Real Analysis

Chapter 10. Metric Spaces: Three Fundamental Theorem 10.3. The Banach Contraction Principle—Proofs of Theorems

2 [Theorem 10.3.C. The Picard Local Existence Theorem](#page-9-0)

Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle. Let X be a complete metric space and the mapping $T : X \rightarrow X$ be a contract. Then $T: X \rightarrow X$ has exactly one fixed point.

Proof. Let c be a number with $0 \le c \le 1$ that is a Lipschitz constant for mapping T. Select any point in X and label it x_0 . Define the sequence $\{x_k\}$ inductively be defining $x_1 = T(0_x)$ and, if $k \in \mathbb{N}$ is such that x_k is defined, then define $x_{k+1} = T(x_k)$. The sequence $\{x_n\}$ is properly defined since $T(x)$ is a subset of X. We will show that $\{x_n\}$ converges to a fixed point of T.

Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle.

Let X be a complete metric space and the mapping $T : X \rightarrow X$ be a contract. Then $T : X \rightarrow X$ has exactly one fixed point.

Proof. Let c be a number with $0 \le c \le 1$ that is a Lipschitz constant for mapping T. Select any point in X and label it x_0 . Define the sequence $\{x_k\}$ inductively be defining $x_1 = T(0_x)$ and, if $k \in \mathbb{N}$ is such that x_k is defined, then define $x_{k+1} = T(x_k)$. The sequence $\{x_n\}$ is properly defined since $T(x)$ is a subset of X. We will show that $\{x_n\}$ converges to a fixed point of T.

Since T is a contraction with Lipschitz constant c , we have

$$
\rho(x_2,x_1)=\rho(T(x_1),T(x_0))=\rho(T(T(x_0)),T(x_0))\leq c\,\rho(T(x_0),x_0),
$$

and similarly

$$
\rho(x_{k+1}, x_k) = \rho(T(x_k), T(x_{k-1})) \le x \rho(x_k, x_{k-1})
$$
 if $k \ge 2$.

Theorem 10.3.B. The Banach Contraction Principle

Theorem 10.3.B. The Banach Contraction Principle.

Let X be a complete metric space and the mapping $T : X \rightarrow X$ be a contract. Then $T : X \rightarrow X$ has exactly one fixed point.

Proof. Let c be a number with $0 \le c \le 1$ that is a Lipschitz constant for mapping T. Select any point in X and label it x_0 . Define the sequence $\{x_k\}$ inductively be defining $x_1 = T(0_x)$ and, if $k \in \mathbb{N}$ is such that x_k is defined, then define $x_{k+1} = T(x_k)$. The sequence $\{x_n\}$ is properly defined since $T(x)$ is a subset of X. We will show that $\{x_n\}$ converges to a fixed point of T.

Since T is a contraction with Lipschitz constant c , we have

$$
\rho(x_2,x_1)=\rho(T(x_1),T(x_0))=\rho(T(T(x_0)),T(x_0))\leq c\,\rho(T(x_0),x_0),
$$

and similarly

$$
\rho(x_{k+1}, x_k) = \rho(T(x_k), T(x_{k-1})) \le x \rho(x_k, x_{k-1}) \text{ if } k \ge 2.
$$

Theorem 10.3.B (continued 1)

Proof (continued). These two inequalities imply, by induction, that

$$
\rho(x_{k+1}, x_k) \leq c^k \rho(T(x_0), x_0) \text{ for every } k \in \mathbb{N}.
$$

Hence if $m, k \in \mathbb{N}$ with $m > k$, then

$$
\rho(x_m, x_k) \leq \rho(x_m, x_{m-1}) + \rho(x_{m-1}, x_{m-2}) + \cdots + \rho(x_{k+1}, x_k)
$$

by the Triangle Inequality for ρ

$$
\leq (c^{m-1} + c^{m-2} + \cdots + c^k) \rho(T(x_0), x_0)
$$

$$
= c^k (1 + c + \cdots + c^{m-1-k}) \rho(T(x_0), x_0)
$$

$$
= c^k \frac{1 - c^{m-k}}{1 - c} \rho(T(x_0), x_0) \text{ since } \sum_{k=0}^n c^k = \frac{1 - c^{n+1}}{1 - c} \text{ for } c \neq 1.
$$

Since $0\leq c < 1$, then $\rho(x_m,x_k) \leq \frac{c^k}{1-\epsilon}$ $\frac{c}{1-c} \rho(T(x_0), x_0)$ if $m > k$.

