Real Analysis

Chapter 11. Topological Spaces: General Properties 11.5. Compact Topological Spaces—Proofs of Theorems

Real Analysis

Table of contents

- Proposition 11.14
- Proposition 11.15
- 3 Proposition 11.16
- Proposition 11.17
- 5 Theorem 11.18
- 6 Proposition 11.20
- Corollary 11.21
- 8 Proposition 11.19

Proposition 11.14. A topological space (X, \mathcal{T}) is compact if and only if every collection of closed subsets of X that possesses the finite intersection property has nonempty intersection.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then each C_{λ} is closed. Also, by DeMorgan's Laws,

 $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ implies $\emptyset = \cap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$.

Real Analysis

Proposition 11.14. A topological space (X, \mathcal{T}) is compact if and only if every collection of closed subsets of X that possesses the finite intersection property has nonempty intersection.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then each C_{λ} is closed. Also, by DeMorgan's Laws,

 $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ implies $\emptyset = \cap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$.

Conversely, if $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is a collection of closed sets and we define $\mathcal{O}_{\lambda} = X \sim C_{\lambda}$, then by DeMorgan's Laws,

 $\emptyset = \cap_{\lambda \in \Lambda} C_{\lambda}$ implies $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$.

Proposition 11.14. A topological space (X, \mathcal{T}) is compact if and only if every collection of closed subsets of X that possesses the finite intersection property has nonempty intersection.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then each C_{λ} is closed. Also, by DeMorgan's Laws,

 $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ implies $\emptyset = \cap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$.

Conversely, if $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is a collection of closed sets and we define $\mathcal{O}_{\lambda} = X \sim C_{\lambda}$, then by DeMorgan's Laws,

$$\emptyset = \cap_{\lambda \in \Lambda} C_{\lambda}$$
 implies $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$.

Suppose X is compact and let $\{C_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of closed sets with the finite intersection property. ASSUME $\cap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$. Define \mathcal{O}_{λ} as above.

Proposition 11.14. A topological space (X, \mathcal{T}) is compact if and only if every collection of closed subsets of X that possesses the finite intersection property has nonempty intersection.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then each C_{λ} is closed. Also, by DeMorgan's Laws,

 $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ implies $\emptyset = \cap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$.

Conversely, if $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is a collection of closed sets and we define $\mathcal{O}_{\lambda} = X \sim C_{\lambda}$, then by DeMorgan's Laws,

$$\varnothing = \cap_{\lambda \in \Lambda} C_{\lambda}$$
 implies $X = \cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$.

Suppose X is compact and let $\{C_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of closed sets with the finite intersection property. ASSUME $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$. Define \mathcal{O}_{λ} as above.

Real Analysis

December 21, 2016

3 / 13

Proof (continued). Then $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, then for some $\lambda = 1, 2, ..., n$ we have $X \subseteq \bigcup_{i=1}^{n} \mathcal{O}_i$. So $\bigcap_{i=1}^{n} C_i = \emptyset$, but this contradicts the fact that $\{C_{\lambda}\}_{\lambda \in \Lambda}$ has the finite intersection property. So the assumption that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$ is false and it must be that $\bigcap_{\lambda \in \Lambda} C_{\lambda} \neq \emptyset$. That is, every collection of closed sets with the finite intersection property has nonempty intersection.

Proof (continued). Then $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, then for some $\lambda = 1, 2, ..., n$ we have $X \subseteq \bigcup_{i=1}^{n} \mathcal{O}_{i}$. So $\bigcap_{i=1}^{n} C_{i} = \emptyset$, but this contradicts the fact that $\{C_{\lambda}\}_{\lambda \in \Lambda}$ has the finite intersection property. So the assumption that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$ is false and it must be that $\bigcap_{\lambda \in \Lambda} C_{\lambda} \neq \emptyset$. That is, every collection of closed sets with the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property has nonempty intersection. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of X.

