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Proposition 11.9

Proposition 11.9. Let (X,7) be a first countable topological space. For
a subset E of X, a point x € X is a point of closure of E if and only if x is
a limit point of a sequence in E. Therefore, a subset E of X is closed if
and only if whenever a sequence in E converges to x € X, the point x

belongs to E.
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Proposition 11.9. Let (X,7) be a first countable topological space. For
a subset E of X, a point x € X is a point of closure of E if and only if x is
a limit point of a sequence in E. Therefore, a subset E of X is closed if
and only if whenever a sequence in E converges to x € X, the point x
belongs to E.

Proof. Suppose x is a limit point of a sequence {x,} in E. Let U be an
open set containing x. Then there is N € N such that if n > N, then
Xxp € U. So U contains a point in E and hence x is a point of closure of E.
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Proposition 11.9. Let (X,7) be a first countable topological space. For
a subset E of X, a point x € X is a point of closure of E if and only if x is
a limit point of a sequence in E. Therefore, a subset E of X is closed if
and only if whenever a sequence in E converges to x € X, the point x
belongs to E.

Proof. Suppose x is a limit point of a sequence {x,} in E. Let U be an
open set containing x. Then there is N € N such that if n > N, then
Xxp € U. So U contains a point in E and hence x is a point of closure of E.

Suppose x is a point of closure in E. Since (X, T) is first countable, there
is a base at x, say {B;}?°;. Define C, =N"_;B,. Since x € B; for all i
then C, # @ Also, each C, is open.
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Proposition 11.9. Let (X,7) be a first countable topological space. For
a subset E of X, a point x € X is a point of closure of E if and only if x is
a limit point of a sequence in E. Therefore, a subset E of X is closed if
and only if whenever a sequence in E converges to x € X, the point x
belongs to E.

Proof. Suppose x is a limit point of a sequence {x,} in E. Let U be an
open set containing x. Then there is N € N such that if n > N, then
Xxp € U. So U contains a point in E and hence x is a point of closure of E.

Suppose x is a point of closure in E. Since (X, T) is first countable, there
is a base at x, say {B;}?°;. Define C, =N"_;B,. Since x € B; for all i
then C, # @ Also, each C, is open. Choose x, € C, to create sequence
{xn}. Let U be a neighborhood of x. Then By C U for some N € N (by
the definition of base at x). Notice that C, C By for all n > N. So

Xn € U for all n > N and x is a limit of sequence {x,}. O
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