unique fixed point, and hence integral equation (15) and differential
equation (14) have unique solutions.

Since rectangle R = [x0 − a, x0 + a]× [y0 − b, y0 + b] is compact (by the
Heine-Borel Theorem) and g is continuous by hypothesis, then g is the
Extreme Value Theorem (Proposition 9.22) there is a positive number K
such that |g(x , y)| ≤ K for all (x , y) ∈ R.
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Theorem 10.3.C. The Picard Local Existence Theorem

Theorem 10.3.C (continued 3)

Proof (continued). For f ∈ X` and x ∈ I` we have, by the definition of T ,

|t(f )(x)− y0| =
∣∣∣∣∫ x

x0

g(t, f (t)) dt

∣∣∣∣ ≤ `K ,

so that T (X`) ⊆ X` if `K ≤ b. Observe that for functions f1, f2 ∈ X` and
x ∈ I`, by hypothesized inequality (16) we have
|g(x , f1(x))− g(x , f2(x))| ≤ M ρmax(f1, f2) since
|y1 − y2| = |f (x1)− f (x2)| ≤ ρmax(f1, f2). So by the linearity and
monotonicity of integrals, we have

|T (f1)(x)− T (f2)(x)| =

∣∣∣∣∫ x

x0

[g(t, f1(t))− g(t, f2(t))] dt

∣∣∣∣
≤ |x − x0|Mρmax(f1, f2) by the previous inequality

≤ `Mρmax(f1, f2) since x ∈ I` = [x0 − `, x0 + `].

This inequality, together with the inclusion T (X`) ⊆ X` if `K ≤ b, implies
that T : X` → X` is a contraction if `K ≤ b and `M < 1.
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Theorem 10.3.C. The Picard Local Existence Theorem.
Let O be an open subset of the plane R2 containing the point (x0, y0).
Suppose the function g : O → R2 is continuous and there is a positive
number M for which the following Lipschitz property in the second
variable holds uniformly with respect to the first variable:

|g(x , y1)−g(x , y2)| ≤ M|y1−y2| for all points (x , y1) and (x , y2) in O. (16)

Then there is an open interval I containing x0 on which the following
differential equation has a unique solution:

f ′(x) = g(x , f (x)) for all x ∈ I
f (x0) = y0.

(14)

Proof (continued). So we define ` = min{b/K , 1/(2M)}. Then the
Banach Contraction Principle applied to T : X` → X` implies that T has a
unique fixed point and, as described above, the integral equation (15) and
the differential equation (14) each have a unique solution, as claimed.
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