Proof (continued). Then $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, then for some $\lambda = 1, 2, ..., n$ we have $X \subseteq \bigcup_{i=1}^{n} \mathcal{O}_i$. So $\bigcap_{i=1}^{n} C_i = \emptyset$, but this contradicts the fact that $\{C_{\lambda}\}_{\lambda \in \Lambda}$ has the finite intersection property. So the assumption that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$ is false and it must be that $\bigcap_{\lambda \in \Lambda} C_{\lambda} \neq \emptyset$. That is, every collection of closed sets with the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property has nonempty intersection. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of X. ASSUME X is not compact. Then no finite subcollection of $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is a cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then any finite subcollection of $\{C_{\lambda}\}_{\lambda \in \Lambda}$ is nonempty (and, of course, each C_{λ} is closed).

Proof (continued). Then $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, then for some $\lambda = 1, 2, ..., n$ we have $X \subseteq \bigcup_{i=1}^{n} \mathcal{O}_i$. So $\bigcap_{i=1}^{n} C_i = \emptyset$, but this contradicts the fact that $\{C_{\lambda}\}_{\lambda \in \Lambda}$ has the finite intersection property. So the assumption that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$ is false and it must be that $\bigcap_{\lambda \in \Lambda} C_{\lambda} \neq \emptyset$. That is, every collection of closed sets with the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property has nonempty intersection. Let $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ be an open cover of X. ASSUME X is not compact. Then no finite subcollection of $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ is a cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then any finite subcollection of $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is nonempty (and, of course, each C_{λ} is closed). So, by hypotheses, $\bigcap_{\lambda\in\Lambda}C_{\lambda}\neq\emptyset$. But then $\bigcup_{\lambda\in\Lambda}\mathcal{O}_{\lambda}\neq X$ and $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ is not a cover of X, a CONTRADICTION.

Proof (continued). Then $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, then for some $\lambda = 1, 2, ..., n$ we have $X \subseteq \bigcup_{i=1}^{n} \mathcal{O}_i$. So $\bigcap_{i=1}^{n} C_i = \emptyset$, but this contradicts the fact that $\{C_{\lambda}\}_{\lambda \in \Lambda}$ has the finite intersection property. So the assumption that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$ is false and it must be that $\bigcap_{\lambda \in \Lambda} C_{\lambda} \neq \emptyset$. That is, every collection of closed sets with the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property has nonempty intersection. Let $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ be an open cover of X. ASSUME X is not compact. Then no finite subcollection of $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ is a cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then any finite subcollection of $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is nonempty (and, of course, each C_{λ} is closed). So, by hypotheses, $\bigcap_{\lambda\in\Lambda}C_{\lambda}\neq\emptyset$. But then $\bigcup_{\lambda\in\Lambda}\mathcal{O}_{\lambda}\neq X$ and $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ is not a cover of X, a CONTRADICTION. So the assumption that X is not compact is false.

Proof (continued). Then $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, then for some $\lambda = 1, 2, ..., n$ we have $X \subseteq \bigcup_{i=1}^{n} \mathcal{O}_i$. So $\bigcap_{i=1}^{n} C_i = \emptyset$, but this contradicts the fact that $\{C_{\lambda}\}_{\lambda \in \Lambda}$ has the finite intersection property. So the assumption that $\bigcap_{\lambda \in \Lambda} C_{\lambda} = \emptyset$ is false and it must be that $\bigcap_{\lambda \in \Lambda} C_{\lambda} \neq \emptyset$. That is, every collection of closed sets with the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property has nonempty intersection. Let $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ be an open cover of X. ASSUME X is not compact. Then no finite subcollection of $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ is a cover of X. Define $C_{\lambda} = X \sim \mathcal{O}_{\lambda}$. Then any finite subcollection of $\{C_{\lambda}\}_{\lambda\in\Lambda}$ is nonempty (and, of course, each C_{λ} is closed). So, by hypotheses, $\bigcap_{\lambda\in\Lambda}C_{\lambda}\neq\emptyset$. But then $\bigcup_{\lambda\in\Lambda}\mathcal{O}_{\lambda}\neq X$ and $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$ is not a cover of X, a CONTRADICTION. So the assumption that X is not compact is false. \Box

Proposition 11.15. A closed subset of a compact topological space (X, \mathcal{T}) is compact.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of K with open sets in \mathcal{T} . Since $X \sim K$ is open in \mathcal{T} , then $\{X \sim K\} \cup \{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X.