Theorem 10.3.B (continued 2)

Proof (continued). Since $0 \leq c < 1$, then $\rho(x_m, x_k) \leq \frac{c^k}{1 - k}$ $\frac{1}{1-c} \rho(T(x_0), x_0)$ if $m>k$. But lim $_{k\to\infty}$ $\mathsf{c}^k=0$, so that the inequality implies that $\{\mathsf{x}_k\}$ is a Cauchy sequence.

By hypothesis, the metric space S is complete. Thus there is a point $x \in X$ to which the sequence $\{x_k\}$ converges. Since T is Lipschitz, it is continuous (let $\delta = \varepsilon/c$ in the ϵ/δ Criterion for Continuity, Theorem 9.3.A). Therefore

 $T(x) = \lim_{k \to \infty} T(x_k) = T(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} x_{k+1} = x$. Thus the mapping $T : X \to X$ has at least one fixed point.

Theorem 10.3.B (continued 2)

Proof (continued). Since $0 \leq c < 1$, then $\rho(x_m, x_k) \leq \frac{c^k}{1 - k}$ $\frac{1}{1-c} \rho(T(x_0), x_0)$ if $m>k$. But lim $_{k\to\infty}$ $\mathsf{c}^k=0$, so that the inequality implies that $\{\mathsf{x}_k\}$ is a Cauchy sequence.

By hypothesis, the metric space S is complete. Thus there is a point $x \in X$ to which the sequence $\{x_k\}$ converges. Since T is Lipschitz, it is continuous (let $\delta = \varepsilon/c$ in the ϵ/δ Criterion for Continuity, Theorem 9.3.A). Therefore

 $T(x) = \lim_{k \to \infty} T(x_k) = T(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} x_{k+1} = x$. Thus the mapping $T : X \to X$ has at least one fixed point. ASSUME that u and v are two different fixed points such that $T(u) = u$ and $T(v) = v$. Then $0 \le \rho(u, v) = \rho(T(u), T(v)) \le c \rho(u, v)$, so that since $0 \le c < 1$, we must have $\rho(u, v) = 0$. But then $u = v$, a CONTRADICTION. So the assumption that there are two different fixed points is false, and hence T has exactly one fixed point, as claimed.

Theorem 10.3.B (continued 2)

Proof (continued). Since $0 \leq c < 1$, then $\rho(x_m, x_k) \leq \frac{c^k}{1 - k}$ $\frac{1}{1-c} \rho(T(x_0), x_0)$ if $m>k$. But lim $_{k\to\infty}$ $\mathsf{c}^k=0$, so that the inequality implies that $\{\mathsf{x}_k\}$ is a Cauchy sequence.

By hypothesis, the metric space S is complete. Thus there is a point $x \in X$ to which the sequence $\{x_k\}$ converges. Since T is Lipschitz, it is continuous (let $\delta = \varepsilon/c$ in the ϵ/δ Criterion for Continuity, Theorem 9.3.A). Therefore

 $T(x) = \lim_{k \to \infty} T(x_k) = T(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} x_{k+1} = x$. Thus the mapping $T : X \to X$ has at least one fixed point. ASSUME that u and v are two different fixed points such that $T(u) = u$ and $T(v) = v$. Then $0 \leq \rho(u, v) = \rho(T(u), T(v)) \leq c \rho(u, v)$, so that since $0 \leq c < 1$, we must have $\rho(u, v) = 0$. But then $u = v$, a CONTRADICTION. So the assumption that there are two different fixed points is false, and hence T has exactly one fixed point, as claimed.

Theorem 10.3.C. The Picard Local Existence Theorem

Theorem 10.3.C. The Picard Local Existence Theorem.

