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Proposition 11.14

Proposition 11.14

Proposition 11.14. A topological space (X , T ) is compact if and only if
every collection of closed subsets of X that possesses the finite intersection
property has nonempty intersection.

Proof. Let {Oλ}λ∈Λ be an open cover of X . Define Cλ = X ∼ Oλ. Then
each Cλ is closed. Also, by DeMorgan’s Laws,

X = ∪λ∈ΛOλ implies ∅ = ∩λ∈ΛCλ.

Conversely, if {Cλ}λ∈Λ is a collection of closed sets and we define
Oλ = X ∼ Cλ, then by DeMorgan’s Laws,

∅ = ∩λ∈ΛCλ implies X = ∪λ∈ΛOλ.

Suppose X is compact and let {Cλ}λ∈Λ be a collection of closed sets with
the finite intersection property. ASSUME ∩λ∈ΛCλ = ∅. Define Oλ as
above.
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Proposition 11.14

Proposition 11.14 (continued)

Proof (continued). Then {Oλ}λ∈Λ is an open cover of X . Since X is
compact, then for some λ = 1, 2, . . . , n we have X ⊆ ∪n

i=1Oi . So
∩n

i=1Ci = ∅, but this contradicts the fact that {Cλ}λ∈Λ has the finite
intersection property. So the assumption that ∩λ∈ΛCλ = ∅ is false and it
must be that ∩λ∈ΛCλ 6= ∅. That is, every collection of closed sets with
the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property
has nonempty intersection. Let {Oλ}λ∈Λ be an open cover of X . ASSUME
X is not compact. Then no finite subcollection of {Oλ}λ∈Λ is a cover of
X . Define Cλ = X ∼ Oλ. Then any finite subcollection of {Cλ}λ∈Λ is
nonempty (and, of course, each Cλ is closed). So, by hypotheses,
∩λ∈ΛCλ 6= ∅. But then ∪λ∈ΛOλ 6= X and {Oλ}λ∈Λ is not a cover of X , a
CONTRADICTION. So the assumption that X is not compact is false.
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Proposition 11.15

Proposition 11.15

Proposition 11.15. A closed subset of a compact topological space
(X , T ) is compact.

Proof. Let {Oλ}λ∈Λ be an open cover of K with open sets in T . Since
X ∼ K is open in T , then {X ∼ K} ∪ {Oλ}λ∈Λ is an open cover of X .

Since X is compact, there is a finite subcover of X . This subcover of X is
also a cover of K . If X ∼ K is included in the subcover of K , then it can
be omitted from the subcover of K , since it is disjoint from K . The
resulting subcover of K is a subset of the original cover of K and hence K
is compact.
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Proposition 11.16

Proposition 11.16

Proposition 11.16. A compact subspace K of a Hausdorff topological
space (X , T ) is a closed subset of K .

Proof. If K = X , then K is closed. Otherwise, let y ∈ X ∼ K . Since X is
Hausdorff, for each x ∈ K there are disjoint neighborhoods Ox and Ux of
x and y respectively. Then {Ox}x∈K is an open cover of K .

Since K is
compact, there is a finite subcover {Ox1 ,Ox2 , . . . ,Oxn}. Define
N = ∩n

i=1Uxi . Then N is a neighborhood of y which is disjoint from each
Oxi (since Oxi and Uxi are disjoint). Hence N ⊂ X ∼ K since the
{Oxi}n

i=1 cover K . Since y ∈ X ∼ K is arbitrary, then X ∼ K is open and
so K is closed.
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Proposition 11.17

Proposition 11.17

Proposition 11.17. Let (X , T ) be a second countable topological space.
Then (X , T ) is compact if and only if it is sequentially compact.

Proof. Let (X , T ) be compact. Let {xn} be a sequence in X . For each
n ∈ N, let Fn be the closure of {xk | k ≥ n}. Then {Fn} is a decreasing
sequence of nonempty closed sets. So {Fn} has the finite intersection
property.

By Proposition 11.14, ∩∞n=1Fn 6= ∅, so choose x0 ∈ ∩∞n=1Fn.
Since X is second countable, it is first countable and so has a base
{Bn}∞n=1 for the topology at point x0. Without loss of generality we may
assume Bn+1 ⊂ Bn (or else we could replace Bn with ∩n

k=1Bn and this
then produces a base at x with this decreasing property). Since x0 ∈ Fn

for all n ∈ N, then x0 is a point of closure of {xk | k ≥ n} for all n ∈ N.
So neighborhood Bn of x0 has nonempty intersection with {xk | k ≥ n} for
all n ∈ N. So we can inductively choose xnk

(where the sequence of
subscripts nk is strictly increasing) in Bk .
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Proposition 11.17

Proposition 11.17 (continued 1)

Proof (continued).

