Real Analysis

Chapter 12. Topological Spaces: Three Fundamental Theorems
12.1. Urysohn's Lemma and the Tietze Extension Theorem—Proofs of
Theorems
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Lemma 12.2

Lemma 12.2 (continued)

Proof. This is O, for all A € Ay = {1/2}. Again, by Proposition 11.8,
with closed F and neighborhood U = Oy, of F there is open Oy /4 with

FCOyucC MH\# C Oy . With closed O/, and neighborhood U of O,
there is by Proposition 11.8 open O34 with @H\m C O3/ C Gw\p CU. So
we have

FC GH\\* C @u\p C GH\M ﬂ@im C @w\g - @w\h CcUu.

So the normally ascending collection {Oy}aep, is extended to normally
ascending collection {O)}xen,. We then proceed inductively to define for
each n € N, the normally ascending collection of open sets {O)}aen, -
Then US ;{Ox}xen, is the desired normally ascending collection of open

sets. L]
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Lemma 12.2

Lemma 12.2

Lemma 12.2. Let (X,7) be a normal topological space, F a closed
subset of X, and U a neighborhood of F. Then for any open, bounded
interval (a, b), there is a dense subset A of (a, b) and a normally ascending
collection of open subsets of X, {Ox}xea, for which

F C Oy, COy\CU forall X €A.

Proof. Without loss of generality, we take (a, b) = (0,1) (otherwise we
continuously map (a, b) to (0,1) with f(x) = (x — a)/(b — a) and then
apply the result we now prove). For the dense subset of (0,1) we choose
the set of dyadic rationals in (0, 1):

N={m/2" | mneN,1<m<2" -1}
Let
Ap={m/2" | meN,1<m<2"—-1}.
By Proposition 11.8, there is open Oy, for which F C Oy, C @tm cUu.
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Urysohn's Lemma

Urysohn's Lemma

Urysohn’s Lemma. Let A and B be disjoint closed subsets of a normal
topological space (X, 7). Then for any closed bounded interval of real
numbers [a, b], there is a continuous real-valued function f defined on X
that takes values in [a, b], while f =aon A and f = b on B.

Proof. By Lemma 12.2, with F = A and U = X \ B, we can choose a
dense subset A of (a, b) and a normally ascending collection of open
subsets of X, {Oy}aen, for which A C Oy C X\ B for all A € A. Define
the function f : X — [a, b] by setting f = b on X \ UyepO, and otherwise
setting f(x) = inf{\ € A | x € O)}. Since A C O, for all XA and A is dense
in (a, b), then f(A) = a. Since Oy C X\ B for all \, BN (UyenO)) =9
and so f = b on B. By Lemma 12.1, f is continuous on X. ]
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The Tietze Extension Theorem

The Tietze Extension Theorem

The Tietze Extension Theorem.

Let (X,7) be a normal topological space, F a closed subset of X, and f a
continuous real-valued function on F that takes values in the closed,
bounded interval [a, b]. Then f has a continuous extension to all of X that
also takes values in [a, b].

Proof. Since [a, b] and [—2, 2] are homeomorphic (consider
f:[a, b] — [—2,2] defined as f(x) = 4(x — a)/(b — a) — 2), we assume
without loss of generality that [a, b] = [-2,2].
We construct a sequence {g,} of continuous real-valued functions on X
with the following properties:

(1) For each n € N, |gn(x)| < (2/3)" on X, and

(2) foreachneN, |f —(g1+&+ -+ &) <(2/3)" on F.
With this sequence constructed, define for each n € N, the real-valued
function s, on X by sn(x) = >/ _; gk(x) for x € X. By property (1), we
see that for each x € X, the sequence {gn(x)} is a Cauchy sequence of
real numbers and hence a convergent sequence.

0
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The Tietze Extension Theorem

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any a > 0 and continuous function
h: F — R for which |h| < a on F, there is a continuous function
g : X — R such that

lg| <(2/3)aon X and |j — g| < (2/3)a on F.
We justify this claim by defining
A={x € F|h(x)<1(1/3)a} and B=x € F | h(x) > (1/3)a}.

Since h is continuous, then h~=1((—o0,1(1/3)a]) and h=1([(1/3)a, 00)) are
closed and so (since F ic closed) sets A and B are closed. Of course A and
B are disjoint. Therefore, by Urysohn’s Lemma, there is a continuous
real-valued function g on X for which |g| < (1/3)a on X,

g(A) = —(1/3)a, and g(B) = (1/3)a. Since |h| < a on F, then for x € A,
h(x) < —(1/3)aand so |h— g| < a—(1/3)a=(2/3)a on A; for x € B,
h(x) > (1/3)aand so |h—g| < a—(1/3)a=(2/3)a on B;
0 ]
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The Tietze Extension Theorem

The Tietze Extension Theorem (continued 1)

Proof (continued). So define g(x) = lim,_ sp(x) for each x € X.
Since each g, is continuous on X then, of course, each s, is continuous.
By property (1), {sn} converges to g uniformly on X (since

Y02 1(2/3)" = 2). Therefore g is continuous on X. By property (2), f is
also the (uniform) pointwise limit of {s,} on F, so f = g on F, Notice
that for each x € X

g(x) = Muw%xv < MU lgn(x) < MUAM\&: =2.
k=1 k=1 k=1

So g(x) € [-2,2] for all x € X. Therefore g is the desired continuous
extension of f to X. We now construct the sequence {g,}.
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The Tietze Extension Theorem

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.

