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Proposition 11.14

Proposition 11.14. A topological space (X,7) is compact if and only if
every collection of closed subsets of X that possesses the finite intersection
property has nonempty intersection.
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Proposition 11.14

Proposition 11.14. A topological space (X,7) is compact if and only if
every collection of closed subsets of X that possesses the finite intersection
property has nonempty intersection.

Proof. Let {O)}rca be an open cover of X. Define C, = X ~ Oy. Then
each G, is closed. Also, by DeMorgan's Laws,

X = U,\e/\O)\ implies @ = ﬁ,\e/\c,\.
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Proposition 11.14. A topological space (X,7) is compact if and only if
every collection of closed subsets of X that possesses the finite intersection
property has nonempty intersection.

Proof. Let {O)}rca be an open cover of X. Define C, = X ~ Oy. Then
each G, is closed. Also, by DeMorgan's Laws,

X = U,\e/\O)\ implies @ = ﬁ,\e/\c,\.

Conversely, if {Cx}xen is a collection of closed sets and we define
Oy, = X ~ C,, then by DeMorgan's Laws,

@ = NxepCy, implies X = UyepOa.
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Proposition 11.14
Proposition 11.14. A topological space (X,7) is compact if and only if

every collection of closed subsets of X that possesses the finite intersection
property has nonempty intersection.

Proof. Let {O)}rca be an open cover of X. Define C, = X ~ Oy. Then
each G, is closed. Also, by DeMorgan's Laws,

X = U,\e/\O)\ implies @ = ﬁ,\e/\c,\.

Conversely, if {Cx}xen is a collection of closed sets and we define
Oy, = X ~ C,, then by DeMorgan's Laws,

@ = NxepCy, implies X = UyepOa.

Suppose X is compact and let {C)} e be a collection of closed sets with
the finite intersection property. ASSUME Nycp Gy = &. Define O), as
above.
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Proposition 11.14

Proposition 11.14 (continued)

Proof (continued). Then {O}xea is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U ;O;. So

7 ;G = @, but this contradicts the fact that {Cy} ca has the finite
intersection property.
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Proposition 11.14 (continued)

Proof (continued). Then {O}xea is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U ;O;. So

7 ;G = @, but this contradicts the fact that {Cy} ca has the finite
intersection property. So the assumption that Nycp C) = @ is false and it
must be that Nycp Cy # . That is, every collection of closed sets with
the finite intersection property has nonempty intersection.
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Proposition 11.14 (continued)

Proof (continued). Then {O}xea is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U ;O;. So

7 ;G = @, but this contradicts the fact that {Cy} ca has the finite
intersection property. So the assumption that Nycp C) = @ is false and it
must be that Nycp Cy # . That is, every collection of closed sets with
the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property
has nonempty intersection. Let {O)}xca be an open cover of X.
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Proposition 11.14 (continued)

Proof (continued). Then {O}xea is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U ;O;. So

7 ;G = @, but this contradicts the fact that {Cy} ca has the finite
intersection property. So the assumption that Nycp C) = @ is false and it
must be that Nycp Cy # . That is, every collection of closed sets with
the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property
has nonempty intersection. Let {O)} ca be an open cover of X. ASSUME
X is not compact. Then no finite subcollection of {O)}en is a cover of
X. Define Cy = X ~ O,. Then any finite subcollection of {Cy}xen is
nonempty (and, of course, each C, is closed).
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Proposition 11.14 (continued)

Proof (continued). Then {O}xea is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U ;O;. So

7 ;G = @, but this contradicts the fact that {Cy} ca has the finite
intersection property. So the assumption that Nycp C) = @ is false and it
must be that Nycp Cy # . That is, every collection of closed sets with
the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property
has nonempty intersection. Let {O)} ca be an open cover of X. ASSUME
X is not compact. Then no finite subcollection of {O)}en is a cover of
X. Define Cy = X ~ O,. Then any finite subcollection of {Cy}xen is
nonempty (and, of course, each C, is closed). So, by hypotheses,

MxeACx # @. But then UpepaOy # X and {O)}aen is not a cover of X, a
CONTRADICTION.
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Proposition 11.14 (continued)

Proof (continued). Then {O}xea is an open cover of X. Since X is
compact, then for some A =1,2,...,n we have X C U ;O;. So

7 ;G = @, but this contradicts the fact that {Cy} ca has the finite
intersection property. So the assumption that Nycp C) = @ is false and it
must be that Nycp Cy # . That is, every collection of closed sets with
the finite intersection property has nonempty intersection.