Let $\mathcal O$ be an open subset of the plane $\mathbb R^2$ containing the point $(x_0,y_0).$ Suppose the function $g:\mathcal{O}\to\mathbb{R}^2$ is continuous and there is a positive number M for which the following Lipschitz property in the second variable holds uniformly with respect to the first variable:

$$
|g(x, y_1)-g(x, y_2)| \le M|y_1-y_2|
$$
 for all points (x, y_1) and (x, y_2) in \mathcal{O} . (16)

Then there is an open interval I containing x_0 on which the following differential equation has a unique solution:

$$
f'(x) = g(x, f(x)) \text{ for all } x \in I
$$

$$
f(x_0) = y_0.
$$
 (14)

Proof. For ℓ a positive number, define I_ℓ to be the closed interval $[x_0 - \ell, x_0 + \ell]$. By Note 10.3.C, we have a solution of differential equation (14) if and only if we have a solution of integral equation (15).

Theorem 10.3.C. The Picard Local Existence Theorem

Theorem 10.3.C. The Picard Local Existence Theorem.

Let $\mathcal O$ be an open subset of the plane $\mathbb R^2$ containing the point $(x_0,y_0).$ Suppose the function $g:\mathcal{O}\to\mathbb{R}^2$ is continuous and there is a positive number M for which the following Lipschitz property in the second variable holds uniformly with respect to the first variable:

$$
|g(x, y_1)-g(x, y_2)| \le M|y_1-y_2|
$$
 for all points (x, y_1) and (x, y_2) in \mathcal{O} . (16)

Then there is an open interval I containing x_0 on which the following differential equation has a unique solution:

$$
f'(x) = g(x, f(x)) \text{ for all } x \in I
$$

f(x₀) = y₀. (14)

Proof. For ℓ a positive number, define I_ℓ to be the closed interval $[x_0 - \ell, x_0 + \ell]$. By Note 10.3.C, we have a solution of differential equation (14) if and only if we have a solution of integral equation (15).

Theorem 10.3.C (continued 1)

Proof (continued). So, it suffices to show that ℓ can be chosen so that there is exactly one continuous function $f : I_{\ell} \to \mathbb{R}$ with the property that

$$
f(x) = y_0 + \int_{x_0}^x g(t, f(t)) dt
$$
 for all $x \in I_\ell$.

Since $\mathcal O$ is open, we may choose positive numbers a and b such that the closed rectangle $R = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b]$ is contained in \mathcal{O} . Now for each positive number ℓ with $\ell \le a$, define X_ℓ to be the subspace of the metric space $C(I_\ell)$ consisting of those continuous functions $f : I_{\ell} \to \mathbb{R}$ such that $|f(x) - y_0| \leq b$ for all $x \in I_{\ell}$. That is, X_{ℓ} consists of all continuous functions on I_{ℓ} (since X_{ℓ} is a subspace of $C(I_{\ell}))$ that have a graph contained in the rectangle $I_{\ell} \times [y_0 - b, y_0 + b]$.

Theorem 10.3.C (continued 1)

Proof (continued). So, it suffices to show that ℓ can be chosen so that there is exactly one continuous function $f : I_{\ell} \to \mathbb{R}$ with the property that

$$
f(x) = y_0 + \int_{x_0}^x g(t, f(t)) dt
$$
 for all $x \in I_\ell$.

Since $\mathcal O$ is open, we may choose positive numbers a and b such that the closed rectangle $R = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b]$ is contained in \mathcal{O} . Now for each positive number ℓ with $\ell \le a$, define X_ℓ to be the subspace of the metric space $C(I_\ell)$ consisting of those continuous functions $f : I_\ell \to \mathbb{R}$ such that $|f(x) - y_0| \leq b$ for all $x \in I_\ell$. That is, X_ℓ consists of all continuous functions on I_{ℓ} (since X_{ℓ} is a subspace of $\mathcal{C}(I_{\ell}))$ that have a graph contained in the rectangle $I_{\ell} \times [y_0 - b, y_0 + b]$.

For $f \in X_\ell$, define the function $\mathcal{T}\big(f\big) \in \mathcal{C}\big(I_\ell\big)$ by

$$
T(f)(x) = y_0 + \int_{x_0}^x g(t, f(t)) dt
$$
 for all $x \in I_\ell$.

