Real Analysis

Chapter 11. Topological Spaces: General Properties 11.3. Countability and Separation—Proofs of Theorems

Real Analysis

Table of contents

Proposition 11.9. Let (X, \mathcal{T}) be a first countable topological space. For a subset E of X, a point $x \in X$ is a point of closure of E if and only if x is a limit point of a sequence in E. Therefore, a subset E of X is closed if and only if whenever a sequence in E converges to $x \in X$, the point xbelongs to E.

Proof. Suppose x is a limit point of a sequence $\{x_n\}$ in E. Let \mathcal{U} be an open set containing x. Then there is $N \in \mathbb{N}$ such that if $n \ge N$, then $x_n \in \mathcal{U}$. So \mathcal{U} contains a point in E and hence x is a point of closure of E.

Proposition 11.9. Let (X, \mathcal{T}) be a first countable topological space. For a subset E of X, a point $x \in X$ is a point of closure of E if and only if x is a limit point of a sequence in E. Therefore, a subset E of X is closed if and only if whenever a sequence in E converges to $x \in X$, the point xbelongs to E.

Proof. Suppose x is a limit point of a sequence $\{x_n\}$ in E. Let \mathcal{U} be an open set containing x. Then there is $N \in \mathbb{N}$ such that if $n \ge N$, then $x_n \in \mathcal{U}$. So \mathcal{U} contains a point in E and hence x is a point of closure of E.

Suppose x is a point of closure in E. Since (X, \mathcal{T}) is first countable, there is a base at x, say $\{B_i\}_{i=1}^{\infty}$. Define $C_n = \bigcap_{i=1}^n B_i$. Since $x \in B_i$ for all i then $C_n \neq \emptyset$ Also, each C_n is open.

Proposition 11.9. Let (X, \mathcal{T}) be a first countable topological space. For a subset E of X, a point $x \in X$ is a point of closure of E if and only if x is a limit point of a sequence in E. Therefore, a subset E of X is closed if and only if whenever a sequence in E converges to $x \in X$, the point xbelongs to E.

Proof. Suppose x is a limit point of a sequence $\{x_n\}$ in E. Let \mathcal{U} be an open set containing x. Then there is $N \in \mathbb{N}$ such that if $n \ge N$, then $x_n \in \mathcal{U}$. So \mathcal{U} contains a point in E and hence x is a point of closure of E.

Suppose x is a point of closure in E. Since (X, \mathcal{T}) is first countable, there is a base at x, say $\{B_i\}_{i=1}^{\infty}$. Define $C_n = \bigcap_{i=1}^n B_i$. Since $x \in B_i$ for all *i* then $C_n \neq \emptyset$ Also, each C_n is open. Choose $x_n \in C_n$ to create sequence $\{x_n\}$. Let \mathcal{U} be a neighborhood of x. Then $B_N \subset \mathcal{U}$ for some $N \in \mathbb{N}$ (by the definition of base at x). Notice that $C_n \subset B_N$ for all $n \ge N$. So $x_n \in \mathcal{U}$ for all $n \ge N$ and x is a limit of sequence $\{x_n\}$.

Proposition 11.9. Let (X, \mathcal{T}) be a first countable topological space. For a subset E of X, a point $x \in X$ is a point of closure of E if and only if x is a limit point of a sequence in E. Therefore, a subset E of X is closed if and only if whenever a sequence in E converges to $x \in X$, the point xbelongs to E.

Proof. Suppose x is a limit point of a sequence $\{x_n\}$ in E. Let \mathcal{U} be an open set containing x. Then there is $N \in \mathbb{N}$ such that if $n \ge N$, then $x_n \in \mathcal{U}$. So \mathcal{U} contains a point in E and hence x is a point of closure of E.

Suppose x is a point of closure in E. Since (X, \mathcal{T}) is first countable, there is a base at x, say $\{B_i\}_{i=1}^{\infty}$. Define $C_n = \bigcap_{i=1}^n B_i$. Since $x \in B_i$ for all *i* then $C_n \neq \emptyset$ Also, each C_n is open. Choose $x_n \in C_n$ to create sequence $\{x_n\}$. Let \mathcal{U} be a neighborhood of x. Then $B_N \subset \mathcal{U}$ for some $N \in \mathbb{N}$ (by the definition of base at x). Notice that $C_n \subset B_N$ for all $n \ge N$. So $x_n \in \mathcal{U}$ for all $n \ge N$ and x is a limit of sequence $\{x_n\}$.