Suppose every collection of closed sets with the finite intersection property
has nonempty intersection. Let {O)} ca be an open cover of X. ASSUME
X is not compact. Then no finite subcollection of {O)}en is a cover of
X. Define Cy = X ~ O,. Then any finite subcollection of {Cy}xen is
nonempty (and, of course, each C, is closed). So, by hypotheses,

MxeACx # @. But then UpepaOy # X and {O)}aen is not a cover of X, a
CONTRADICTION. So the assumption that X is not compact is false. [
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Proposition 11.15

Proposition 11.15. A closed subset of a compact topological space
(X,T) is compact.
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Proposition 11.15

Proposition 11.15. A closed subset of a compact topological space
(X,T) is compact.

Proof. Let {O)},en be an open cover of K with open sets in 7. Since
X ~ K is open in 7, then {X ~ K} U{Ox}xen is an open cover of X.
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Proposition 11.15

Proposition 11.15. A closed subset of a compact topological space
(X,T) is compact.

Proof. Let {O)},en be an open cover of K with open sets in 7. Since
X ~ K is open in 7, then {X ~ K} U{Ox}xen is an open cover of X.
Since X is compact, there is a finite subcover of X. This subcover of X is

also a cover of K.

Real Analysis December 21, 2016 5 / 13



Proposition 11.15

Proposition 11.15. A closed subset of a compact topological space
(X,T) is compact.

Proof. Let {O)},en be an open cover of K with open sets in 7. Since

X ~ K is open in 7, then {X ~ K} U{Ox}xen is an open cover of X.
Since X is compact, there is a finite subcover of X. This subcover of X is
also a cover of K. If X ~ K is included in the subcover of K, then it can
be omitted from the subcover of K, since it is disjoint from K. The
resulting subcover of K is a subset of the original cover of K and hence K
is compact. []

Real Analysis December 21, 2016 5 / 13



Proposition 11.16

Proposition 11.16. A compact subspace K of a Hausdorff topological
space (X, 7) is a closed subset of K.
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Proposition 11.16

Proposition 11.16. A compact subspace K of a Hausdorff topological
space (X, 7) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let y € X ~ K. Since X is
Hausdorff, for each x € K there are disjoint neighborhoods O, and U, of
x and y respectively. Then {Oy}xck is an open cover of K.
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Proposition 11.16

Proposition 11.16. A compact subspace K of a Hausdorff topological
space (X, 7) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let y € X ~ K. Since X is
Hausdorff, for each x € K there are disjoint neighborhoods O, and U, of
x and y respectively. Then {Oy}xck is an open cover of K. Since K is
compact, there is a finite subcover {O,,, O,,, ..., Oy, }. Define

N =N U,,. Then N is a neighborhood of y which is disjoint from each
Oy, (since Oy, and Uy, are disjoint).
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Proposition 11.16

Proposition 11.16. A compact subspace K of a Hausdorff topological
space (X, 7) is a closed subset of K.

Proof. If K = X, then K is closed. Otherwise, let y € X ~ K. Since X is
Hausdorff, for each x € K there are disjoint neighborhoods O, and U, of
x and y respectively. Then {Oy}xck is an open cover of K. Since K is
compact, there is a finite subcover {O,,, O,,, ..., Oy, }. Define

N =N U,,. Then N is a neighborhood of y which is disjoint from each
Oy, (since Oy, and U, are disjoint). Hence N' C X ~ K since the
{0} cover K. Since y € X ~ K is arbitrary, then X ~ K is open and
so K is closed. O
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Proposition 11.17

Proposition 11.17. Let (X,7) be a second countable topological space.
Then (X, 7T) is compact if and only if it is sequentially compact.
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Proposition 11.17

Proposition 11.17. Let (X,7) be a second countable topological space.
Then (X, 7T) is compact if and only if it is sequentially compact.