- **Proposition 11.15.** A closed subset of a compact topological space (X, \mathcal{T}) is compact.
- **Proof.** Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of K with open sets in \mathcal{T} . Since $X \sim K$ is open in \mathcal{T} , then $\{X \sim K\} \cup \{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, there is a finite subcover of X. This subcover of X is also a cover of K.

Proposition 11.15. A closed subset of a compact topological space (X, \mathcal{T}) is compact.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of K with open sets in \mathcal{T} . Since $X \sim K$ is open in \mathcal{T} , then $\{X \sim K\} \cup \{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, there is a finite subcover of X. This subcover of X is also a cover of K. If $X \sim K$ is included in the subcover of K, then it can be omitted from the subcover of K, since it is disjoint from K. The resulting subcover of K is a subset of the original cover of K and hence K is compact.

Real Analysis

Proposition 11.15. A closed subset of a compact topological space (X, \mathcal{T}) is compact.

Proof. Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of K with open sets in \mathcal{T} . Since $X \sim K$ is open in \mathcal{T} , then $\{X \sim K\} \cup \{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, there is a finite subcover of X. This subcover of X is also a cover of K. If $X \sim K$ is included in the subcover of K, then it can be omitted from the subcover of K, since it is disjoint from K. The resulting subcover of K is a subset of the original cover of K and hence K is compact.

Proposition 11.16. A compact subspace K of a Hausdorff topological space (X, \mathcal{T}) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let $y \in X \sim K$. Since X is Hausdorff, for each $x \in K$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_x of x and y respectively. Then $\{\mathcal{O}_x\}_{x \in K}$ is an open cover of K.

Proposition 11.16. A compact subspace K of a Hausdorff topological space (X, \mathcal{T}) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let $y \in X \sim K$. Since X is Hausdorff, for each $x \in K$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_x of x and y respectively. Then $\{\mathcal{O}_x\}_{x \in K}$ is an open cover of K. Since K is compact, there is a finite subcover $\{\mathcal{O}_{x_1}, \mathcal{O}_{x_2}, \ldots, \mathcal{O}_{x_n}\}$. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{U}_{x_i}$. Then \mathcal{N} is a neighborhood of y which is disjoint from each \mathcal{O}_{x_i} (since \mathcal{O}_{x_i} and \mathcal{U}_{x_i} are disjoint).

Proposition 11.16. A compact subspace K of a Hausdorff topological space (X, \mathcal{T}) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let $y \in X \sim K$. Since X is Hausdorff, for each $x \in K$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_x of x and y respectively. Then $\{\mathcal{O}_x\}_{x\in K}$ is an open cover of K. Since K is compact, there is a finite subcover $\{\mathcal{O}_{x_1}, \mathcal{O}_{x_2}, \ldots, \mathcal{O}_{x_n}\}$. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{U}_{x_i}$. Then \mathcal{N} is a neighborhood of y which is disjoint from each \mathcal{O}_{x_i} (since \mathcal{O}_{x_i} and \mathcal{U}_{x_i} are disjoint). Hence $\mathcal{N} \subset X \sim K$ since the $\{\mathcal{O}_{x_i}\}_{i=1}^n$ cover K. Since $y \in X \sim K$ is arbitrary, then $X \sim K$ is open and so K is closed.

Proposition 11.16. A compact subspace K of a Hausdorff topological space (X, \mathcal{T}) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let $y \in X \sim K$. Since X is Hausdorff, for each $x \in K$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_x of x and y respectively. Then $\{\mathcal{O}_x\}_{x\in K}$ is an open cover of K. Since K is compact, there is a finite subcover $\{\mathcal{O}_{x_1}, \mathcal{O}_{x_2}, \ldots, \mathcal{O}_{x_n}\}$. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{U}_{x_i}$. Then \mathcal{N} is a neighborhood of y which is disjoint from each \mathcal{O}_{x_i} (since \mathcal{O}_{x_i} and \mathcal{U}_{x_i} are disjoint). Hence $\mathcal{N} \subset X \sim K$ since the $\{\mathcal{O}_{x_i}\}_{i=1}^n$ cover K. Since $y \in X \sim K$ is arbitrary, then $X \sim K$ is open and so K is closed.

