Real Analysis

Chapter 11. Topological Spaces: General Properties 11.1. Open Sets, Closed Sets, Bases, and Subbases—Proofs of Theorems

- 2 Proposition 11.2
- 3 Proposition 11.3

Proposition 11.1. A subset *E* of a topological space *X* is open if and only if for each point $x \in E$ there is a neighborhood of *x* that is contained in *E*.

Proof. Let *E* be open. Then for each $x \in E$, *E* itself is a neighborhood of *x* that is contained in *E*.

Proposition 11.1. A subset *E* of a topological space *X* is open if and only if for each point $x \in E$ there is a neighborhood of *x* that is contained in *E*.

Proof. Let *E* be open. Then for each $x \in E$, *E* itself is a neighborhood of *x* that is contained in *E*.

Let each point $x \in E$ be contained in a neighborhood of x that is contained in E, say $x \in E_x$ where E_x is such a neighborhood. Then $E = \bigcup_{x \in E} E_x$ and so by property (iii), E is open. **Proposition 11.1.** A subset *E* of a topological space *X* is open if and only if for each point $x \in E$ there is a neighborhood of *x* that is contained in *E*.

Proof. Let *E* be open. Then for each $x \in E$, *E* itself is a neighborhood of *x* that is contained in *E*.

Let each point $x \in E$ be contained in a neighborhood of x that is contained in E, say $x \in E_x$ where E_x is such a neighborhood. Then $E = \bigcup_{x \in E} E_x$ and so by property (iii), E is open.

Proposition 11.2. For a nonempty set X, let \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a base for a topology for X if and only if

The unique topology that has \mathcal{B} as its base consists of \varnothing and unions of subcollections of \mathcal{B} .

Proof. Let collection \mathcal{B} of subsets of X satisfy properties (i) and (ii). Define \mathcal{T} to be the collection of unions of subcollections of \mathcal{B} together with \emptyset .

Proposition 11.2. For a nonempty set X, let \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a base for a topology for X if and only if

The unique topology that has \mathcal{B} as its base consists of \varnothing and unions of subcollections of \mathcal{B} .

Proof. Let collection \mathcal{B} of subsets of X satisfy properties (i) and (ii). Define \mathcal{T} to be the collection of unions of subcollections of \mathcal{B} together with \emptyset . Since $X = \bigcup_{B \in \mathcal{B}} B$ by (i), then $X \in \mathcal{T}$. If $\{\mathcal{O}_i\} \subset \mathcal{T}$ is any collection of sets in \mathcal{T} , then we have that for all $i, \mathcal{O}_i = \bigcup_{B_{i,j}}$ for some $B_{i,j} \in \mathcal{B}$. So $\bigcup_i \mathcal{O}_i = \bigcup_{i,j} B_{i,j}$ and hence $\bigcup_i \mathcal{O}_i \in \mathcal{T}$.

Proposition 11.2. For a nonempty set X, let \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a base for a topology for X if and only if

The unique topology that has \mathcal{B} as its base consists of \varnothing and unions of subcollections of \mathcal{B} .

Proof. Let collection \mathcal{B} of subsets of X satisfy properties (i) and (ii). Define \mathcal{T} to be the collection of unions of subcollections of \mathcal{B} together with \emptyset . Since $X = \bigcup_{B \in \mathcal{B}} B$ by (i), then $X \in \mathcal{T}$. If $\{\mathcal{O}_i\} \subset \mathcal{T}$ is any collection of sets in \mathcal{T} , then we have that for all $i, \mathcal{O}_i = \bigcup_{B_{i,j}}$ for some $B_{i,j} \in \mathcal{B}$. So $\bigcup_i \mathcal{O}_i = \bigcup_{i,j} B_{i,j}$ and hence $\bigcup_i \mathcal{O}_i \in \mathcal{T}$. Finally, let $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{T}$. If $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$ then $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$ by the definition of \mathcal{T} .

Proposition 11.2. For a nonempty set X, let \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a base for a topology for X if and only if

The unique topology that has \mathcal{B} as its base consists of \varnothing and unions of subcollections of \mathcal{B} .

Proof. Let collection \mathcal{B} of subsets of X satisfy properties (i) and (ii). Define \mathcal{T} to be the collection of unions of subcollections of \mathcal{B} together with \varnothing . Since $X = \bigcup_{B \in \mathcal{B}} B$ by (i), then $X \in \mathcal{T}$. If $\{\mathcal{O}_i\} \subset \mathcal{T}$ is any collection of sets in \mathcal{T} , then we have that for all $i, \mathcal{O}_i = \bigcup_{B_{i,j}}$ for some $B_{i,j} \in \mathcal{B}$. So $\bigcup_i \mathcal{O}_i = \bigcup_{i,j} B_{i,j}$ and hence $\bigcup_i \mathcal{O}_i \in \mathcal{T}$. Finally, let $\mathcal{O}_1, \mathcal{O}_2 \in \mathcal{T}$. If $\mathcal{O}_1 \cap \mathcal{O}_2 = \varnothing$ then $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$ by the definition of \mathcal{T} .

