Real Analysis

Chapter 12. Topological Spaces: Three Fundamental Theorems 12.1. Urysohn's Lemma and the Tietze Extension Theorem—Proofs of Theorems

Real Analysis

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and \mathcal{U} a neighborhood of F. Then for any open, bounded interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take (a, b) = (0, 1) (otherwise we continuously map (a, b) to (0, 1) with f(x) = (x - a)/(b - a) and then apply the result we now prove).

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and \mathcal{U} a neighborhood of F. Then for any open, bounded interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take (a, b) = (0, 1) (otherwise we continuously map (a, b) to (0, 1) with f(x) = (x - a)/(b - a) and then apply the result we now prove). For the dense subset of (0, 1) we choose the set of dyadic rationals in (0, 1):

$$\Lambda = \{ m/2^n \mid m, n \in \mathbb{N}, 1 \le m \le 2^n - 1 \}.$$

Let

$$\Lambda_n = \{m/2^n \mid m \in \mathbb{N}, 1 \le m \le 2^n - 1\}.$$

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and \mathcal{U} a neighborhood of F. Then for any open, bounded interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take (a, b) = (0, 1) (otherwise we continuously map (a, b) to (0, 1) with f(x) = (x - a)/(b - a) and then apply the result we now prove). For the dense subset of (0, 1) we choose the set of dyadic rationals in (0, 1):

$$\Lambda = \{m/2^n \mid m, n \in \mathbb{N}, 1 \le m \le 2^n - 1\}.$$

Let

$$\Lambda_n = \{m/2^n \mid m \in \mathbb{N}, 1 \le m \le 2^n - 1\}.$$

By Proposition 11.8, there is open $\mathcal{O}_{1/2}$ for which $F \subset \mathcal{O}_{1/2} \subset \overline{\mathcal{O}}_{1/2} \subset \mathcal{U}$.

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and \mathcal{U} a neighborhood of F. Then for any open, bounded interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take (a, b) = (0, 1) (otherwise we continuously map (a, b) to (0, 1) with f(x) = (x - a)/(b - a) and then apply the result we now prove). For the dense subset of (0, 1) we choose the set of dyadic rationals in (0, 1):

$$\Lambda = \{m/2^n \mid m, n \in \mathbb{N}, 1 \le m \le 2^n - 1\}.$$

Let

$$\Lambda_n = \{m/2^n \mid m \in \mathbb{N}, 1 \le m \le 2^n - 1\}.$$

By Proposition 11.8, there is open $\mathcal{O}_{1/2}$ for which $F \subset \mathcal{O}_{1/2} \subset \overline{\mathcal{O}}_{1/2} \subset \mathcal{U}$.

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed *F* and neighborhood $\mathcal{U} = \mathcal{O}_{1/2}$ of *F* there is open $\mathcal{O}_{1/4}$ with $F \subset \mathcal{O}_{1/4} \subset \overline{\mathcal{I}}_{1/2}$. With closed $\overline{\mathcal{O}}_{1/2}$ and neighborhood \mathcal{U} of $\overline{\mathcal{O}}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$F \subset \mathcal{O}_{1/4} \subset \overline{\mathcal{O}}_{1/4} \subset \mathcal{O}_{1/2} \subset \overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}.$$

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed *F* and neighborhood $\mathcal{U} = \mathcal{O}_{1/2}$ of *F* there is open $\mathcal{O}_{1/4}$ with $F \subset \mathcal{O}_{1/4} \subset \overline{\mathcal{I}}_{1/2}$. With closed $\overline{\mathcal{O}}_{1/2}$ and neighborhood \mathcal{U} of $\overline{\mathcal{O}}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$\mathsf{F}\subset \mathcal{O}_{1/4}\subset \overline{\mathcal{O}}_{1/4}\subset \mathcal{O}_{1/2}\subset \overline{\mathcal{O}}_{1/2}\subset \mathcal{O}_{3/4}\subset \overline{\mathcal{O}}_{3/4}\subset \mathcal{U}.$$

So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_2}$. We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_n}$.