Proposition 11.17. Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is compact if and only if it is sequentially compact.

Proof. Let (X, \mathcal{T}) be compact. Let $\{x_n\}$ be a sequence in X. For each $n \in \mathbb{N}$, let F_n be the closure of $\{x_k \mid k \ge n\}$. Then $\{F_n\}$ is a decreasing sequence of nonempty closed sets. So $\{F_n\}$ has the finite intersection property.

Proposition 11.17. Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is compact if and only if it is sequentially compact.

Proof. Let (X, \mathcal{T}) be compact. Let $\{x_n\}$ be a sequence in X. For each $n \in \mathbb{N}$, let F_n be the closure of $\{x_k \mid k \ge n\}$. Then $\{F_n\}$ is a decreasing sequence of nonempty closed sets. So $\{F_n\}$ has the finite intersection property. By Proposition 11.14, $\bigcap_{n=1}^{\infty} F_n \ne \emptyset$, so choose $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Since X is second countable, it is first countable and so has a base $\{B_n\}_{n=1}^{\infty}$ for the topology at point x_0 . Without loss of generality we may assume $B_{n+1} \subset B_n$ (or else we could replace B_n with $\bigcap_{k=1}^n B_n$ and this then produces a base at x with this decreasing property). Since $x_0 \in F_n$ for all $n \in \mathbb{N}$, then x_0 is a point of closure of $\{x_k \mid k \ge n\}$ for all $n \in \mathbb{N}$.

Proposition 11.17. Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is compact if and only if it is sequentially compact.

Proof. Let (X, \mathcal{T}) be compact. Let $\{x_n\}$ be a sequence in X. For each $n \in \mathbb{N}$, let F_n be the closure of $\{x_k \mid k \geq n\}$. Then $\{F_n\}$ is a decreasing sequence of nonempty closed sets. So $\{F_n\}$ has the finite intersection property. By Proposition 11.14, $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$, so choose $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Since X is second countable, it is first countable and so has a base $\{B_n\}_{n=1}^{\infty}$ for the topology at point x_0 . Without loss of generality we may assume $B_{n+1} \subset B_n$ (or else we could replace B_n with $\bigcap_{k=1}^n B_n$ and this then produces a base at x with this decreasing property). Since $x_0 \in F_n$ for all $n \in \mathbb{N}$, then x_0 is a point of closure of $\{x_k \mid k \ge n\}$ for all $n \in \mathbb{N}$. So neighborhood B_n of x_0 has nonempty intersection with $\{x_k \mid k \ge n\}$ for all $n \in \mathbb{N}$. So we can inductively choose x_{n_k} (where the sequence of subscripts n_k is strictly increasing) in B_k .

Proposition 11.17. Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is compact if and only if it is sequentially compact.

Proof. Let (X, \mathcal{T}) be compact. Let $\{x_n\}$ be a sequence in X. For each $n \in \mathbb{N}$, let F_n be the closure of $\{x_k \mid k \geq n\}$. Then $\{F_n\}$ is a decreasing sequence of nonempty closed sets. So $\{F_n\}$ has the finite intersection property. By Proposition 11.14, $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$, so choose $x_0 \in \bigcap_{n=1}^{\infty} F_n$. Since X is second countable, it is first countable and so has a base $\{B_n\}_{n=1}^{\infty}$ for the topology at point x_0 . Without loss of generality we may assume $B_{n+1} \subset B_n$ (or else we could replace B_n with $\bigcap_{k=1}^n B_n$ and this then produces a base at x with this decreasing property). Since $x_0 \in F_n$ for all $n \in \mathbb{N}$, then x_0 is a point of closure of $\{x_k \mid k \ge n\}$ for all $n \in \mathbb{N}$. So neighborhood B_n of x_0 has nonempty intersection with $\{x_k \mid k \ge n\}$ for all $n \in \mathbb{N}$. So we can inductively choose $x_{n_{k}}$ (where the sequence of subscripts n_k is strictly increasing) in B_k .

