Real Analysis

Chapter 11. Topological Spaces: General Properties 11.4. Continuous Mappings Between Topological Spaces—Proofs

Real Analysis

Table of contents

Proposition 11.10. A mapping $f : X \to Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Proof. Suppose f is continuous. Let $\mathcal{O} \in S$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O})$. Let $x \in f^{-1}(\mathcal{O})$.

Proposition 11.10. A mapping $f : X \to Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Proof. Suppose f is continuous. Let $\mathcal{O} \in S$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O})$. Let $x \in f^{-1}(\mathcal{O})$. Then by the continuity of f at x there is a neighborhood of x that is mapped into \mathcal{O} . Therefore this neighborhood of x is contained in $f^{-1}(\mathcal{O})$. Hence $f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Proposition 11.10. A mapping $f : X \to Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Proof. Suppose f is continuous. Let $\mathcal{O} \in S$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O})$. Let $x \in f^{-1}(\mathcal{O})$. Then by the continuity of f at x there is a neighborhood of x that is mapped into \mathcal{O} . Therefore this neighborhood of x is contained in $f^{-1}(\mathcal{O})$. Hence $f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Conversely, if f^{-1} maps open sets to open sets, then for any neighborhood of $f(x_0)$, there is a neighborhood \mathcal{U} of x_0 for which $f(\mathcal{U}) \subset \mathcal{O}$; namely, $\mathcal{U} = f^{-1}(\mathcal{O})$. So f is continuous at x_0 .

Proposition 11.10. A mapping $f : X \to Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Proof. Suppose f is continuous. Let $\mathcal{O} \in S$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O})$. Let $x \in f^{-1}(\mathcal{O})$. Then by the continuity of f at x there is a neighborhood of x that is mapped into \mathcal{O} . Therefore this neighborhood of x is contained in $f^{-1}(\mathcal{O})$. Hence $f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Conversely, if f^{-1} maps open sets to open sets, then for any neighborhood of $f(x_0)$, there is a neighborhood \mathcal{U} of x_0 for which $f(\mathcal{U}) \subset \mathcal{O}$; namely, $\mathcal{U} = f^{-1}(\mathcal{O})$. So f is continuous at x_0 .

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by \mathcal{F} is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda} : X \to X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda} : X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X.

Real Analysis

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by \mathcal{F} is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda} : X \to X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda} : X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X. The weak topology includes $\mathcal{F} = \{f_{\alpha}^{-1}(\mathcal{O}_{\alpha}) \mid f_{\alpha} \in \mathcal{F}, \mathcal{O}_{\alpha} \text{ is open in } X_{\alpha}\}$ and so the weak topology, be definition, has all inverse images of open sets open. So each $f_{\lambda} : X \to X_{\lambda}$ is continuous in the weak topology.

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by \mathcal{F} is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda} : X \to X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda} : X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X. The weak topology includes $\mathcal{F} = \{f_{\alpha}^{-1}(\mathcal{O}_{\alpha}) \mid f_{\alpha} \in \mathcal{F}, \mathcal{O}_{\alpha} \text{ is open in } X_{\alpha}\}$ and so the weak topology, be definition, has all inverse images of open sets open. So each $f_{\lambda} : X \to X_{\lambda}$ is continuous in the weak topology. By definition, the weak topology has the fewest number of sets among all topologies with this property.

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by \mathcal{F} is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda} : X \to X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda} : X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X. The weak topology includes $\mathcal{F} = \{f_{\alpha}^{-1}(\mathcal{O}_{\alpha}) \mid f_{\alpha} \in \mathcal{F}, \mathcal{O}_{\alpha} \text{ is open in } X_{\alpha}\}$ and so the weak topology, be definition, has all inverse images of open sets open. So each $f_{\lambda} : X \to X_{\lambda}$ is continuous in the weak topology. By definition, the weak topology has the fewest number of sets among all topologies with this property.