Proof (continued). If $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, then $x \in B_1 \subset \mathcal{O}_1$ and $x \in B_2 \subset \mathcal{O}_2$ for some $B_1, B_2 \in \mathcal{B}$ (since every element of \mathcal{T} is a union of elements of \mathcal{B}). Then $x \in B_1 \cap B_2$ and so by (ii), there is $B_x \in \mathcal{B}$ with $x \in B_x \subset B_1 \cap B_2$.

Proof (continued). If $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, then $x \in B_1 \subset \mathcal{O}_1$ and $x \in B_2 \subset \mathcal{O}_2$ for some $B_1, B_2 \in \mathcal{B}$ (since every element of \mathcal{T} is a union of elements of \mathcal{B}). Then $x \in B_1 \cap B_2$ and so by (ii), there is $B_x \in \mathcal{B}$ with $x \in B_x \subset B_1 \cap B_2$. This holds for each $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, so $\mathcal{O}_1 \cap \mathcal{O}_2 = \bigcup_{x \in \mathcal{O}_1 \cap \mathcal{O}_2} B_x$ and so $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$. Therefore, \mathcal{T} is a topology.

Let $x \in X$ and let U be a neighborhood of x in \mathcal{T} . Then, as above, $x \in B_x \subset U$ for some $B_x \in \mathcal{B}$ and so \mathcal{B} is a base for topology \mathcal{T} . Since by definition, a base for a topology is a collection of open sets, since by property (ii) of the definition of topology, a topology generated by \mathcal{B} must contain all unions of subcollections of \mathcal{B} .

Proof (continued). If $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, then $x \in B_1 \subset \mathcal{O}_1$ and $x \in B_2 \subset \mathcal{O}_2$ for some $B_1, B_2 \in \mathcal{B}$ (since every element of \mathcal{T} is a union of elements of \mathcal{B}). Then $x \in B_1 \cap B_2$ and so by (ii), there is $B_x \in \mathcal{B}$ with $x \in B_x \subset B_1 \cap B_2$. This holds for each $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, so $\mathcal{O}_1 \cap \mathcal{O}_2 = \bigcup_{x \in \mathcal{O}_1 \cap \mathcal{O}_2} B_x$ and so $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$. Therefore, \mathcal{T} is a topology.

Let $x \in X$ and let U be a neighborhood of x in \mathcal{T} . Then, as above, $x \in B_x \subset U$ for some $B_x \in \mathcal{B}$ and so \mathcal{B} is a base for topology \mathcal{T} . Since by definition, a base for a topology is a collection of open sets, since by property (ii) of the definition of topology, a topology generated by \mathcal{B} must contain all unions of subcollections of \mathcal{B} . In addition, if U is an open set in the topology with \mathcal{B} as a base, then (as argued above) $U = \bigcup_{x \in U} B_x$ for some $B_x \in \mathcal{B}$ (where B_x exists by the definition of base of a topology). So the topology generated by \mathcal{B} is unique.

Proof (continued). If $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, then $x \in B_1 \subset \mathcal{O}_1$ and $x \in B_2 \subset \mathcal{O}_2$ for some $B_1, B_2 \in \mathcal{B}$ (since every element of \mathcal{T} is a union of elements of \mathcal{B}). Then $x \in B_1 \cap B_2$ and so by (ii), there is $B_x \in \mathcal{B}$ with $x \in B_x \subset B_1 \cap B_2$. This holds for each $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, so $\mathcal{O}_1 \cap \mathcal{O}_2 = \bigcup_{x \in \mathcal{O}_1 \cap \mathcal{O}_2} B_x$ and so $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$. Therefore, \mathcal{T} is a topology.

Let $x \in X$ and let U be a neighborhood of x in \mathcal{T} . Then, as above, $x \in B_x \subset U$ for some $B_x \in \mathcal{B}$ and so \mathcal{B} is a base for topology \mathcal{T} . Since by definition, a base for a topology is a collection of open sets, since by property (ii) of the definition of topology, a topology generated by \mathcal{B} must contain all unions of subcollections of \mathcal{B} . In addition, if U is an open set in the topology with \mathcal{B} as a base, then (as argued above) $U = \bigcup_{x \in U} B_x$ for some $B_x \in \mathcal{B}$ (where B_x exists by the definition of base of a topology). So the topology generated by \mathcal{B} is unique.