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed *F* and neighborhood $\mathcal{U} = \mathcal{O}_{1/2}$ of *F* there is open $\mathcal{O}_{1/4}$ with $F \subset \mathcal{O}_{1/4} \subset \overline{\mathcal{I}}_{1/2}$. With closed $\overline{\mathcal{O}}_{1/2}$ and neighborhood \mathcal{U} of $\overline{\mathcal{O}}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$\mathsf{F}\subset \mathcal{O}_{1/4}\subset \overline{\mathcal{O}}_{1/4}\subset \mathcal{O}_{1/2}\subset \overline{\mathcal{O}}_{1/2}\subset \mathcal{O}_{3/4}\subset \overline{\mathcal{O}}_{3/4}\subset \mathcal{U}.$$

So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{1}}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{2}}$. We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{n}}$. Then $\bigcup_{n=1}^{\infty} \{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{n}}$ is the desired normally ascending collection of open sets.

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed *F* and neighborhood $\mathcal{U} = \mathcal{O}_{1/2}$ of *F* there is open $\mathcal{O}_{1/4}$ with $F \subset \mathcal{O}_{1/4} \subset \overline{\mathcal{I}}_{1/2}$. With closed $\overline{\mathcal{O}}_{1/2}$ and neighborhood \mathcal{U} of $\overline{\mathcal{O}}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$\mathsf{F}\subset \mathcal{O}_{1/4}\subset \overline{\mathcal{O}}_{1/4}\subset \mathcal{O}_{1/2}\subset \overline{\mathcal{O}}_{1/2}\subset \mathcal{O}_{3/4}\subset \overline{\mathcal{O}}_{3/4}\subset \mathcal{U}.$$

So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{1}}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{2}}$. We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{n}}$. Then $\bigcup_{n=1}^{\infty} \{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{n}}$ is the desired normally ascending collection of open sets.

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers [a, b], there is a continuous real-valued function f defined on X that takes values in [a, b], while f = a on A and f = b on B.

Proof. By Lemma 12.2, with F = A and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which $A \subset \mathcal{O}_{\lambda} \subset X \setminus B$ for all $\lambda \in \Lambda$.

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers [a, b], there is a continuous real-valued function f defined on X that takes values in [a, b], while f = a on A and f = b on B.

Proof. By Lemma 12.2, with F = A and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which $A \subset \mathcal{O}_{\lambda} \subset X \setminus B$ for all $\lambda \in \Lambda$. Define the function $f : X \to [a, b]$ by setting f = b on $X \setminus \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ and otherwise setting $f(x) = \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a, b), then f(A) = a.

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers [a, b], there is a continuous real-valued function f defined on X that takes values in [a, b], while f = a on A and f = b on B.

Proof. By Lemma 12.2, with F = A and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which $A \subset \mathcal{O}_{\lambda} \subset X \setminus B$ for all $\lambda \in \Lambda$. Define the function $f : X \to [a, b]$ by setting f = b on $X \setminus \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ and otherwise setting $f(x) = \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a, b), then f(A) = a. Since $\mathcal{O}_{\lambda} \subset X \setminus B$ for all λ , $B \cap (\bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}) = \emptyset$ and so f = b on B. By Lemma 12.1, f is continuous on X.

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, T). Then for any closed bounded interval of real numbers [a, b], there is a continuous real-valued function f defined on X that takes values in [a, b], while f = a on A and f = b on B.

Proof. By Lemma 12.2, with F = A and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which $A \subset \mathcal{O}_{\lambda} \subset X \setminus B$ for all $\lambda \in \Lambda$. Define the function $f : X \to [a, b]$ by setting f = b on $X \setminus \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$ and otherwise setting $f(x) = \inf\{\lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda}\}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a, b), then f(A) = a. Since $\mathcal{O}_{\lambda} \subset X \setminus B$ for all λ , $B \cap (\bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}) = \emptyset$ and so f = b on B. By Lemma 12.1, f is continuous on X.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and [-2, 2] are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as f(x) = 4(x - a)/(b - a) - 2), we assume without loss of generality that [a, b] = [-2, 2].

