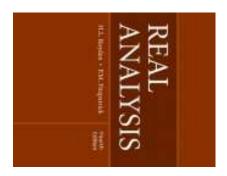
Real Analysis

Chapter 12. Topological Spaces: Three Fundamental Theorems

12.1. Urysohn's Lemma and the Tietze Extension Theorem—Proofs of Theorems



Lemma 12.2

collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$, for which interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending subset of X, and $\mathcal U$ a neighborhood of F. Then for any open, bounded **Lemma 12.2.** Let (X,T) be a normal topological space, F a closed

$$F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$$
 for all $\lambda \in \Lambda$.

apply the result we now prove). For the dense subset of (0,1) we choose the set of dyadic rationals in (0,1): continuously map (a, b) to (0, 1) with f(x) = (x - a)/(b - a) and then **Proof.** Without loss of generality, we take (a, b) = (0, 1) (otherwise we

$$\Lambda = \{ m/2^n \mid m, n \in \mathbb{N}, 1 \le m \le 2^n - 1 \}.$$

Let

$$\Lambda_n = \{ m/2^n \mid m \in \mathbb{N}, 1 \le m \le 2^n - 1 \}.$$

By Proposition 11.8, there is open $\mathcal{O}_{1/2}$ for which $F \subset \mathcal{O}_{1/2} \subset \overline{\mathcal{O}}_{1/2} \subset \mathcal{U}$.

3 / 15

Lemma 12.2 (continued)

we have there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\mathcal{O}_{1/2}\subset\mathcal{O}_{3/4}\subset\mathcal{O}_{3/4}\subset\mathcal{U}$. So with closed F and neighborhood $\mathcal{U}=\mathcal{O}_{1/2}$ of F there is open $\mathcal{O}_{1/4}$ with **Proof.** This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, $F\subset \mathcal{O}_{1/4}\subset)_{1/4}\subset \mathcal{O}_{1/2}.$ With closed $\overline{\mathcal{O}}_{1/2}$ and neighborhood $\mathcal U$ of $\overline{\mathcal{O}}_{1/2}$

$$F\subset \mathcal{O}_{1/4}\subset \overline{\mathcal{O}}_{1/4}\subset \mathcal{O}_{1/2}\subset \overline{\mathcal{O}}_{1/2}\subset \mathcal{O}_{3/4}\subset \overline{\mathcal{O}}_{3/4}\subset \mathcal{U}.$$

each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_n}$. So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{1}}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_2}$. We then proceed inductively to define for Then $\cup_{n=1}^\infty\{\mathcal{O}_\lambda\}_{\lambda\in\Lambda_n}$ is the desired normally ascending collection of open

Urysohn's Lemma

that takes values in [a, b], while f = a on A and f = b on Bnumbers [a, b], there is a continuous real-valued function f defined on Xtopological space (X, \mathcal{T}) . Then for any closed bounded interval of real **Urysohn's Lemma.** Let A and B be disjoint closed subsets of a normal

and so f=b on B. By Lemma 12.1, f is continuous on X. the function $f: X \to [a, b]$ by setting f = b on $X \setminus \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ and otherwise setting $f(x) = \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a,b), then f(A)=a. Since $\mathcal{O}_{\lambda}\subset X\setminus B$ for all λ , $B\cap (\cup_{\lambda\in\Lambda}\mathcal{O}_{\lambda})=\varnothing$ subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda}$, for which $A\subset\mathcal{O}_{\lambda}\subset X\setminus B$ for all $\lambda\in\Lambda$. Define dense subset Λ of (a, b) and a normally ascending collection of open **Proof.** By Lemma 12.2, with F = A and $\mathcal{U} = X \setminus B$, we can choose a

Real Analysis

The Lietze Extension Theorem (continued 1)

The Tietze Extension I heorem

The Tietze Extension Theorem

also takes values in [a, b]. bounded interval [a, b]. Then f has a continuous extension to all of X that continuous real-valued function on F that takes values in the closed Let (X,\mathcal{T}) be a normal topological space, F a closed subset of X, and f a

without loss of generality that [a, b] = [-2, 2]. $f: [a, b] \to [-2, 2]$ defined as f(x) = 4(x - a)/(b - a) - 2, we assume **Proof.** Since [a, b] and [-2, 2] are homeomorphic (consider

with the following properties: We construct a sequence $\{g_n\}$ of continuous real-valued functions on X

