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Chapter 11. Topological Spaces: General Properties
11.1. Open Sets, Closed Sets, Bases, and Subbases—Proofs of Theorems
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Proposition 11.1

Proposition 11.1

Proposition 11.1. A subset E of a topological space X is open if and only
if for each point x ∈ E there is a neighborhood of x that is contained in E .

Proof. Let E be open. Then for each x ∈ E , E itself is a neighborhood of
x that is contained in E .

Let each point x ∈ E be contained in a neighborhood of x that is
contained in E , say x ∈ Ex where Ex is such a neighborhood. Then
E = ∪x∈EEx and so by property (iii), E is open.
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Proposition 11.2

Proposition 11.2

Proposition 11.2. For a nonempty set X , let B be a collection of subsets
of X . Then B is a base for a topology for X if and only if

(i) B covers X (that is, X = ∪B∈BB).

(ii) If B1,B2 ∈ B and x ∈ B1 ∩ B2, then there is a set B ∈ B for
which x ∈ B ⊂ B1 ∩ B2.

The unique topology that has B as its base consists of ∅ and unions of
subcollections of B.

Proof. Let collection B of subsets of X satisfy properties (i) and (ii).
Define T to be the collection of unions of subcollections of B together
with ∅.

Since X = ∪B∈BB by (i), then X ∈ T . If {Oi} ⊂ T is any
collection of sets in T , then we have that for all i , Oi = ∪Bi ,j for some
Bi ,j ∈ B. So ∪iOi = ∪i ,jBi ,j and hence ∪iOi ∈ T . Finally, let O1,O2 ∈ T .
If O1 ∩ O2 = ∅ then O1 ∩ O2 ∈ T by the definition of T .
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Proposition 11.2

Proposition 11.2 (continued)

Proof (continued). If x ∈ O1 ∩ O2, then x ∈ B1 ⊂ O1 and x ∈ B2 ⊂ O2

for some B1,B2 ∈ B (since every element of T is a union of elements of
B). Then x ∈ B1 ∩ B2 and so by (ii), there is Bx ∈ B with
x ∈ Bx ⊂ B1 ∩ B2.

This holds for each x ∈ O1 ∩ O2, so
O1 ∩ O2 = ∪x∈O1∩O2Bx and so O1 ∩ O2 ∈ T . Therefore, T is a topology.

Let x ∈ X and let U be a neighborhood of x in T . Then, as above,
x ∈ Bx ⊂ U for some Bx ∈ B and so B is a base for topology T . Since by
definition, a base for a topology is a collection of open sets, since by
property (ii) of the definition of topology, a topology generated by B must
contain all unions of subcollections of B. In addition, if U is an open set in
the topology with B as a base, then (as argued above) U = ∪x∈UBx for
some Bx ∈ B (where Bx exists by the definition of base of a topology). So
the topology generated by B is unique.

The converse holds by Problem 11.3
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Proposition 11.3

Proposition 11.3

Proposition 11.3. For E a subset of a topological space (X , T ), its
closure E is closed. Moreover, E is the smallest closed subset of X
containing E in the sense that if F is closed and E ⊆ F , then E ⊆ F .

Proof. The set E is closed provided it contains all of its points of closure

(that is, (E ) = E ). Let x be a point of closure of E . Consider a
neighborhood Ux of x .

By the definition of “point of closure of E ,” there
is a point x ′ ∈ E ∩ Ux . Since x ′ is a point of closure of E (because
x ′ ∈ E ) and Ux is a neighborhood of x ′, then there is a point x ′′ ∈ E ∩ Ux

(again, by the definition of closure). Therefore every neighborhood of x

contains a point of E and hence x ∈ E . So (E ) ⊂ E and, of course,

E ⊂ (E ). So E is closed.

By the definition of “point of closure,” if A ⊂ B then A ⊂ B. So if F is
closed and E ⊂ F then E ⊂ E ⊂ F = F and so E is the smallest closed
set containing E .
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Proposition 11.4

Proposition 11.4

Proposition 11.4. A subset of a topological space (X , T ) is open if and
only if its complement in X is closed.

Proof. Suppose E is open in X . Let x ∈ X ∼ E .

ASSUME x ∈ E . Then
there is a neighborhood of x contained in E , but this neighborhood of x
does not intersect X ∼ E and then x is not in the closure of X ∼ E , a
CONTRADICTION. So x 6∈ E . This x ∈ X ∼ E and so X ∼ E = X ∼ E
and X ∼ E is closed.

Suppose X ∼ E is closed. Let x ∈ E . Then x 6∈ X ∼ E . Let U be any
neighborhood of x . ASSUME U is not a subset of E . Then
U ∩ (X ∼ E ) 6= ∅ and it follows that x ∈ X ∼ E . But since X ∼ E is
closed, then x ∈ X ∼ E = C ∼ E , a CONTRADICTION. So the
assumption that every neighborhood of x is not a subset of E is false.
That is, some neighborhood of x is a subset of E and E is open.
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