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and [-2, 2] are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as f(x) = 4(x - a)/(b - a) - 2), we assume without loss of generality that [a, b] = [-2, 2].

We construct a sequence $\{g_n\}$ of continuous real-valued functions on X with the following properties:

(1) For each $n \in \mathbb{N}$, $|g_n(x)| \le (2/3)^n$ on X, and

(2) for each $n \in \mathbb{N}$, $|f - (g_1 + g_2 + \dots + g_n)| \le (2/3)^n$ on F. With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and [-2, 2] are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as f(x) = 4(x - a)/(b - a) - 2), we assume without loss of generality that [a, b] = [-2, 2].

We construct a sequence $\{g_n\}$ of continuous real-valued functions on X with the following properties:

(1) For each $n \in \mathbb{N}$, $|g_n(x)| \leq (2/3)^n$ on X, and

(2) for each $n \in \mathbb{N}$, $|f - (g_1 + g_2 + \dots + g_n)| \le (2/3)^n$ on F. With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$. By property (1), we see that for each $x \in X$, the sequence $\{g_n(x)\}$ is a Cauchy sequence of real numbers and hence a convergent sequence.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and [-2, 2] are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as f(x) = 4(x - a)/(b - a) - 2), we assume without loss of generality that [a, b] = [-2, 2].

We construct a sequence $\{g_n\}$ of continuous real-valued functions on X with the following properties:

(1) For each $n \in \mathbb{N}$, $|g_n(x)| \leq (2/3)^n$ on X, and

(2) for each $n \in \mathbb{N}$, $|f - (g_1 + g_2 + \dots + g_n)| \le (2/3)^n$ on F. With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$. By property (1), we see that for each $x \in X$, the sequence $\{g_n(x)\}$ is a Cauchy sequence of real numbers and hence a convergent sequence.

(

The Tietze Extension Theorem (continued 1)

Proof (continued). So define $g(x) = \lim_{n\to\infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. By property (1), $\{s_n\}$ converges to g uniformly on X (since $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous on X. By property (2), f is also the (uniform) pointwise limit of $\{s_n\}$ on F, so f = g on F, Notice that for each $x \in X$

$$g(x) = \left|\sum_{k=1}^{\infty} g_n(x)\right| \le \sum_{k=1}^{\infty} |g_n(x)| \le \sum_{k=1}^{\infty} (2/3)^n = 2.$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X.

The Tietze Extension Theorem (continued 1)

Proof (continued). So define $g(x) = \lim_{n\to\infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. By property (1), $\{s_n\}$ converges to g uniformly on X (since $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous <u>on X</u>. By property (2), f is also the (uniform) pointwise limit of $\{s_n\}$ on F, so f = g on F, Notice that for each $x \in X$

$$g(x)=\left|\sum_{k=1}^{\infty}g_n(x)\right|\leq \sum_{k=1}^{\infty}|g_n(x)|\leq \sum_{k=1}^{\infty}(2/3)^n=2.$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X. We now construct the sequence $\{g_n\}$.

The Tietze Extension Theorem (continued 1)

Proof (continued). So define $g(x) = \lim_{n\to\infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. By property (1), $\{s_n\}$ converges to g uniformly on X (since $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous <u>on X</u>. By property (2), f is also the (uniform) pointwise limit of $\{s_n\}$ on F, so f = g on F, Notice that for each $x \in X$

$$g(x) = \left|\sum_{k=1}^{\infty} g_n(x)\right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X. We now construct the sequence $\{g_n\}$.

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any a > 0 and continuous function $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function $g: X \to \mathbb{R}$ such that

$$|g| \le (2/3)a$$
 on X and $|j - g| \le (2/3)a$ on F.