Since for each neighborhood O of x0, there is an index N for which
Bn ⊂ O for n ≥ N (by the definition of base at x0 and the nestedness of
the Bn’s), the subsequence {xnk

} converges to x0. So X is sequentially
compact.
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Proposition 11.17

Proposition 11.17 (continued 2)

Proof (continued). Suppose X is sequentially compact. Since X is
second countable, every open cover has a countable subcover (by the
definition of 2nd countable). So, to show that X is compact it suffices to
show that every countable open cover of X has a finite subcover. Let
{On}∞n=1 be such a cover. ASSUME there is no finite subcover. Then for
each n ∈ N, there is an index m(n) > n for which Om(n) ∼ (∪n

i=1Oi ) 6= ∅
(or else {Oi}n

i=1 is a finite subcover of X ). So for each n ∈ N, choose
xn ∈ Om(n)

∑
(∪n

i=1Oi ) . Then since X is sequentially compact, a
subsequence of {xn} converges to some x0 ∈ X .

But {On}∞n=1 is an open
cover of X , so there is some ON that is a neighborhood of x0. Therefore,
there are infinitely many indices n for which xn belongs to ON (these
terms being in the subsequence of {xn} which converges to x0). But by
the construction of {xn}, xn 6∈ ON for n > N. So this CONTRADICTION
shows that the assumption that X is not compact is false.
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Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X , T ) be compact and Hausdorff. Let F be a closed subset of
X and let point x ∈ X ∼ F . Since (X , T ) is Hausdorff, for each y ∈ F
there are disjoint neighborhoods Ox and Uy of x and y , respectively. Then
{Uy}y∈F is an open cover of F .

But F is a closed subset of a compact
space and so by Proposition 11.15 is itself compact. So there is a finite
subcover {Uy1 ,Uy2 , . . . ,Uyn} of F . Define N = ∩n

i=1Oyi . So N is open
and F ⊂ N is disjoint from ∪n

i=1Uyi , a neighborhood of F . Thus (X , T ) is
regular.
Let F and G be disjoint closed sets. Since (X , T ) is regular, for each
g ∈ G there are disjoint Vg and Wg such that F ⊂ Vg and g ∈ Wg . Then
{Vg}g∈G is an open cover of F . By Proposition 11.15, F is compact and
so there is some finite {Vgi}m

i=1 subcover of F . Then (similar to above)
the open sets ∪m

i=1Vgi and ∩m
i=1Wgi separates F and G . Therefore (X , T )

is normal.
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Proposition 11.20

Proposition 11.20. The continuous image of a compact topological space
is compact.

Proof. Let f be a continuous mapping of (X , T ) to (Y ,S). Let {Oλ}λ∈Λ

be an open covering of f (X ). Then since f is continuous, by Proposition
11.10, {f −1(Oλ)}λ∈Λ is an open cover of X .

Since X is compact, there is
a finite subcover {f −1(Oλi

)}n
i=1 of X . Then the finite collection {Oλi

}n
i=1

is a cover of f (X ) and f (X ) is compact.
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Corollary 11.21

Corollary 11.21. A continuous real-valued function on a compact
topological space takes a maximum and minimum functional value.

Proof. Let (X , T ) be compact f : X → R be continuous. By Proposition
11.20, f (X ) is a compact set of real numbers. So, by the Heine-Borel
Theorem, f (X ) is closed and bounded.

So f attains a maximum and
minimum value (namely, sup f (X ) = max f (X ) and
inf f (X ) = min f (X )).
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Proposition 11.19

Proposition 11.19. A continuous one to one mapping f of a compact
space (X , T ) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we
need only show that f −1 is continuous. This can be done by showing f
maps open sets to closed sets or, equivalently, f maps closed sets to closed
sets.

Let F be a closed subset of X . Then F is compact by Proposition
11.15. By Proposition 11.20, f (F ) is compact in (Y ,S). Hence by
Proposition 11.16, since Y is Hausdorff, f (F ) is closed. Therefore f −1 is
continuous and f is a homeomorphism.
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