Proposition 11.1 ### Real Analysis # Chapter 11. Topological Spaces: General Properties 11.1. Open Sets, Closed Sets, Bases, and Subbases—Proofs of Theorems if for each point $x \in E$ there is a neighborhood of x that is contained in E**Proposition 11.1.** A subset E of a topological space X is open if and only x that is contained in E. **Proof.** Let E be open. Then for each $x \in E$, E itself is a neighborhood of contained in E, say $x \in E_x$ where E_x is such a neighborhood. Then $E = \bigcup_{x \in E} E_x$ and so by property (iii), E is open. Let each point $x \in E$ be contained in a neighborhood of x that is | H.L. Regard + E.M. Pagorita | ANALYSIS | REAL | |-----------------------------|----------|------| | 11 | SIS | | ## Proposition 11.2 of X. Then \mathcal{B} is a base for a topology for X if and only if **Proposition 11.2.** For a nonempty set X, let \mathcal{B} be a collection of subsets - (i) \mathcal{B} covers X (that is, $X = \cup_{B \in \mathcal{B}} B$). - (ii) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there is a set $B \in \mathcal{B}$ for which $x \in B \subset B_1 \cap B_2$. subcollections of ${\cal B}$. The unique topology that has ${\cal B}$ as its base consists of ${\cal D}$ and unions of collection of sets in T , then we have that for all i , $\mathcal{O}_i = \cup B_{i,j}$ for some with \varnothing . Since $X=\cup_{B\in\mathcal{B}}B$ by (i), then $X\in\mathcal{T}$. If $\{\mathcal{O}_i\}\subset\mathcal{T}$ is any If $\mathcal{O}_1 \cap \mathcal{O}_2 = \varnothing$ then $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$ by the definition of \mathcal{T} . Define T to be the collection of unions of subcollections of $\mathcal B$ together **Proof.** Let collection \mathcal{B} of subsets of X satisfy properties (i) and (ii). $B_{i,j} \in \mathcal{B}$. So $\cup_i \mathcal{O}_i = \cup_{i,j} B_{i,j}$ and hence $\cup_i \mathcal{O}_i \in \mathcal{T}$. Finally, let $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{T}$. ## Proposition 11.2 (continued) $\mathcal{O}_1\cap\mathcal{O}_2=\cup_{\mathbf{x}\in\mathcal{O}_1\cap\mathcal{O}_2}B_{\mathbf{x}}$ and so $\mathcal{O}_1\cap\mathcal{O}_2\in\mathcal{T}$. Therefore, \mathcal{T} is a topology. **Proof** (continued). If $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, then $x \in \mathcal{B}_1 \subset \mathcal{O}_1$ and $x \in \mathcal{B}_2 \subset \mathcal{O}_2$ $x \in B_x \subset B_1 \cap B_2$. This holds for each $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, so \mathcal{B}). Then $x \in B_1 \cap B_2$ and so by (ii), there is $B_x \in \mathcal{B}$ with for some $B_1,B_2\in\mathcal{B}$ (since every element of $\mathcal T$ is a union of elements of some $B_x \in \mathcal{B}$ (where B_x exists by the definition of base of a topology). So contain all unions of subcollections of \mathcal{B} . In addition, if \mathcal{U} is an open set in property (ii) of the definition of topology, a topology generated by ${\mathcal B}$ must definition, a base for a topology is a collection of open sets, since by the topology generated by ${\cal B}$ is unique. the topology with $\mathcal B$ as a base, then (as argued above) $U=\cup_{x\in U}\mathcal B_x$ for $x \in \mathcal{B}_x \subset \mathcal{U}$ for some $\mathcal{B}_x \in \mathcal{B}$ and so \mathcal{B} is a base for topology \mathcal{T} . Since by Let $x \in X$ and let U be a neighborhood of x in T. Then, as above The converse holds by Problem 11.3 Real Analysis December 15, 2016 4 / 7 December 15, 2016 5 / 7 Real Analysis ## Proposition 11.3 **Proposition 11.3.** For E a subset of a topological space (X, \mathcal{T}) , its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of X containing E in the sense that if F is closed and $E \subseteq F$, then $\overline{E} \subseteq F$. **Proof.** The set \overline{E} is closed provided it contains all of its points of closure (that is, $\overline{(E)} = \overline{E}$). Let x be a point of closure of \overline{E} . Consider a neighborhood U_x of x. By the definition of "point of closure of \overline{E} ," there is a point $x' \in \overline{E} \cap U_x$. Since x' is a point of closure of E (because $x' \in \overline{E}$) and U_x is a neighborhood of x', then there is a point $x'' \in E \cap U_x$ (again, by the definition of closure). Therefore every neighborhood of x contains a point of E and hence $x \in \overline{E}$. So $\overline{(E)} \subset \overline{E}$ and, of course, $\overline{E} \subset \overline{(E)}$. So \overline{E} is closed. By the definition of "point of closure," if $A \subset B$ then $\overline{A} \subset \overline{B}$. So if F is closed and $E \subset F$ then $E \subset \overline{E} \subset \overline{F} = F$ and so \overline{E} is the smallest closed set containing E. December 15, 2016 ## Proposition 11.4 **Proposition 11.4.** A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed. **Proof.** Suppose E is open in X. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of x contained in E, but this neighborhood of x does not intersect $X \sim E$ and then x is not in the closure of $X \sim E$, a CONTRADICTION. So $x \notin E$. This $x \in X \sim E$ and so $\overline{X \sim E} = X \sim E$ and $X \sim E$ is closed. Suppose $X \sim E$ is closed. Let $x \in E$. Then $x \notin X \sim E$. Let U be any neighborhood of x. ASSUME U is not a subset of E. Then $U \cap (X \sim E) \neq \emptyset$ and it follows that $x \in \overline{X} \sim \overline{E}$. But since $X \sim E$ is closed, then $x \in \overline{X} \sim \overline{E} = C \sim E$, a CONTRADICTION. So the assumption that every neighborhood of x is not a subset of E is false. That is, some neighborhood of x is a subset of E and E is open. Real Analysis December 15, 2016 7 / 7