We justify this claim by defining

 $A = \{x \in F \mid h(x) \le 1(1/3)a\} \text{ and } B = x \in F \mid h(x) \ge (1/3)a\}.$

Since *h* is continuous, then $h^{-1}((-\infty, 1(1/3)a])$ and $h^{-1}([(1/3)a, \infty))$ are closed and so (since *F* ic closed) sets *A* and *B* are closed.

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any a > 0 and continuous function $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function $g: X \to \mathbb{R}$ such that

$$|g| \le (2/3)a$$
 on X and $|j - g| \le (2/3)a$ on F.

We justify this claim by defining

 $A = \{x \in F \mid h(x) \le 1(1/3)a\}$ and $B = x \in F \mid h(x) \ge (1/3)a\}.$

Since *h* is continuous, then $h^{-1}((-\infty, 1(1/3)a])$ and $h^{-1}([(1/3)a, \infty))$ are closed and so (since *F* ic closed) sets *A* and *B* are closed. Of course *A* and *B* are disjoint. Therefore, by Urysohn's Lemma, there is a continuous real-valued function *g* on *X* for which $|g| \leq (1/3)a$ on *X*, g(A) = -(1/3)a, and g(B) = (1/3)a. Since |h| < a on *F*, then for $x \in A$, $h(x) \leq -(1/3)a$ and so $|h - g| \leq a - (1/3)a = (2/3)a$ on *A*; for $x \in B$, $h(x) \geq (1/3)a$ and so $|h - g| \leq a - (1/3)a = (2/3)a$ on *B*;

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any a > 0 and continuous function $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function $g: X \to \mathbb{R}$ such that

$$|g| \le (2/3)a$$
 on X and $|j - g| \le (2/3)a$ on F.

We justify this claim by defining

$$A = \{x \in F \mid h(x) \le 1(1/3)a\}$$
 and $B = x \in F \mid h(x) \ge (1/3)a\}.$

Since *h* is continuous, then $h^{-1}((-\infty, 1(1/3)a])$ and $h^{-1}([(1/3)a, \infty))$ are closed and so (since *F* ic closed) sets *A* and *B* are closed. Of course *A* and *B* are disjoint. Therefore, by Urysohn's Lemma, there is a continuous real-valued function *g* on *X* for which $|g| \leq (1/3)a$ on *X*, g(A) = -(1/3)a, and g(B) = (1/3)a. Since |h| < a on *F*, then for $x \in A$, $h(x) \leq -(1/3)a$ and so $|h - g| \leq a - (1/3)a = (2/3)a$ on *A*; for $x \in B$, $h(x) \geq (1/3)a$ and so $|h - g| \leq a - (1/3)a = (2/3)a$ on *B*;

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof (continued). since by Urysohn's Lemma, g(x) is between -(1/3)a and (1/3)a (that is, $|g(x)| \le (1/3)a$), then for all $x \notin A \cup B$ and $x \in F$ we have $|h(x) - g(x)| \le (2/3)a$. So $|h - g| \le (2/3)a$ on F. So function g satisfies the claim. With a = 1, choose such a g denoted g - 1 with $|g_1| \le 2/3$ on X and $f - g_1| \le 2/3$ on F. now iterate the above process with $h = f - g_1$ and a = 2/3 to find a continuous $g_2 : X \to \mathbb{R}$ for which $|g_2| \le 2/3$ on X and $|f - (g_1 + g_2)| \le (2/3)^2$ on F. We can then inductively construct the desired sequence $\{g_n\}$ which satisfies properties (1) and (2). The result now follows.