Proof. Let (X,7) be compact. Let {x,} be a sequence in X. For each
n €N, let F, be the closure of {xx | k > n}. Then {F,} is a decreasing
sequence of nonempty closed sets. So {F,} has the finite intersection
property.
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Proposition 11.17

Proposition 11.17. Let (X,7) be a second countable topological space.
Then (X, 7T) is compact if and only if it is sequentially compact.

Proof. Let (X,7) be compact. Let {x,} be a sequence in X. For each
n €N, let F, be the closure of {xx | k > n}. Then {F,} is a decreasing
sequence of nonempty closed sets. So {F,} has the finite intersection
property. By Proposition 11.14, N7 F, # &, so choose xp € N7 Fp.
Since X is second countable, it is first countable and so has a base
{Bn}52 for the topology at point xo. Without loss of generality we may
assume Bpy1 C By, (or else we could replace B, with Nk—1Bn and this
then produces a base at x with this decreasing property). Since xo € F,
for all n € N, then xg is a point of closure of {x, | k > n} for all n € N.
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Proposition 11.17

Proposition 11.17. Let (X,7) be a second countable topological space.
Then (X, 7T) is compact if and only if it is sequentially compact.

Proof. Let (X,7) be compact. Let {x,} be a sequence in X. For each
n €N, let F, be the closure of {xx | k > n}. Then {F,} is a decreasing
sequence of nonempty closed sets. So {F,} has the finite intersection
property. By Proposition 11.14, N7 F, # &, so choose xp € N7 Fp.
Since X is second countable, it is first countable and so has a base
{Bn}52 for the topology at point xo. Without loss of generality we may
assume Bpy1 C By, (or else we could replace B, with Nk—1Bn and this
then produces a base at x with this decreasing property). Since xo € F,
for all n € N, then xg is a point of closure of {x, | k > n} for all n € N.
So neighborhood B, of xo has nonempty intersection with {xx | kK > n} for
all n € N. So we can inductively choose x,, (where the sequence of
subscripts ny is strictly increasing) in B.
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Proposition 11.17 (continued 1)

Proof (continued).
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Proposition 11.17 (continued 1)

Proof (continued).
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Since for each neighborhood O of xqg, there is an index N for which

B, C O for n > N (by the definition of base at xp and the nestedness of
the B,’s), the subsequence {xp, } converges to xp. So X is sequentially
compact.
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Proposition 11.17 (continued 2)

Proof (continued). Suppose X is sequentially compact. Since X is
second countable, every open cover has a countable subcover (by the
definition of 2nd countable). So, to show that X is compact it suffices to
show that every countable open cover of X has a finite subcover. Let

{On}52, be such a cover.
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Proposition 11.17 (continued 2)

Proof (continued). Suppose X is sequentially compact. Since X is
second countable, every open cover has a countable subcover (by the
definition of 2nd countable). So, to show that X is compact it suffices to
show that every countable open cover of X has a finite subcover. Let
{On}52, be such a cover. ASSUME there is no finite subcover. Then for
each n € N, there is an index m(n) > n for which O,y ~ (UL, 0;) # 9
(or else {O;}7_; is a finite subcover of X). So for each n € N, choose

Xn € Opm(ny 22 (U7Z1O;) . Then since X is sequentially compact, a
subsequence of {x,} converges to some xg € X.
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Proposition 11.17 (continued 2)

