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Real >3m_<mmm Proposition 11.14. A topological space (X,7) is compact if and only if

every collection of closed subsets of X that possesses the finite intersection
property has nonempty intersection.

Chapter 11. Topological Spaces: General Properties
11.5. Compact Topological Spaces—Proofs of Theorems Proof. Let {Ox}rch be an open cover of X. Define Cy = X ~ Oy. Then
each () is closed. Also, by DeMorgan's Laws,

X = UpenO, implies @ = Nyep G-

¥
Hrm.%»”—l_ - = Conversely, if {Cy}xen is a collection of closed sets and we define
}Z}MM r_ﬂ_m; O, = X ~ C,, then by DeMorgan's Laws,

I = NreaCy implies X = UyepO.

Suppose X is compact and let {Cy}aen be a collection of closed sets with
the finite intersection property. ASSUME Nyca €y = &. Define O, as
above.
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Proposition 11.14

Proposition 11.14 (continued) Proposition 11.15

Proof (continued). Then {O)}.cn is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U7 ;0;. So

N?_,C; = @, but this contradicts the fact that {Cy},ea has the finite
intersection property. So the assumption that Nycp C) = @ is false and it
must be that NxeaC\ # J. That is, every collection of closed sets with Proof. Let {O)}ren be an open cover of K with open sets in 7. Since
the finite intersection property has nonempty intersection. X ~ K is open in T, then {X ~ K} U {Ox}ea is an open cover of X.
Since X is compact, there is a finite subcover of X. This subcover of X is
also a cover of K. If X ~ K is included in the subcover of K, then it can
be omitted from the subcover of K, since it is disjoint from K. The
resulting subcover of K is a subset of the original cover of K and hence K
is compact. O

Proposition 11.15. A closed subset of a compact topological space
(X,T) is compact.

Suppose every collection of closed sets with the finite intersection property
has nonempty intersection. Let {Oy} cn be an open cover of X. ASSUME
X is not compact. Then no finite subcollection of {O)}aen is a cover of
X. Define C, = X ~ O,. Then any finite subcollection of {Cy}xen is
nonempty (and, of course, each C, is closed). So, by hypotheses,

NxenCy # . But then UyeaOy # X and {Ox}aen is not a cover of X, a
CONTRADICTION. So the assumption that X is not compact is false. [
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Proposition 11.16

Proposition 11.16. A compact subspace K of a Hausdorff topological
space (X, 7T) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let y € X ~ K. Since X is
Hausdorff, for each x € K there are disjoint neighborhoods O, and U, of
x and y respectively. Then {Oy}xck is an open cover of K. Since K is
compact, there is a finite subcover {Oy,, Ox,, ..., Ox, }. Define

N =N U,,. Then N is a neighborhood of y which is disjoint from each
Oy, Am_:nm Oy, and U, are disjoint). Hence N’ C X ~ K since the

{Ox }_; cover K. Since y € X ~ K is arbitrary, then X ~ K is open and

so K is closed. ]
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Proposition 11.17 (continued 1)

Proof (continued).
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Since for each neighborhood O of xg, there is an index N for which

B, C O for n > N (by the definition of base at xg and the nestedness of
the B,'s), the subsequence {x,, } converges to xp. So X is sequentially
compact.
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Proposition 11.17

Proposition 11.17. Let (X,7) be a second countable topological space.
Then (X, 7) is compact if and only if it is sequentially compact.