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof (continued). since by Urysohn's Lemma, g(x) is between -(1/3)a and (1/3)a (that is, $|g(x)| \le (1/3)a$), then for all $x \notin A \cup B$ and $x \in F$ we have $|h(x) - g(x)| \le (2/3)a$. So $|h - g| \le (2/3)a$ on F. So function g satisfies the claim. With a = 1, choose such a g denoted g - 1 with $|g_1| \le 2/3$ on X and $f - g_1| \le 2/3$ on F. now iterate the above process with $h = f - g_1$ and a = 2/3 to find a continuous $g_2 : X \to \mathbb{R}$ for which $|g_2| \le 2/3$ on X and $|f - (g_1 + g_2)| \le (2/3)^2$ on F. We can then inductively construct the desired sequence $\{g_n\}$ which satisfies properties (1) and (2). The result now follows.

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X, \mathcal{T}) . Let $A \subseteq \mathbb{N} \times \mathbb{N}$ be defined as

$$A = \{ (n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{\mathcal{U}}_n \subseteq \mathcal{U}_m \}.$$

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X, \mathcal{T}) . Let $A \subseteq \mathbb{N} \times \mathbb{N}$ be defined as

$$A = \{(n,m) \in \mathbb{N} \times \mathbb{N} \mid \overline{\mathcal{U}}_n \subseteq \mathcal{U}_m\}.$$

For each $(n,m) \in A$ we see that $\overline{\mathcal{U}}_n$ and $X \sim \mathcal{U}_m$ are disjoint closed sets. Since (X,\mathcal{T}) is normal, Urysohn's Lemma there is a continuous real-valued function $f_{n,m} : X \to [0,1]$ for which $f_{n,m} = 0$ on $\overline{\mathcal{U}}_n$ and $f_{n,m} = 1$ on $X \sim \mathcal{U}_m$.

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X, \mathcal{T}) . Let $A \subseteq \mathbb{N} \times \mathbb{N}$ be defined as

$$A = \{ (n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{\mathcal{U}}_n \subseteq \mathcal{U}_m \}.$$

For each $(n,m) \in A$ we see that $\overline{\mathcal{U}}_n$ and $X \sim \mathcal{U}_m$ are disjoint closed sets. Since (X, \mathcal{T}) is normal, Urysohn's Lemma there is a continuous real-valued function $f_{n,m} : X \to [0,1]$ for which $f_{n,m} = 0$ on $\overline{\mathcal{U}}_n$ and $f_{n,m} = 1$ on $X \sim \mathcal{U}_m$.

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.$$

Notice that $|f_{n,m}(x) - f_{n,m}(y)| \leq 1$ for all $x, y \in X$. For $n \neq m$, we cannot have both (n, m) and (m, n) in A (or else $\overline{\mathcal{U}}_n \subseteq \mathcal{U}_m$ and $\overline{\mathcal{U}}_m \subseteq \mathcal{U}_n$, in which case $\mathcal{U}_n = \mathcal{U}_m$ which contradicts the fact that the sets in $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ are distinct).

Real Analysis

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.$$

Notice that $|f_{n,m}(x) - f_{n,m}(y)| \le 1$ for all $x, y \in X$. For $n \ne m$, we cannot have both (n,m) and (m,n) in A (or else $\overline{\mathcal{U}}_n \subseteq \mathcal{U}_m$ and $\overline{\mathcal{U}}_m \subseteq \mathcal{U}_n$, in which case $\mathcal{U}_n = \mathcal{U}_m$ which contradicts the fact that the sets in $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ are distinct). So the elements of set A include AT MOST the following:

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.$$

Notice that $|f_{n,m}(x) - f_{n,m}(y)| \le 1$ for all $x, y \in X$. For $n \ne m$, we cannot have both (n,m) and (m,n) in A (or else $\overline{\mathcal{U}}_n \subseteq \mathcal{U}_m$ and $\overline{\mathcal{U}}_m \subseteq \mathcal{U}_n$, in which case $\mathcal{U}_n = \mathcal{U}_m$ which contradicts the fact that the sets in $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ are distinct). So the elements of set A include AT MOST the following:

۰.