Proof (continued).

Since for each neighborhood \mathcal{O} of x_0 , there is an index N for which $B_n \subset \mathcal{O}$ for $n \geq N$ (by the definition of base at x_0 and the nestedness of the B_n 's), the subsequence $\{x_{n_k}\}$ converges to x_0 . So X is sequentially compact.

Proof (continued).

Since for each neighborhood \mathcal{O} of x_0 , there is an index N for which $B_n \subset \mathcal{O}$ for $n \geq N$ (by the definition of base at x_0 and the nestedness of the B_n 's), the subsequence $\{x_{n_k}\}$ converges to x_0 . So X is sequentially compact.

Proof (continued). Suppose X is sequentially compact. Since X is second countable, every open cover has a countable subcover (by the definition of 2nd countable). So, to show that X is compact it suffices to show that every countable open cover of X has a finite subcover. Let $\{\mathcal{O}_n\}_{n=1}^{\infty}$ be such a cover. ASSUME there is no finite subcover. Then for each $n \in \mathbb{N}$, there is an index m(n) > n for which $\mathcal{O}_{m(n)} \sim (\bigcup_{i=1}^n \mathcal{O}_i) \neq \emptyset$ (or else $\{\mathcal{O}_i\}_{i=1}^n$ is a finite subcover of X). So for each $n \in \mathbb{N}$, choose $x_n \in \mathcal{O}_{m(n)} \sum (\bigcup_{i=1}^n \mathcal{O}_i)$. Then since X is sequentially compact, a subsequence of $\{x_n\}$ converges to some $x_0 \in X$.

Proof (continued). Suppose X is sequentially compact. Since X is second countable, every open cover has a countable subcover (by the definition of 2nd countable). So, to show that X is compact it suffices to show that every countable open cover of X has a finite subcover. Let $\{\mathcal{O}_n\}_{n=1}^{\infty}$ be such a cover. ASSUME there is no finite subcover. Then for each $n \in \mathbb{N}$, there is an index m(n) > n for which $\mathcal{O}_{m(n)} \sim (\bigcup_{i=1}^{n} \mathcal{O}_i) \neq \emptyset$ (or else $\{\mathcal{O}_i\}_{i=1}^n$ is a finite subcover of X). So for each $n \in \mathbb{N}$, choose $x_n \in \mathcal{O}_{m(n)} \sum \left(\bigcup_{i=1}^n \mathcal{O}_i \right)$. Then since X is sequentially compact, a subsequence of $\{x_n\}$ converges to some $x_0 \in X$. But $\{\mathcal{O}_n\}_{n=1}^{\infty}$ is an open cover of X, so there is some \mathcal{O}_N that is a neighborhood of x_0 . Therefore, there are infinitely many indices n for which x_n belongs to \mathcal{O}_N (these terms being in the subsequence of $\{x_n\}$ which converges to x_0). But by the construction of $\{x_n\}, x_n \notin \mathcal{O}_N$ for n > N.

Proof (continued). Suppose X is sequentially compact. Since X is second countable, every open cover has a countable subcover (by the definition of 2nd countable). So, to show that X is compact it suffices to show that every countable open cover of X has a finite subcover. Let $\{\mathcal{O}_n\}_{n=1}^{\infty}$ be such a cover. ASSUME there is no finite subcover. Then for each $n \in \mathbb{N}$, there is an index m(n) > n for which $\mathcal{O}_{m(n)} \sim (\bigcup_{i=1}^{n} \mathcal{O}_i) \neq \emptyset$ (or else $\{\mathcal{O}_i\}_{i=1}^n$ is a finite subcover of X). So for each $n \in \mathbb{N}$, choose $x_n \in \mathcal{O}_{m(n)} \sum \left(\bigcup_{i=1}^n \mathcal{O}_i \right)$. Then since X is sequentially compact, a subsequence of $\{x_n\}$ converges to some $x_0 \in X$. But $\{\mathcal{O}_n\}_{n=1}^{\infty}$ is an open cover of X, so there is some \mathcal{O}_N that is a neighborhood of x_0 . Therefore, there are infinitely many indices n for which x_n belongs to \mathcal{O}_N (these terms being in the subsequence of $\{x_n\}$ which converges to x_0). But by the construction of $\{x_n\}$, $x_n \notin \mathcal{O}_N$ for n > N. So this CONTRADICTION shows that the assumption that X is not compact is false.