Theorem 10.3.C (continued 1)

Proof (continued). So, it suffices to show that ℓ can be chosen so that there is exactly one continuous function $f : I_{\ell} \to \mathbb{R}$ with the property that

$$
f(x) = y_0 + \int_{x_0}^x g(t, f(t)) dt
$$
 for all $x \in I_\ell$.

Since $\mathcal O$ is open, we may choose positive numbers a and b such that the closed rectangle $R = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b]$ is contained in \mathcal{O} . Now for each positive number ℓ with $\ell \le a$, define X_ℓ to be the subspace of the metric space $C(I_\ell)$ consisting of those continuous functions $f : I_\ell \to \mathbb{R}$ such that $|f(x) - y_0| \leq b$ for all $x \in I_\ell$. That is, X_ℓ consists of all continuous functions on I_{ℓ} (since X_{ℓ} is a subspace of $\mathcal{C}(I_{\ell}))$ that have a graph contained in the rectangle $I_{\ell} \times [y_0 - b, y_0 + b]$.

For $f\in X_\ell$, define the function $\mathcal{T}(f)\in \mathcal{C}(\mathit{I}_{\ell})$ by

$$
T(f)(x) = y_0 + \int_{x_0}^x g(t, f(t)) dt
$$
 for all $x \in I_{\ell}$.

Theorem 10.3.C (continued 2)

Proof (continued). A solution of the integral equation (15) is a fixed point of the mapping $T : X_{\ell} \to C(I_{\ell})$. Since $C(I_{\ell})$ is a complete metric space by Proposition 9.10 (where the norm on $C(I_\ell)$ has the max norm) and X_ℓ is a closed subset of $C(I_\ell)$ by Proposition 9.11, then X_ℓ is a complete metric space by Proposition 9.12(iii). We will show that if ℓ is chosen sufficiently small, then $\, \mathcal{T}(X_\ell) \subseteq X_\ell$ and $\, \mathcal{T} : X_\ell \to X_\ell$ is a contract. The Banach Contraction Principle will then imply that $T : X_\ell \to X_\ell$ has a unique fixed point, and hence integral equation (15) and differential equation (14) have unique solutions.

Since rectangle $R = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b]$ is compact (by the Heine-Borel Theorem) and g is continuous by hypothesis, then g is the Extreme Value Theorem (Proposition 9.22) there is a positive number K such that $|g(x, y)| \leq K$ for all $(x, y) \in R$.

Theorem 10.3.C (continued 2)

Proof (continued). A solution of the integral equation (15) is a fixed point of the mapping $T : X_{\ell} \to C(I_{\ell})$. Since $C(I_{\ell})$ is a complete metric space by Proposition 9.10 (where the norm on $C(I_\ell)$ has the max norm) and X_ℓ is a closed subset of $C(I_\ell)$ by Proposition 9.11, then X_ℓ is a complete metric space by Proposition 9.12(iii). We will show that if ℓ is chosen sufficiently small, then $\, \mathcal{T}(X_\ell) \subseteq X_\ell$ and $\, \mathcal{T} : X_\ell \to X_\ell$ is a contract. The Banach Contraction Principle will then imply that $T : X_{\ell} \to X_{\ell}$ has a unique fixed point, and hence integral equation (15) and differential equation (14) have unique solutions.

Since rectangle $R = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b]$ is compact (by the Heine-Borel Theorem) and g is continuous by hypothesis, then g is the Extreme Value Theorem (Proposition 9.22) there is a positive number K such that $|g(x, y)| \leq K$ for all $(x, y) \in R$.