Proof (continued). Suppose X is sequentially compact. Since X is
second countable, every open cover has a countable subcover (by the
definition of 2nd countable). So, to show that X is compact it suffices to
show that every countable open cover of X has a finite subcover. Let
{On}52, be such a cover. ASSUME there is no finite subcover. Then for
each n € N, there is an index m(n) > n for which O,y ~ (UL, 0;) # 9
(or else {O;}7_; is a finite subcover of X). So for each n € N, choose

Xn € Opm(ny 22 (U7Z1O;) . Then since X is sequentially compact, a
subsequence of {x,} converges to some xo € X. But {O,}72; is an open
cover of X, so there is some Op that is a neighborhood of xy. Therefore,
there are infinitely many indices n for which x, belongs to Op (these
terms being in the subsequence of {x,} which converges to xp). But by
the construction of {x,}, x, & Op for n > N.
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Proposition 11.17 (continued 2)

Proof (continued). Suppose X is sequentially compact. Since X is
second countable, every open cover has a countable subcover (by the
definition of 2nd countable). So, to show that X is compact it suffices to
show that every countable open cover of X has a finite subcover. Let
{On}52, be such a cover. ASSUME there is no finite subcover. Then for
each n € N, there is an index m(n) > n for which O,y ~ (UL, 0;) # 9
(or else {O;}7_; is a finite subcover of X). So for each n € N, choose

Xn € Opm(ny 22 (U7Z1O;) . Then since X is sequentially compact, a
subsequence of {x,} converges to some xo € X. But {O,}72; is an open
cover of X, so there is some Op that is a neighborhood of xy. Therefore,
there are infinitely many indices n for which x, belongs to Op (these
terms being in the subsequence of {x,} which converges to xp). But by
the construction of {x,}, x, & On for n > N. So this CONTRADICTION
shows that the assumption that X is not compact is false. []
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Theorem 11.18

Theorem 11.18. A compact Hausdorff space is normal.
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Theorem 11.18

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X,7) be compact and Hausdorff. Let F be a closed subset of
X and let point x € X ~ F. Since (X, 7) is Hausdorff, for each y € F
there are disjoint neighborhoods O, and U, of x and y, respectively. Then
{Uy,}yeF is an open cover of F.
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Theorem 11.18

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X,7) be compact and Hausdorff. Let F be a closed subset of
X and let point x € X ~ F. Since (X, 7) is Hausdorff, for each y € F
there are disjoint neighborhoods O, and U, of x and y, respectively. Then
{Uy },cF is an open cover of F. But F is a closed subset of a compact
space and so by Proposition 11.15 is itself compact. So there is a finite
subcover {U,,,U,,,...,Uy,} of F. Define N'=n"_,0,,. So N is open
and F C N is disjoint from U?_;U,,, a neighborhood of F. Thus (X,7) is
regular.
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Theorem 11.18

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X,7) be compact and Hausdorff. Let F be a closed subset of
X and let point x € X ~ F. Since (X, 7) is Hausdorff, for each y € F
there are disjoint neighborhoods O, and U, of x and y, respectively. Then
{Uy },cF is an open cover of F. But F is a closed subset of a compact
space and so by Proposition 11.15 is itself compact. So there is a finite
subcover {U,,,U,,,...,Uy,} of F. Define N'=n"_,0,,. So N is open
and F C N is disjoint from U?_;U,,, a neighborhood of F. Thus (X,7) is
regular.

Let F and G be disjoint closed sets. Since (X, 7) is regular, for each

g € G there are disjoint Vg and W, such that F C Vg and g € W,. Then
{Vg}gea is an open cover of F. By Proposition 11.15, F is compact and
so there is some finite {V,, }; subcover of F.
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Theorem 11.18

Theorem 11.18. A compact Hausdorff space is normal.

Proof. Let (X,7) be compact and Hausdorff. Let F be a closed subset of
X and let point x € X ~ F. Since (X, 7) is Hausdorff, for each y € F
there are disjoint neighborhoods O, and U, of x and y, respectively. Then
{Uy },cF is an open cover of F. But F is a closed subset of a compact
space and so by Proposition 11.15 is itself compact. So there is a finite
subcover {U,,,U,,,...,Uy,} of F. Define N'=n"_,0,,. So N is open
and F C N is disjoint from U?_;U,,, a neighborhood of F. Thus (X,7) is
regular.