Proof (continued). Suppose X is sequentially compact. Since X is second countable, every open cover has a countable subcover (by the definition of 2nd countable). So, to show that X is compact it suffices to show that every countable open cover of X has a finite subcover. Let $\{\mathcal{O}_n\}_{n=1}^{\infty}$ be such a cover. ASSUME there is no finite subcover. Then for each $n \in \mathbb{N}$, there is an index m(n) > n for which $\mathcal{O}_{m(n)} \sim (\bigcup_{i=1}^{n} \mathcal{O}_i) \neq \emptyset$ (or else $\{\mathcal{O}_i\}_{i=1}^n$ is a finite subcover of X). So for each $n \in \mathbb{N}$, choose $x_n \in \mathcal{O}_{m(n)} \sum \left(\bigcup_{i=1}^n \mathcal{O}_i \right)$. Then since X is sequentially compact, a subsequence of $\{x_n\}$ converges to some $x_0 \in X$. But $\{\mathcal{O}_n\}_{n=1}^{\infty}$ is an open cover of X, so there is some \mathcal{O}_N that is a neighborhood of x_0 . Therefore, there are infinitely many indices n for which x_n belongs to \mathcal{O}_N (these terms being in the subsequence of $\{x_n\}$ which converges to x_0). But by the construction of $\{x_n\}$, $x_n \notin \mathcal{O}_N$ for n > N. So this CONTRADICTION shows that the assumption that X is not compact is false.

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X, \mathcal{T}) be compact and Hausdorff. Let F be a closed subset of X and let point $x \in X \sim F$. Since (X, \mathcal{T}) is Hausdorff, for each $y \in F$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_y of x and y, respectively. Then $\{\mathcal{U}_y\}_{y\in F}$ is an open cover of F.

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X, \mathcal{T}) be compact and Hausdorff. Let F be a closed subset of X and let point $x \in X \sim F$. Since (X, \mathcal{T}) is Hausdorff, for each $y \in F$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_y of x and y, respectively. Then $\{\mathcal{U}_y\}_{y\in F}$ is an open cover of F. But F is a closed subset of a compact space and so by Proposition 11.15 is itself compact. So there is a finite subcover $\{\mathcal{U}_{y_1}, \mathcal{U}_{y_2}, \ldots, \mathcal{U}_{y_n}\}$ of F. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{O}_{y_i}$. So \mathcal{N} is open and $F \subset \mathcal{N}$ is disjoint from $\bigcup_{i=1}^n \mathcal{U}_{y_i}$, a neighborhood of F. Thus (X, \mathcal{T}) is regular.

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X, \mathcal{T}) be compact and Hausdorff. Let F be a closed subset of X and let point $x \in X \sim F$. Since (X, \mathcal{T}) is Hausdorff, for each $y \in F$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_y of x and y, respectively. Then $\{\mathcal{U}_y\}_{y\in F}$ is an open cover of F. But F is a closed subset of a compact space and so by Proposition 11.15 is itself compact. So there is a finite subcover $\{\mathcal{U}_{y_1}, \mathcal{U}_{y_2}, \ldots, \mathcal{U}_{y_n}\}$ of F. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{O}_{y_i}$. So \mathcal{N} is open and $F \subset \mathcal{N}$ is disjoint from $\bigcup_{i=1}^n \mathcal{U}_{y_i}$, a neighborhood of F. Thus (X, \mathcal{T}) is regular.