Let (X,7) be a normal topological space, F a closed subset of X, and f a
continuous real-valued function on F that takes values in the closed,
bounded interval [a, b]. Then f has a continuous extension to all of X that
also takes values in [a, b].

Proof (continued). since by Urysohn's Lemma, g(x) is between —(1/3)a
and (1/3)a (thatis, |g(x)| < (1/3)a), then for all x ¢ AUB and x € F we
have |h(x) — g(x)| < (2/3)a. So |h —g| < (2/3)a on F. So function g
satisfies the claim. With a = 1, choose such a g denoted g — 1 with

lg1] <2/3 on X and f — g1| <2/3 on F. now iterate the above process
with h=f — g1 and a = 2/3 to find a continuous g» : X — R for which
lg2| <2/3 on X and |f — (g1 + &)| < (2/3)? on F. We can then
inductively construct the desired sequence {g,} which satisfies properties
(1) and (2). The result now follows. O
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem

The Urysohn Metrization Theorem.
Let (X,7) be a second countable topological space. Then (X,7) is
metrizable if and only if it is normal.

Proof. If (X,7) is metrizable then the result is a metric space. By
Proposition 11.7, every metric space is normal.

Now let (X,7) be a second countable and normal topological space. Let
{Un}nen be a countable base (of distinct sets) for topology (X, 7). Let
A C N x N be defined as

A={(n,m)eNxN|U, CUn}.

For each (n, m) € A we see that U, and X ~ U, are disjoint closed sets.
Since (X, T) is normal, Urysohn's Lemma there is a continuous real-valued
function f, ,, : X — [0, 1] for which f, , = 0 on U, and fo,m =1 on

X ~Unm.

0
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 2)

Proof (continued). So for all x,y € X we have

1
p(x,y) = M w=+3_mpsﬁxvl n,m(Y)]
(n,m)eA
1
S
(n,m)eA
n n n
1 1 1
= MMH+3+MMN+3+MMw+3+.
m=1 m=2 m=3
_ ! + L + 1 +
28 32
B HWU 1 1 1 2
= — |\A = — — [
M»HON* 21-1/4 3

So the series determining p(x, y) converges.

0 ]
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 1)

Proof (continued). For x,y € X, define the (alleged) metric

1
EAXL\VH MU M:+3_$:,3AXV| :L.:C\v_.
(n,m)EA

Notice that |fy m(x) — fam(y)| < 1 for all x,y € X. For n # m, we cannot
have both (n, m) and (m, n) in A (or else U, C U, and U, € U, in
which case U,, = Uy, which contradicts the fact that the sets in {Up,}nen
are distinct). So the elements of set A include AT MOST the following:

(1L,1), (1,2), (1,3), (1,4),
(2.2), (2,3), (2,4),
(3,3), (3,4),
(4,4),
0 ] Real Analysis December 30, 2016 11 / 15

The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 3)

Proof (continued). Now to show that p is in fact a metric. Of course,
p(x,y) = ply,x). Also, p(x,y) = 0 and p(x,x) = 0.

Claim 1. We claim p(x,y) = 0 implies x = y. We show the
contrapositive. Suppose x # y. Since(X,7) is normal (and hence, by
definition, Tychonoff) then {x} and {y} are closed sets by Proposition
11.6. Since (X, T) is normal, there is open Oy containing x and not
containing y. So there is some base set U, with x € U, and U, C Ox.
By Proposition 11.8, since (X, 7) is normal, there is open O € T such

that {x} C O C O CU,,. So there is a base set U, with x € U, and
U, CO. Then U, € O CUp. So frm(x) =0 and, since y € X ~ Up,
fom(y) = 1. Therefore, (n,m) € A and |f, m(x) — fom(y)| =1, so

p(x,y) # 0, and the claim holds.
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 4)
Proof (continued). Claim 2. For all x,y,z € X, we claim
p(x,z) < p(x,y) + p(y,z). For any (n,m) € A we have

_wzvsﬁxv —f)n,m(z)] = _m:vsﬁxv - PSC\V + m:,SC\V - mPSANV_
< _mssﬁxv - PSC\V_ + _wsscxv - PBANV_
by the Triangle Inequality on R,

p,2) = 2 garmlfun() — (@)

(n,m)eA
1
< MU Sntm ([f0,m(x) = fo,mW)] + [fa,m(y) — fo,m(2))
(n,m)eA
1
= MU Sntm [fn,m(x) — fam(y)]
(n,m)eA
1
+ > s | nm(y) = fam(2)| = p(x, y) + ply, 2).
(n,m)eA

The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 5)

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore p is a metric. We now need to show that topology 7 on X is
the same as the topology on X induced by metric p. To do so, we need to
show that for each x € X:

(i) If U, contains x, then there is an € > 0 for which
B,(x,€) C U,.

(ii) For each € > 0, there is a U, that contains x and
U, C By(x,¢).

It then follows that a set is open in one topology if and only if it is open in
the other topology. These two properties are verified in Problem 12.7. [
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