The converse holds by Problem 11.3

Proof (continued). If $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, then $x \in B_1 \subset \mathcal{O}_1$ and $x \in B_2 \subset \mathcal{O}_2$ for some $B_1, B_2 \in \mathcal{B}$ (since every element of \mathcal{T} is a union of elements of \mathcal{B}). Then $x \in B_1 \cap B_2$ and so by (ii), there is $B_x \in \mathcal{B}$ with $x \in B_x \subset B_1 \cap B_2$. This holds for each $x \in \mathcal{O}_1 \cap \mathcal{O}_2$, so $\mathcal{O}_1 \cap \mathcal{O}_2 = \bigcup_{x \in \mathcal{O}_1 \cap \mathcal{O}_2} B_x$ and so $\mathcal{O}_1 \cap \mathcal{O}_2 \in \mathcal{T}$. Therefore, \mathcal{T} is a topology.

Let $x \in X$ and let U be a neighborhood of x in \mathcal{T} . Then, as above, $x \in B_x \subset U$ for some $B_x \in \mathcal{B}$ and so \mathcal{B} is a base for topology \mathcal{T} . Since by definition, a base for a topology is a collection of open sets, since by property (ii) of the definition of topology, a topology generated by \mathcal{B} must contain all unions of subcollections of \mathcal{B} . In addition, if U is an open set in the topology with \mathcal{B} as a base, then (as argued above) $U = \bigcup_{x \in U} B_x$ for some $B_x \in \mathcal{B}$ (where B_x exists by the definition of base of a topology). So the topology generated by \mathcal{B} is unique.

The converse holds by Problem 11.3

Proposition 11.3. For *E* a subset of a topological space (X, \mathcal{T}) , its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of *X* containing *E* in the sense that if *F* is closed and $E \subseteq F$, then $\overline{E} \subseteq F$.

Proof. The set \overline{E} is closed provided it contains all of its points of closure (that is, $\overline{(\overline{E})} = \overline{E}$). Let x be a point of closure of \overline{E} . Consider a neighborhood U_x of x.

Proposition 11.3. For *E* a subset of a topological space (X, \mathcal{T}) , its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of *X* containing *E* in the sense that if *F* is closed and $E \subseteq F$, then $\overline{E} \subseteq F$.

Proof. The set \overline{E} is closed provided it contains all of its points of closure (that is, $\overline{(E)} = \overline{E}$). Let x be a point of closure of \overline{E} . Consider a neighborhood U_x of x. By the definition of "point of closure of \overline{E} ," there is a point $x' \in \overline{E} \cap U_x$. Since x' is a point of closure of E (because $x' \in \overline{E}$) and U_x is a neighborhood of x', then there is a point $x'' \in E \cap U_x$ (again, by the definition of closure). Therefore every neighborhood of x contains a point of E and hence $x \in \overline{E}$.

Proposition 11.3. For *E* a subset of a topological space (X, \mathcal{T}) , its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of *X* containing *E* in the sense that if *F* is closed and $E \subseteq F$, then $\overline{E} \subseteq F$.

Proof. The set \overline{E} is closed provided it contains all of its points of closure (that is, $\overline{(E)} = \overline{E}$). Let x be a point of closure of \overline{E} . Consider a neighborhood U_x of x. By the definition of "point of closure of \overline{E} ," there is a point $x' \in \overline{E} \cap U_x$. Since x' is a point of closure of E (because $x' \in \overline{E}$) and U_x is a neighborhood of x', then there is a point $x'' \in E \cap U_x$ (again, by the definition of closure). Therefore every neighborhood of x contains a point of E and hence $x \in \overline{E}$. So $\overline{(E)} \subset \overline{E}$ and, of course, $\overline{E} \subset \overline{(E)}$. So \overline{E} is closed.

Proposition 11.3. For *E* a subset of a topological space (X, \mathcal{T}) , its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of *X* containing *E* in the sense that if *F* is closed and $E \subseteq F$, then $\overline{E} \subseteq F$.

Proof. The set \overline{E} is closed provided it contains all of its points of closure (that is, $\overline{(\overline{E})} = \overline{E}$). Let x be a point of closure of \overline{E} . Consider a neighborhood U_x of x. By the definition of "point of closure of \overline{E} ," there is a point $x' \in \overline{E} \cap U_x$. Since x' is a point of closure of E (because $x' \in \overline{E}$) and U_x is a neighborhood of x', then there is a point $x'' \in E \cap U_x$ (again, by the definition of closure). Therefore every neighborhood of x contains a point of E and hence $x \in \overline{E}$. So $\overline{(\overline{E})} \subset \overline{E}$ and, of course, $\overline{E} \subset \overline{(\overline{E})}$. So \overline{E} is closed.

By the definition of "point of closure," if $A \subset B$ then $\overline{A} \subset \overline{B}$. So if F is closed and $E \subset F$ then $E \subset \overline{E} \subset \overline{F} = F$ and so \overline{E} is the smallest closed set containing E.