Proof (continued). So for all $x, y \in X$ we have

$$\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)| \\
\leq \sum_{(n,m)\in A} \frac{1}{2^{n+m}} \\
\leq \sum_{m=1}^{n} \frac{1}{2^{1+m}} + \sum_{m=2}^{n} \frac{1}{2^{2+m}} + \sum_{m=3}^{n} \frac{1}{2^{3+m}} + \cdots \\
= \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \cdots \\
= \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^{k}} = \frac{1}{2} \frac{1}{1-1/4} = \frac{2}{3}.$$

So the series determining $\rho(x, y)$ converges.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies x = y. We show the contrapositive. Suppose $x \neq y$. Since (X, \mathcal{T}) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies x = y. We show the contrapositive. Suppose $x \neq y$. Since (X, T) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, T) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, T) is normal, there is open $\mathcal{O} \in T$ such that $\{x\} \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $\mathcal{U}_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies x = y. We show the contrapositive. Suppose $x \neq y$. Since (X, T) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, T) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, T) is normal, there is open $\mathcal{O} \in T$ such that $\{x\} \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $\mathcal{U}_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$. Therefore, $(n, m) \in A$ and $|f_{n,m}(x) - f_{n,m}(y)| = 1$, so $\rho(x, y) \neq 0$, and the claim holds.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies x = y. We show the contrapositive. Suppose $x \neq y$. Since (X, T) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, T) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, T) is normal, there is open $\mathcal{O} \in T$ such that $\{x\} \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $\mathcal{U}_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$. Therefore, $(n,m) \in A$ and $|f_{n,m}(x) - f_{n,m}(y)| = 1$, so $\rho(x, y) \neq 0$, and the claim holds.

Proof (continued). Claim 2. For all $x, y, z \in X$, we claim $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$. For any $(n,m) \in A$ we have $|f_{n,m}(x) - f(n,m(z))| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)|$ $< |f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|$ by the Triangle Inequality on \mathbb{R} , $\rho(x,z) = \sum \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(z)|$ $\leq \sum \frac{1}{2^{n+m}} \left(|f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z) \right)$ $= \sum \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|$ + $\sum_{n+m} \frac{1}{2^{n+m}} |f_{n,m}(y) - f_{n,m}(z)| = \rho(x,y) + \rho(y,z).$

Proof (continued). Claim 2. For all $x, y, z \in X$, we claim $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$. For any $(n,m) \in A$ we have $|f_{n,m}(x) - f(n,m(z))| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)|$ $< |f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|$ by the Triangle Inequality on \mathbb{R} , $\rho(x,z) = \sum \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(z)|$ $(n,m) \in A$ $\leq \sum \frac{1}{2^{n+m}} \left(|f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)| \right)$ $(n,m) \in A$ $= \sum \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|$ $(n,m) \in A$ + $\sum \frac{1}{2^{n+m}} |f_{n,m}(y) - f_{n,m}(z)| = \rho(x,y) + \rho(y,z).$ $(n,m) \in A$

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore ρ is a metric. We now need to show that topology \mathcal{T} on X is the same as the topology on X induced by metric ρ . To do so, we need to show that for each $x \in X$:

(i) If \mathcal{U}_n contains x, then there is an $\varepsilon > 0$ for which $B_{\rho}(x, \varepsilon) \subseteq \mathcal{U}_n$.

(ii) For each $\varepsilon > 0$, there is a U_n that contains x and $U_n \subseteq B_{\rho}(x, \varepsilon)$.

It then follows that a set is open in one topology if and only if it is open in the other topology. These two properties are verified in Problem 12.7. $\hfill\square$

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore ρ is a metric. We now need to show that topology \mathcal{T} on X is the same as the topology on X induced by metric ρ . To do so, we need to show that for each $x \in X$:

(i) If U_n contains x, then there is an ε > 0 for which B_ρ(x, ε) ⊆ U_n.
(ii) For each ε > 0, there is a U_n that contains x and U_n ⊆ B_ρ(x, ε).

It then follows that a set is open in one topology if and only if it is open in the other topology. These two properties are verified in Problem 12.7. $\hfill\square$