Let F and G be disjoint closed sets. Since (X, \mathcal{T}) is regular, for each $g \in G$ there are disjoint \mathcal{V}_g and \mathcal{W}_g such that $F \subset \mathcal{V}_g$ and $g \in \mathcal{W}_g$. Then $\{\mathcal{V}_g\}_{g \in G}$ is an open cover of F. By Proposition 11.15, F is compact and so there is some finite $\{\mathcal{V}_{g_i}\}_{i=1}^m$ subcover of F.

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X, \mathcal{T}) be compact and Hausdorff. Let F be a closed subset of X and let point $x \in X \sim F$. Since (X, \mathcal{T}) is Hausdorff, for each $y \in F$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_y of x and y, respectively. Then $\{\mathcal{U}_y\}_{y\in F}$ is an open cover of F. But F is a closed subset of a compact space and so by Proposition 11.15 is itself compact. So there is a finite subcover $\{\mathcal{U}_{y_1}, \mathcal{U}_{y_2}, \ldots, \mathcal{U}_{y_n}\}$ of F. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{O}_{y_i}$. So \mathcal{N} is open and $F \subset \mathcal{N}$ is disjoint from $\bigcup_{i=1}^n \mathcal{U}_{y_i}$, a neighborhood of F. Thus (X, \mathcal{T}) is regular.

Let F and G be disjoint closed sets. Since (X, \mathcal{T}) is regular, for each $g \in G$ there are disjoint \mathcal{V}_g and \mathcal{W}_g such that $F \subset \mathcal{V}_g$ and $g \in \mathcal{W}_g$. Then $\{\mathcal{V}_g\}_{g \in G}$ is an open cover of F. By Proposition 11.15, F is compact and so there is some finite $\{\mathcal{V}_{g_i}\}_{i=1}^m$ subcover of F. Then (similar to above) the open sets $\bigcup_{i=1}^m \mathcal{V}_{g_i}$ and $\bigcap_{i=1}^m \mathcal{W}_{g_i}$ separates F and G. Therefore (X, \mathcal{T}) is normal.

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X, \mathcal{T}) be compact and Hausdorff. Let F be a closed subset of X and let point $x \in X \sim F$. Since (X, \mathcal{T}) is Hausdorff, for each $y \in F$ there are disjoint neighborhoods \mathcal{O}_x and \mathcal{U}_y of x and y, respectively. Then $\{\mathcal{U}_y\}_{y\in F}$ is an open cover of F. But F is a closed subset of a compact space and so by Proposition 11.15 is itself compact. So there is a finite subcover $\{\mathcal{U}_{y_1}, \mathcal{U}_{y_2}, \ldots, \mathcal{U}_{y_n}\}$ of F. Define $\mathcal{N} = \bigcap_{i=1}^n \mathcal{O}_{y_i}$. So \mathcal{N} is open and $F \subset \mathcal{N}$ is disjoint from $\bigcup_{i=1}^n \mathcal{U}_{y_i}$, a neighborhood of F. Thus (X, \mathcal{T}) is regular.

Let F and G be disjoint closed sets. Since (X, \mathcal{T}) is regular, for each $g \in G$ there are disjoint \mathcal{V}_g and \mathcal{W}_g such that $F \subset \mathcal{V}_g$ and $g \in \mathcal{W}_g$. Then $\{\mathcal{V}_g\}_{g \in G}$ is an open cover of F. By Proposition 11.15, F is compact and so there is some finite $\{\mathcal{V}_{g_i}\}_{i=1}^m$ subcover of F. Then (similar to above) the open sets $\cup_{i=1}^m \mathcal{V}_{g_i}$ and $\bigcap_{i=1}^m \mathcal{W}_{g_i}$ separates F and G. Therefore (X, \mathcal{T}) is normal.

Proposition 11.20. The continuous image of a compact topological space is compact.

Proof. Let f be a continuous mapping of (X, \mathcal{T}) to (Y, \mathcal{S}) . Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open covering of f(X). Then since f is continuous, by Proposition 11.10, $\{f^{-1}(\mathcal{O}_{\lambda})\}_{\lambda \in \Lambda}$ is an open cover of X.

Proposition 11.20. The continuous image of a compact topological space is compact.