Theorem 10.3.C (continued 3)

Proof (continued). For $f \in X_\ell$ and $x \in I_\ell$ we have, by the definition of T,

$$
|t(f)(x)-y_0|=\bigg|\int_{x_0}^x g(t,f(t))\,dt\bigg|\leq \ell K,
$$

so that $\mathcal{T}(X_\ell) \subseteq X_\ell$ if $\ell K \leq b.$ Observe that for functions $f_1, f_2 \in X_\ell$ and $\mathsf{x} \in \mathit{I}_{\ell}$, by hypothesized inequality (16) we have $|g(x, f_1(x)) - g(x, f_2(x))| \le M \rho_{\text{max}}(f_1, f_2)$ since $|y_1 - y_2| = |f(x_1) - f(x_2)| \le \rho_{\text{max}}(f_1, f_2)$. So by the linearity and monotonicity of integrals, we have

$$
|T(f_1)(x) - T(f_2)(x)| = \left| \int_{x_0}^x [g(t, f_1(t)) - g(t, f_2(t))] dt \right|
$$

\n
$$
\leq |x - x_0| M \rho_{\max}(f_1, f_2) \text{ by the previous inequality}
$$

\n
$$
\leq \ell M \rho_{\max}(f_1, f_2) \text{ since } x \in I_{\ell} = [x_0 - \ell, x_0 + \ell].
$$

This inequality, together with the inclusion $\, \mathcal{T}(X_\ell) \subseteq X_\ell$ if $\ell \mathcal{K} \leq b,$ implies that $\mathcal{T}: X_{\ell} \rightarrow X_{\ell}$ is a contraction if $\ell \mathsf{K} \leq b$ and $\ell \mathsf{M} < 1.$

Theorem 10.3.C (continued 3)

Proof (continued). For $f \in X_\ell$ and $x \in I_\ell$ we have, by the definition of T,

$$
|t(f)(x)-y_0|=\bigg|\int_{x_0}^x g(t,f(t))\,dt\bigg|\leq \ell K,
$$

so that $\mathcal{T}(X_\ell) \subseteq X_\ell$ if $\ell K \leq b.$ Observe that for functions $f_1, f_2 \in X_\ell$ and $\mathsf{x} \in \mathit{I}_{\ell}$, by hypothesized inequality (16) we have $|g(x, f_1(x)) - g(x, f_2(x))| \le M \rho_{\text{max}}(f_1, f_2)$ since $|y_1 - y_2| = |f(x_1) - f(x_2)| \le \rho_{\text{max}}(f_1, f_2)$. So by the linearity and monotonicity of integrals, we have

$$
|T(f_1)(x) - T(f_2)(x)| = \left| \int_{x_0}^x [g(t, f_1(t)) - g(t, f_2(t))] dt \right|
$$

\n
$$
\leq |x - x_0| M \rho_{\max}(f_1, f_2) \text{ by the previous inequality}
$$

\n
$$
\leq \ell M \rho_{\max}(f_1, f_2) \text{ since } x \in I_{\ell} = [x_0 - \ell, x_0 + \ell].
$$

This inequality, together with the inclusion $\, \mathcal{T}(X_\ell) \subseteq X_\ell$ if $\ell \mathcal{K} \leq b$, implies that $\mathcal{T}: X_{\ell} \rightarrow X_{\ell}$ is a contraction if $\ell \mathsf{K} \leq b$ and $\ell \mathsf{M} < 1.$

Theorem 10.3.C (continued 4)

Theorem 10.3.C. The Picard Local Existence Theorem.

Let $\mathcal O$ be an open subset of the plane $\mathbb R^2$ containing the point $(x_0,y_0).$ Suppose the function $g:\mathcal{O}\to\mathbb{R}^2$ is continuous and there is a positive number M for which the following Lipschitz property in the second variable holds uniformly with respect to the first variable:

$$
|g(x, y_1)-g(x, y_2)| \le M|y_1-y_2|
$$
 for all points (x, y_1) and (x, y_2) in \mathcal{O} . (16)

Then there is an open interval I containing x_0 on which the following differential equation has a unique solution:

$$
f'(x) = g(x, f(x)) \text{ for all } x \in I
$$

f(x₀) = y₀. (14)

Proof (continued). So we define $\ell = \min\{b/K, 1/(2M)\}\$. Then the Banach Contraction Principle applied to $\, \mathcal{T} : X_{\ell} \to X_{\ell}$ implies that $\, \mathcal{T}$ has a unique fixed point and, as described above, the integral equation (15) and the differential equation (14) each have a unique solution, as claimed.