Real Analysis

Chapter 11. Topological Spaces: General Properties 11.4. Continuous Mappings Between Topological Spaces—Proofs

Proposition 11.10. A mapping $f : X \rightarrow Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, \, f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Proof. Suppose f is continuous. Let $\mathcal{O} \in \mathcal{S}$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O}).$ Let $x\in f^{-1}(\mathcal{O}).$

Proposition 11.10. A mapping $f : X \rightarrow Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, \, f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Proof. Suppose f is continuous. Let $\mathcal{O} \in \mathcal{S}$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O}).$ Let $x\in f^{-1}(\mathcal{O}).$ Then by the continuity of f at x there is a neighborhood of x that is mapped into $\mathcal O.$ Therefore this neighborhood of x is contained in $f^{-1}(\mathcal O).$ Hence $f^{-1}(\mathcal{O}) \in \mathcal{T}$.

Proposition 11.10. A mapping $f : X \rightarrow Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, \, f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Proof. Suppose f is continuous. Let $\mathcal{O} \in \mathcal{S}$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O}).$ Let $\mathsf{x} \in f^{-1}(\mathcal{O}).$ Then by the continuity of f at x there is a neighborhood of x that is mapped into ${\cal O}$. Therefore this neighborhood of x is contained in $f^{-1}({\cal O})$. Hence $f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Conversely, if f^{-1} maps open sets to open sets, then for any neighborhood of $f(x_0)$, there is a neighborhood U of x_0 for which $f(U) \subset \mathcal{O}$; namely, $\mathcal{U}=f^{-1}(\mathcal{O}).$ So f is continuous at $x_0.$

Proposition 11.10. A mapping $f : X \rightarrow Y$ between topological spaces (X, \mathcal{T}) and (Y, \mathcal{S}) is continuous if and only if for any subset $\mathcal{O} \in \mathcal{S}$, its inverse image under $f, \, f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Proof. Suppose f is continuous. Let $\mathcal{O} \in \mathcal{S}$. By Proposition 11.1, to show that $f^{-1}(\mathcal{O})$ is open it suffices to show that each point in $f^{-1}(\mathcal{O})$ has a neighborhood that is contained in $f^{-1}(\mathcal{O}).$ Let $\mathsf{x} \in f^{-1}(\mathcal{O}).$ Then by the continuity of f at x there is a neighborhood of x that is mapped into ${\cal O}$. Therefore this neighborhood of x is contained in $f^{-1}({\cal O})$. Hence $f^{-1}(\mathcal{O}) \in \mathcal{T}.$

Conversely, if f^{-1} maps open sets to open sets, then for any neighborhood of $f(x_0)$, there is a neighborhood U of x_0 for which $f(U) \subset \mathcal{O}$; namely, $\mathcal{U}=f^{-1}(\mathcal{O}).$ So f is continuous at $x_0.$

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by $\mathcal F$ is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda}: X \rightarrow X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda}: X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X.

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by $\mathcal F$ is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda}: X \rightarrow X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda}: X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X. The weak topology includes $\mathcal{F}=\{f_\alpha^{-1}(\mathcal{O}_\alpha)\mid f_\alpha\in\mathcal{F},\mathcal{O}_\alpha$ is open in $X_\alpha\}$ and so the weak topology, be definition, has all inverse images of open sets open. So each $f_{\lambda}: X \to X_{\lambda}$ is continuous in the weak topology.

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by $\mathcal F$ is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda}: X \rightarrow X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda}: X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X. The weak topology includes $\mathcal{F}=\{f_\alpha^{-1}(\mathcal{O}_\alpha)\mid f_\alpha\in\mathcal{F},\mathcal{O}_\alpha$ is open in $X_\alpha\}$ and so the weak topology, be definition, has all inverse images of open sets open. So each $f_{\lambda}: X \to X_{\lambda}$ is continuous in the weak topology. By definition, the weak topology has the fewest number of sets among all topologies with this property.

Proposition 11.13. Let X be a nonempty set and $\mathcal{F} = \{f_{\lambda} : X \to X_{\lambda}\}_{\lambda \in \Lambda}$ a collection of mappings where each X_{λ} is a topological space. The weak topology for X induced by $\mathcal F$ is the topology on X that has the fewest number of sets among the topologies on X for which each mapping $f_{\lambda}: X \rightarrow X_{\lambda}$ is continuous.

Proof. By Proposition 11.10, for each $\lambda \in \Lambda$, $f_{\lambda}: X \to X_{\lambda}$ is continuous if and only if the inverse image under f_{λ} of each open set in X_{λ} is open in X. The weak topology includes $\mathcal{F}=\{f_\alpha^{-1}(\mathcal{O}_\alpha)\mid f_\alpha\in\mathcal{F},\mathcal{O}_\alpha$ is open in $X_\alpha\}$ and so the weak topology, be definition, has all inverse images of open sets open. So each $f_{\lambda}: X \to X_{\lambda}$ is continuous in the weak topology. By definition, the weak topology has the fewest number of sets among all topologies with this property.