Proof. Let f be a continuous mapping of (X, \mathcal{T}) to (Y, \mathcal{S}) . Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open covering of f(X). Then since f is continuous, by Proposition 11.10, $\{f^{-1}(\mathcal{O}_{\lambda})\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, there is a finite subcover $\{f^{-1}(\mathcal{O}_{\lambda_i})\}_{i=1}^n$ of X. Then the finite collection $\{\mathcal{O}_{\lambda_i}\}_{i=1}^n$ is a cover of f(X) and f(X) is compact.

Proposition 11.20. The continuous image of a compact topological space is compact.

Proof. Let f be a continuous mapping of (X, \mathcal{T}) to (Y, \mathcal{S}) . Let $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$ be an open covering of f(X). Then since f is continuous, by Proposition 11.10, $\{f^{-1}(\mathcal{O}_{\lambda})\}_{\lambda \in \Lambda}$ is an open cover of X. Since X is compact, there is a finite subcover $\{f^{-1}(\mathcal{O}_{\lambda_i})\}_{i=1}^n$ of X. Then the finite collection $\{\mathcal{O}_{\lambda_i}\}_{i=1}^n$ is a cover of f(X) and f(X) is compact.

Corollary 11.21. A continuous real-valued function on a compact topological space takes a maximum and minimum functional value.

Proof. Let (X, \mathcal{T}) be compact $f : X \to \mathbb{R}$ be continuous. By Proposition 11.20, f(X) is a compact set of real numbers. So, by the Heine-Borel Theorem, f(X) is closed and bounded.

Real Analysis

Corollary 11.21. A continuous real-valued function on a compact topological space takes a maximum and minimum functional value.

Proof. Let (X, \mathcal{T}) be compact $f : X \to \mathbb{R}$ be continuous. By Proposition 11.20, f(X) is a compact set of real numbers. So, by the Heine-Borel Theorem, f(X) is closed and bounded. So f attains a maximum and minimum value (namely, $\sup f(X) = \max f(X)$ and $\inf f(X) = \min f(X)$).

Corollary 11.21. A continuous real-valued function on a compact topological space takes a maximum and minimum functional value.

Proof. Let (X, \mathcal{T}) be compact $f : X \to \mathbb{R}$ be continuous. By Proposition 11.20, f(X) is a compact set of real numbers. So, by the Heine-Borel Theorem, f(X) is closed and bounded. So f attains a maximum and minimum value (namely, $\sup f(X) = \max f(X)$ and $\inf f(X) = \min f(X)$).

Proposition 11.19. A continuous one to one mapping f of a compact space (X, \mathcal{T}) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we need only show that f^{-1} is continuous. This can be done by showing f maps open sets to closed sets or, equivalently, f maps closed sets to closed sets.

Proposition 11.19. A continuous one to one mapping f of a compact space (X, \mathcal{T}) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we need only show that f^{-1} is continuous. This can be done by showing f maps open sets to closed sets or, equivalently, f maps closed sets to closed sets. Let F be a closed subset of X. Then F is compact by Proposition 11.15. By Proposition 11.20, f(F) is compact in (Y, S). Hence by Proposition 11.16, since Y is Hausdorff, f(F) is closed.

Proposition 11.19. A continuous one to one mapping f of a compact space (X, \mathcal{T}) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we need only show that f^{-1} is continuous. This can be done by showing f maps open sets to closed sets or, equivalently, f maps closed sets to closed sets. Let F be a closed subset of X. Then F is compact by Proposition 11.15. By Proposition 11.20, f(F) is compact in (Y, S). Hence by Proposition 11.16, since Y is Hausdorff, f(F) is closed. Therefore f^{-1} is continuous and f is a homeomorphism.

Proposition 11.19. A continuous one to one mapping f of a compact space (X, \mathcal{T}) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we need only show that f^{-1} is continuous. This can be done by showing f maps open sets to closed sets or, equivalently, f maps closed sets to closed sets. Let F be a closed subset of X. Then F is compact by Proposition 11.15. By Proposition 11.20, f(F) is compact in (Y, S). Hence by Proposition 11.16, since Y is Hausdorff, f(F) is closed. Therefore f^{-1} is continuous and f is a homeomorphism.