- (1) For each $n \in \mathbb{N}$, $|g_n(x)| \leq (2/3)^n$ on X, and
- (2) for each $n\in\mathbb{N},\ |f-ig(g_1+g_2+\cdots+g_nig)|\le (2/3)^n$ on F .

see that for each $x \in X$, the sequence $\{g_n(x)\}$ is a Cauchy sequence of function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$. By property (1), we With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued

real numbers and hence a convergent sequence.

that for each $x \in X$ also the (uniform) pointwise limit of $\{s_n\}$ on F, so f=g on F, Notice By property (1), $\{s_n\}$ converges to g uniformly on X (since Since each g_n is continuous on X then, of course, each s_n is continuous. **Proof (continued).** So define $g(x) = \lim_{n \to \infty} s_n(x)$ for each $x \in X$. $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous on X. By property (2), f is

$$g(x) = \left| \sum_{k=1}^{\infty} g_n(x) \right| \le \sum_{k=1}^{\infty} |g_n(x)| \le \sum_{k=1}^{\infty} (2/3)^n = 2.$$

extension of f to X. We now construct the sequence $\{g_n\}$. So $g(x) \in [-2,2]$ for all $x \in X$. Therefore g is the desired continuous

The Tietze Extension Theorem (continued 2)

 $g:X\to\mathbb{R}$ such that $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function **Proof (continued).** We claim that for any a > 0 and continuous function

$$|g| \leq (2/3)a$$
 on X and $|j-g| \leq (2/3)a$ on F .

We justify this claim by defining

$$A = \{x \in F \mid h(x) \le 1(1/3)a\}$$
 and $B = x \in F \mid h(x) \ge (1/3)a\}$.

g(A) = -(1/3)a, and g(B) = (1/3)a. Since |h| < a on F, then for $x \in A$, closed and so (since F ic closed) sets A and B are closed. Of course A and Since h is continuous, then $h^{-1}((-\infty,1(1/3)a])$ and $h^{-1}([(1/3)a,\infty))$ are $h(x) \ge (1/3)a$ and so $|h-g| \le a - (1/3)a = (2/3)a$ on B; $h(x) \le -(1/3)a$ and so $|h-g| \le a - (1/3)a = (2/3)a$ on A; for $x \in B$, real-valued function g on X for which $|g| \leq (1/3)a$ on X, are disjoint. Therefore, by Urysohn's Lemma, there is a continuous

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.

also takes values in [a, b]. bounded interval [a, b]. Then f has a continuous extension to all of X that continuous real-valued function on F that takes values in the closed Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a

with $h = f - g_1$ and a = 2/3 to find a continuous $g_2 : X \to \mathbb{R}$ for which satisfies the claim. With a=1, choose such a g denoted g-1 with have $|h(x) - g(x)| \le (2/3)a$. So $|h - g| \le (2/3)a$ on *F*. So function and (1/3)a (that is, $|g(x)| \le (1/3)a$), then for all $x \notin A \cup B$ and $x \in F$ we **Proof (continued).** since by Urysohn's Lemma, g(x) is between -(1/3)a(1) and (2). The result now follows. inductively construct the desired sequence $\{g_n\}$ which satisfies properties $|g_1| \leq 2/3$ on X and $f - g_1| \leq 2/3$ on F. now iterate the above process $|g_2| \leq 2/3$ on X and $|f - (g_1 + g_2)| \leq (2/3)^2$ on F. We can then

The Urysohn Metrization Theorem

The Urysohn Metrization Theorem

metrizable if and only if it is normal. Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is

Proposition 11.7, every metric space is normal. **Proof.** If (X, \mathcal{T}) is metrizable then the result is a metric space. By

 $A \subseteq \mathbb{N} \times \mathbb{N}$ be defined as Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X,\mathcal{T}) . Let

$$A = \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{\mathcal{U}}_n \subseteq \mathcal{U}_m\}.$$

function $f_{n,m}:X o [0,1]$ for which $f_{n,m}=0$ on \mathcal{U}_n and $f_{n,m}=1$ on Since (X, \mathcal{T}) is normal, Urysohn's Lemma there is a continuous real-valued For each $(n, m) \in A$ we see that \mathcal{U}_n and $X \sim \mathcal{U}_m$ are disjoint closed sets. $\mathcal{X} \sim \mathcal{U}_{\mathsf{m}}$

