Proposition 11.22

11.6. Connected Topological Spaces—Proofs of Theorems Chapter 11. Topological Spaces: General Properties

(X,T) to a topological space (Y,S). Then its image f(X) is connected. **Proposition 11.22.** Let f be a continuous mapping of a connected space

this pair $f^{-1}(\mathcal{O}_1)$, $f^{-1}(\mathcal{O}_2)$ is a separation of X, CONTRADICTING the f(X) is connected. hypothesis. So the assumption that f(X) is not connected is false, and Proposition 11.10) in X whose union is X (since $f(X)=\mathcal{O}_1\cup\mathcal{O}_2$). Thus (since $\mathcal{O}_1\cap\mathcal{O}_2=\varnothing$) nonempty (since f is onto f(X)) open sets (by \mathcal{O}_2 be a separation of f(X). Then $f^{-1}(\mathcal{O}_1)$ and $f^{-1}(\mathcal{O}_2)$ are disjoint topology inherited from Y. ASSUME f(X) is not connected. Let \mathcal{O}_1 and **Proof.** Consider the subspace of (Y, S) given by f(X) with the subspace

Proposition 11.23

property if and only if it is connected. **Proposition 11.23.** A topological space has the intermediate value

interval (or singleton) and by definition, (X,\mathcal{T}) has the intermediate value property. connected set of real numbers is an interval (or singleton) then f(X) is an continuous. Then by Proposition 11.22, $f(X) \subset \mathbb{R}$ is connected. Since a **Proof.** Let (X,T) be a connected topological space and let $f:X\to\mathbb{R}$ be

sets \mathcal{O}_1 and \mathcal{O}_2 such that $X = \mathcal{O}_1 \cup \mathcal{O}_2$. Define f on X as property then it is connected." We prove the contrapositive. Suppose The converse of the above is: "If (X,T) has the intermediate value (X,\mathcal{T}) is not connected. Then there is a pair of nonempty disjoint open

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathcal{O}_1 \\ 1 & \text{if } x \in \mathcal{O}_2. \end{cases}$$

Proposition 11.23 (continued)

property if and only if it is connected Proposition 11.23. A topological space has the intermediate value

intermediate value property. $f(X) = \{0,1\}$ is not an interval in ${\mathbb R}$ and so f does not have the $A \subset \mathbb{R}$ (namely, either \mathcal{O}_1 , \mathcal{O}_2 , or X). In particular, for any open $A \subset \mathbb{R}$ **Proof (continued).** Now $f^{-1}(A)$ is an open subset of X for every subset $f^{-1}(A)$ is open in X. So by Proposition 11.10, f is continuous. But