Let F and G be disjoint closed sets. Since (X, 7) is regular, for each

g € G there are disjoint Vg and W, such that F C Vg and g € W,. Then
{Vg}gea is an open cover of F. By Proposition 11.15, F is compact and
so there is some finite {V,, }; subcover of F. Then (similar to above)
the open sets U™ ; Vg and N7 ; WV, separates F and G. Therefore (X,7)
is normal. O
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Proposition 11.20

Proposition 11.20. The continuous image of a compact topological space
is compact.
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Proposition 11.20

Proposition 11.20. The continuous image of a compact topological space
is compact.

Proof. Let f be a continuous mapping of (X,7) to (Y,S). Let {Ox}xren
be an open covering of f(X). Then since f is continuous, by Proposition
11.10, {f71(Ox)}en is an open cover of X.
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Proposition 11.20

Proposition 11.20. The continuous image of a compact topological space
is compact.

Proof. Let f be a continuous mapping of (X,7) to (Y,S). Let {Ox}xren
be an open covering of f(X). Then since f is continuous, by Proposition

11.10, {f71(Ox)}ren is an open cover of X. Since X is compact, there is
a finite subcover {f~1(0,,)}"_; of X. Then the finite collection {O,,}"_;
is a cover of f(X) and f(X) is compact. O
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Corollary 11.21

Corollary 11.21. A continuous real-valued function on a compact
topological space takes a maximum and minimum functional value.
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Corollary 11.21

Corollary 11.21

Corollary 11.21. A continuous real-valued function on a compact
topological space takes a maximum and minimum functional value.

Proof. Let (X,7) be compact f : X — R be continuous. By Proposition
11.20, f(X) is a compact set of real numbers. So, by the Heine-Borel
Theorem, f(X) is closed and bounded.
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Corollary 11.21

Corollary 11.21. A continuous real-valued function on a compact
topological space takes a maximum and minimum functional value.

Proof. Let (X,7) be compact f : X — R be continuous. By Proposition
11.20, f(X) is a compact set of real numbers. So, by the Heine-Borel
Theorem, f(X) is closed and bounded. So f attains a maximum and
minimum value (namely, sup f(X) = max f(X) and

inf £(X) = min f(X)). O
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Proposition 11.19

Proposition 11.19. A continuous one to one mapping f of a compact
space (X, 7) onto a Hausdorff space Y is a homeomorphism.
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Proposition 11.19

Proposition 11.19. A continuous one to one mapping f of a compact
space (X, 7) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we
need only show that £~ is continuous. This can be done by showing f
maps open sets to closed sets or, equivalently, f maps closed sets to closed
sets.
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Proposition 11.19

Proposition 11.19. A continuous one to one mapping f of a compact
space (X, 7) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we
need only show that £~ is continuous. This can be done by showing f
maps open sets to closed sets or, equivalently, f maps closed sets to closed
sets. Let F be a closed subset of X. Then F is compact by Proposition
11.15. By Proposition 11.20, f(F) is compact in (Y,S). Hence by
Proposition 11.16, since Y is Hausdorff, f(F) is closed.
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Proposition 11.19

Proposition 11.19. A continuous one to one mapping f of a compact
space (X, 7) onto a Hausdorff space Y is a homeomorphism.

Proof. Since f is given to be continuous, one to one, and onto then we
need only show that £~ is continuous. This can be done by showing f
maps open sets to closed sets or, equivalently, f maps closed sets to closed
sets. Let F be a closed subset of X. Then F is compact by Proposition
11.15. By Proposition 11.20, f(F) is compact in (Y,S). Hence by
Proposition 11.16, since Y is Hausdorff, f(F) is closed. Therefore f~1is
continuous and f is a homeomorphism. O
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