Proof. Let (X,7) be compact. Let {x,} be a sequence in X. For each
n €N, let F, be the closure of {xx | Kk > n}. Then {F,} is a decreasing
sequence of nonempty closed sets. So {F,} has the finite intersection
property. By Proposition 11.14, N72; F, # &, so choose xg € N5 ; F.
Since X is second countable, it is dn_aﬁ countable and so has a _ummm
{Bn}%2, for the topology at point xo. Without loss of generality we may
assume B,11 C B, (or else we could replace B, with Mk—_1Bn and this
then produces a base at x with this decreasing property). Since xo € F,
for all n € N, then xp is a point of closure of {xx | k > n} for all n € N.
So neighborhood B, of xg has nonempty intersection with {xx | kK > n} for
all n € N. So we can inductively choose x,, (where the sequence of
subscripts ny is strictly increasing) in By.
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Proposition 11.17 (continued 2)

Proof (continued). Suppose X is sequentially compact. Since X is
second countable, every open cover has a countable subcover (by the
definition of 2nd countable). So, to show that X is compact it suffices to
show that every countable open cover of X has a finite subcover. Let
{On}52, be such a cover. ASSUME there is no finite subcover. Then for
each n € N, there is an index m(n) > n for which O,y ~ (U, 0;) # @
(or else {O;}7_; is a finite subcover of X). So for mmnr neN, n:OOmm

Xn € Om(ny 2_ (U_;O;) . Then since X is sequentially compact, a
subsequence of ,ﬂxzw converges to some xp € X. But {O,}72; is an open
cover of X, so there is some Oy that is a neighborhood of xp. Therefore,
there are infinitely many indices n for which x, belongs to Op (these
terms being in the subsequence of {x,} which converges to xp). But by
the construction of {x,}, x, € On for n > N. So this CONTRADICTION
shows that the assumption that X is not compact is false. O
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Theorem 11.18 Proposition 11.20

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X,7) be compact and Hausdorff. Let F be a closed subset of
X and let point x € X ~ F. Since (X, 7) is Hausdorff, for each y € F
there are disjoint neighborhoods O, and U, of x and y, respectively. Then
{Uy}yeF is an open cover of F. But F is a closed subset of a compact
space and so by Proposition 11.15 is itself compact. So there is a finite
subcover {U,,,U,,,...,Uy,,} of F. Define N'=nN"_,0,,. So N is open
and F C N is disjoint from U?_;U,,, a neighborhood of F. Thus (X,7T) is
regular.

Let F and G be disjoint closed sets. Since (X, 7) is regular, for each

Proposition 11.20. The continuous image of a compact topological space
is compact.

Proof. Let f be a continuous mapping of (X,7) to (Y,S). Let {Ox}xen
be an open covering of f(X). Then since f is continuous, by Proposition

11.10, {f~1(Ox)}ren is an open cover of X. Since X is compact, there is
a finite subcover {f~1(0,,)}7_; of X. Then the finite collection {O,,}"_;

g € G there are disjoint V; and W, such that F C V; and g € W,. Then s a cover of £(X) and £(X) is compact. -
{Vg}gec is an open cover of F. By Proposition 11.15, F is compact and
so there is some finite {V,,}; subcover of F. Then (similar to above)
the open sets U™V, and N7, W, separates F and G. Therefore (X, T)
is normal. O
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Proposition 11.19

Corollary 11.21

Corollary 11.21 Proposition 11.19

Proposition 11.19. A continuous one to one mapping f of a compact

Corollary 11.21. A continuous real-valued function on a compact space (X, 7) onto a Hausdorff space Y is a homeomorphism.
topological space takes a maximum and minimum functional value.

Proof. Since f is given to be continuous, one to one, and onto then we

Proof. Let (X,7) be compact f : X — R be continuous. By Proposition need only show that £~ is continuous. This can be done by showing f

11.20, f(X) is a compact set of real numbers. So, by the Heine-Borel maps open sets to closed sets or, equivalently, f maps closed sets to closed

Theorem, f(X) is closed and bounded. So f attains a maximum and sets. Let F be a closed subset of X. Then F is compact by Proposition

minimum value (namely, sup f(X) = max f(X) and 11.15. By Proposition 11.20, f(F) is compact in (Y, S). Hence by

inf £(X) = min f(X)). u Proposition 11.16, since Y is Hausdorff, f(F) is closed. Therefore f~1 is
continuous and f is a homeomorphism. [