Real Analysis

The Urysohn Metrization Theorem (continued 1)

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.$$

are distinct). So the elements of set A include AT MOST the following: which case $\mathcal{U}_n = \mathcal{U}_m$ which contradicts the fact that the sets in $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ have both (n,m) and (m,n) in A (or else $\overline{\mathcal{U}}_n\subseteq\mathcal{U}_m$ and $\overline{\mathcal{U}}_m\subseteq\mathcal{U}_n$, in Notice that $|f_{n,m}(x) - f_{n,m}(y)| \le 1$ for all $x, y \in X$. For $n \ne m$, we cannot

$$(1,1), (1,2), (1,3), (1,4), \dots$$

 $(2,2), (2,3), (2,4), \dots$
 $(3,3), (3,4), \dots$

$$(3,3), (2,4), \dots$$

 $(3,3), (3,4), \dots$
 $(4,4), \dots$

December 30, 2016

The Urysohn Metrization Theorem (continued 3)

Proof (continued). So for all $x, y \in X$ we have

The Urysohn Metrization Theorem (continued 2)

$$\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|
\leq \sum_{(n,m)\in A} \frac{1}{2^{n+m}}
\leq \sum_{m=1}^{n} \frac{1}{2^{1+m}} + \sum_{m=2}^{n} \frac{1}{2^{2+m}} + \sum_{m=3}^{n} \frac{1}{2^{3+m}} + \cdots
= \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \cdots
= \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{4^{n}} = \frac{1}{2} \frac{1}{1-1/4} = \frac{2}{3}.$$

 $\frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{1}{2} \frac{1}{1 - 1/4} = \frac{2}{3}.$

 $\rho(x,y) = \rho(y,x)$. Also, $\rho(x,y) \ge 0$ and $\rho(x,x) = 0$ **Proof** (continued). Now to show that ρ is in fact a metric. Of course,

 $\mathcal{U}_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition contrapositive. Suppose $x \neq y$. Since(X, T) is normal (and hence, by $\rho(x,y) \neq 0$, and the claim holds. that $\{x\}\subseteq\mathcal{O}\subseteq\overline{\mathcal{O}}\subseteq\mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x\in\mathcal{U}_n$ and By Proposition 11.8, since (X, \mathcal{T}) is normal, there is open $\mathcal{O} \in \mathcal{T}$ such 11.6. Since (X,T) is normal, there is open \mathcal{O}_X containing X and not **Claim 1.** We claim $\rho(x,y) = 0$ implies x = y. We show the $f_{n,m}(y)=1.$ Therefore, $(n,m)\in A$ and $|f_{n,m}(x)-f_{n,m}(y)|=1$, so

So the series determining $\rho(x, y)$ converges.

The Urysohn Metrization Theorem (continued 4)

 $\rho(x,z) \le \rho(x,y) + \rho(y,z)$. For any $(n,m) \in A$ we have **Proof (continued). Claim 2.** For all $x, y, z \in X$, we claim

$$|f_{n,m}(x) - f(n)| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)|$$

 $\leq |f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|$

by the Triangle Inequality on \mathbb{R} ,

$$\rho(x,z) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(z)|$$

$$\leq \sum_{(n,m)\in A} \frac{1}{2^{n+m}} (|f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|$$

$$= \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|$$

$$+ \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(y) - f_{n,m}(z)| = \rho(x,y) + \rho(y,z).$$

The Urysohn Metrization Theorem (continued 5)

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

show that for each $x \in X$: the same as the topology on X induced by metric ρ . To do so, we need to Therefore ρ is a metric. We now need to show that topology ${\mathcal T}$ on X is

- (i) If \mathcal{U}_n contains x, then there is an $\varepsilon > 0$ for which $B_{\rho}(x,\varepsilon)\subseteq \mathcal{U}_{n}.$
- (ii) For each $\varepsilon > 0$, there is a \mathcal{U}_n that contains x and $\mathcal{U}_n \subseteq B_\rho(x,\varepsilon)$.

the other topology. These two properties are verified in Problem 12.7. It then follows that a set is open in one topology if and only if it is open in