Proposition 11.3. For *E* a subset of a topological space (X, \mathcal{T}) , its closure \overline{E} is closed. Moreover, \overline{E} is the smallest closed subset of *X* containing *E* in the sense that if *F* is closed and $E \subseteq F$, then $\overline{E} \subseteq F$.

Proof. The set \overline{E} is closed provided it contains all of its points of closure (that is, $\overline{(E)} = \overline{E}$). Let x be a point of closure of \overline{E} . Consider a neighborhood U_x of x. By the definition of "point of closure of \overline{E} ," there is a point $x' \in \overline{E} \cap U_x$. Since x' is a point of closure of E (because $x' \in \overline{E}$) and U_x is a neighborhood of x', then there is a point $x'' \in E \cap U_x$ (again, by the definition of closure). Therefore every neighborhood of x contains a point of E and hence $x \in \overline{E}$. So $\overline{(E)} \subset \overline{E}$ and, of course, $\overline{E} \subset \overline{(E)}$. So \overline{E} is closed.

By the definition of "point of closure," if $A \subset B$ then $\overline{A} \subset \overline{B}$. So if F is closed and $E \subset F$ then $E \subset \overline{E} \subset \overline{F} = F$ and so \overline{E} is the smallest closed set containing E.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of *x* contained in *E*, but this neighborhood of *x* does not intersect $X \sim E$ and then *x* is not in the closure of $X \sim E$, a CONTRADICTION.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of *x* contained in *E*, but this neighborhood of *x* does not intersect $X \sim E$ and then *x* is not in the closure of $X \sim E$, a CONTRADICTION. So $x \notin E$. This $x \in X \sim E$ and so $\overline{X \sim E} = X \sim E$ and $X \sim E$ is closed.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of *x* contained in *E*, but this neighborhood of *x* does not intersect $X \sim E$ and then *x* is not in the closure of $X \sim E$, a CONTRADICTION. So $x \notin E$. This $x \in X \sim E$ and so $\overline{X \sim E} = X \sim E$ and $X \sim E$ is closed.

Suppose $X \sim E$ is closed. Let $x \in E$. Then $x \notin X \sim E$. Let U be any neighborhood of x.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of *x* contained in *E*, but this neighborhood of *x* does not intersect $X \sim E$ and then *x* is not in the closure of $X \sim E$, a CONTRADICTION. So $x \notin E$. This $x \in X \sim E$ and so $\overline{X \sim E} = X \sim E$ and $X \sim E$ is closed.

Suppose $X \sim E$ is closed. Let $x \in E$. Then $x \notin X \sim E$. Let U be any neighborhood of x. ASSUME U is not a subset of E. Then $U \cap (X \sim E) \neq \emptyset$ and it follows that $x \in \overline{X \sim E}$. But since $X \sim E$ is closed, then $x \in \overline{X \sim E} = C \sim E$, a CONTRADICTION.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of *x* contained in *E*, but this neighborhood of *x* does not intersect $X \sim E$ and then *x* is not in the closure of $X \sim E$, a CONTRADICTION. So $x \notin E$. This $x \in X \sim E$ and so $\overline{X \sim E} = X \sim E$ and $X \sim E$ is closed.

Suppose $X \sim E$ is closed. Let $x \in E$. Then $x \notin X \sim E$. Let U be any neighborhood of x. ASSUME U is not a subset of E. Then $U \cap (X \sim E) \neq \emptyset$ and it follows that $x \in \overline{X \sim E}$. But since $X \sim E$ is closed, then $x \in \overline{X \sim E} = C \sim E$, a CONTRADICTION. So the assumption that every neighborhood of x is not a subset of E is false. That is, some neighborhood of x is a subset of E and E is open.

Proposition 11.4. A subset of a topological space (X, \mathcal{T}) is open if and only if its complement in X is closed.

Proof. Suppose *E* is open in *X*. Let $x \in \overline{X \sim E}$. ASSUME $x \in E$. Then there is a neighborhood of *x* contained in *E*, but this neighborhood of *x* does not intersect $X \sim E$ and then *x* is not in the closure of $X \sim E$, a CONTRADICTION. So $x \notin E$. This $x \in X \sim E$ and so $\overline{X \sim E} = X \sim E$ and $X \sim E$ is closed.

Suppose $X \sim E$ is closed. Let $x \in E$. Then $x \notin X \sim E$. Let U be any neighborhood of x. ASSUME U is not a subset of E. Then $U \cap (X \sim E) \neq \emptyset$ and it follows that $x \in \overline{X \sim E}$. But since $X \sim E$ is closed, then $x \in \overline{X \sim E} = C \sim E$, a CONTRADICTION. So the assumption that every neighborhood of x is not a subset of E is false. That is, some neighborhood of x is a subset of E and E is open.