Real Analysis

Chapter 12. Topological Spaces: Three Fundamental Theorems 12.1. Urysohn's Lemma and the Tietze Extension Theorem—Proofs of Theorems

l emma 12.2

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and U a neighborhood of F. Then for any open, bounded interval (a, b) , there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take $(a, b) = (0, 1)$ (otherwise we continuously map (a, b) to $(0, 1)$ with $f(x) = (x - a)/(b - a)$ and then apply the result we now prove).

l emma 12.2

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and U a neighborhood of F. Then for any open, bounded interval (a, b) , there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take $(a, b) = (0, 1)$ (otherwise we continuously map (a, b) to $(0, 1)$ with $f(x) = (x - a)/(b - a)$ and then apply the result we now prove). For the dense subset of $(0, 1)$ we choose the set of dyadic rationals in $(0, 1)$:

$$
\Lambda = \{m/2^n \mid m, n \in \mathbb{N}, 1 \le m \le 2^n - 1\}.
$$

Let

$$
\Lambda_n = \{m/2^n \mid m \in \mathbb{N}, 1 \le m \le 2^n - 1\}.
$$

Lemma 12.2

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and U a neighborhood of F. Then for any open, bounded interval (a, b) , there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take $(a, b) = (0, 1)$ (otherwise we continuously map (a, b) to $(0, 1)$ with $f(x) = (x - a)/(b - a)$ and then apply the result we now prove). For the dense subset of $(0, 1)$ we choose the set of dyadic rationals in $(0, 1)$:

$$
\Lambda=\{m/2^n\mid m,n\in\mathbb{N}, 1\leq m\leq 2^n-1\}.
$$

Let

$$
\Lambda_n=\{m/2^n\mid m\in\mathbb{N}, 1\leq m\leq 2^n-1\}.
$$

By Proposition 11.8, there is open $\mathcal{O}_{1/2}$ for which $F\subset \mathcal{O}_{1/2}\subset \mathcal{O}_{1/2}\subset \mathcal{U}.$

Lemma 12.2

Lemma 12.2. Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and U a neighborhood of F. Then for any open, bounded interval (a, b) , there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda}$, for which

 $F \subseteq \mathcal{O}_{\lambda} \subseteq \overline{\mathcal{O}}_{\lambda} \subseteq \mathcal{U}$ for all $\lambda \in \Lambda$.

Proof. Without loss of generality, we take $(a, b) = (0, 1)$ (otherwise we continuously map (a, b) to $(0, 1)$ with $f(x) = (x - a)/(b - a)$ and then apply the result we now prove). For the dense subset of $(0, 1)$ we choose the set of dyadic rationals in $(0, 1)$:

$$
\Lambda=\{m/2^n\mid m,n\in\mathbb{N}, 1\leq m\leq 2^n-1\}.
$$

Let

$$
\Lambda_n=\{m/2^n\mid m\in\mathbb{N}, 1\leq m\leq 2^n-1\}.
$$

By Proposition 11.8, there is open $\mathcal{O}_{1/2}$ for which $F\subset\mathcal{O}_{1/2}\subset\mathcal{O}_{1/2}\subset\mathcal{U}.$

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $\mathcal{F}\subset \mathcal{O}_{1/4}\subset \mathcal{O}_{1/2}.$ With closed $\mathcal{O}_{1/2}$ and neighborhood $\mathcal U$ of $\mathcal{O}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$
F\subset \mathcal{O}_{1/4}\subset \overline{\mathcal{O}}_{1/4}\subset \mathcal{O}_{1/2}\subset \overline{\mathcal{O}}_{1/2}\subset \mathcal{O}_{3/4}\subset \overline{\mathcal{O}}_{3/4}\subset \mathcal{U}.
$$

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $\mathcal{F}\subset \mathcal{O}_{1/4}\subset \big)_{1/4}\subset \mathcal{O}_{1/2}.$ With closed $\mathcal{O}_{1/2}$ and neighborhood $\mathcal U$ of $\mathcal{O}_{1/2}$ there is by Proposition 11.8 open $O_{3/4}$ with $\overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset \mathcal{U}$. So we have

$$
\digamma\subset\mathcal{O}_{1/4}\subset\overline{\mathcal{O}}_{1/4}\subset\mathcal{O}_{1/2}\subset\overline{\mathcal{O}}_{1/2}\subset\mathcal{O}_{3/4}\subset\overline{\mathcal{O}}_{3/4}\subset\mathcal{U}.
$$

So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_2}.$ We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_n}$.

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $\mathcal{F}\subset \mathcal{O}_{1/4}\subset \big)_{1/4}\subset \mathcal{O}_{1/2}.$ With closed $\mathcal{O}_{1/2}$ and neighborhood $\mathcal U$ of $\mathcal{O}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$
\digamma\subset\mathcal{O}_{1/4}\subset\overline{\mathcal{O}}_{1/4}\subset\mathcal{O}_{1/2}\subset\overline{\mathcal{O}}_{1/2}\subset\mathcal{O}_{3/4}\subset\overline{\mathcal{O}}_{3/4}\subset\mathcal{U}.
$$

So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_2}.$ We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_n}$. Then $\cup_{n=1}^{\infty}\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{n}}$ is the desired normally ascending collection of open sets.

Proof. This is \mathcal{O}_{λ} for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $\mathcal{F}\subset \mathcal{O}_{1/4}\subset \big)_{1/4}\subset \mathcal{O}_{1/2}.$ With closed $\mathcal{O}_{1/2}$ and neighborhood $\mathcal U$ of $\mathcal{O}_{1/2}$ there is by Proposition 11.8 open $\mathcal{O}_{3/4}$ with $\overline{\mathcal{O}}_{1/2} \subset \mathcal{O}_{3/4} \subset \overline{\mathcal{O}}_{3/4} \subset \mathcal{U}$. So we have

$$
\digamma\subset\mathcal{O}_{1/4}\subset\overline{\mathcal{O}}_{1/4}\subset\mathcal{O}_{1/2}\subset\overline{\mathcal{O}}_{1/2}\subset\mathcal{O}_{3/4}\subset\overline{\mathcal{O}}_{3/4}\subset\mathcal{U}.
$$

So the normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_2}.$ We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{\mathcal{O}_{\lambda}\}_{\lambda \in \Lambda_n}$. Then $\cup_{n=1}^{\infty}\{\mathcal{O}_{\lambda}\}_{\lambda\in\Lambda_{n}}$ is the desired normally ascending collection of open sets.

Urysohn's Lemma

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in [a, b], while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_{\lambda}\}_{{\lambda \in \Lambda}}$, for which $A \subset O_{\lambda} \subset X \setminus B$ for all $\lambda \in \Lambda$.

Urysohn's Lemma

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers [a, b], there is a continuous real-valued function f defined on X that takes values in [a, b], while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_{\lambda}\}_{{\lambda}\in{\Lambda}}$, for which $A\subset O_{\lambda}\subset X\setminus B$ for all $\lambda\in\Lambda$. Define the function $f : X \to [a, b]$ by setting $f = b$ on $X \setminus \cup_{\lambda \in \Lambda} O_{\lambda}$ and otherwise setting $f(x) = \inf \{ \lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda} \}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a, b) , then $f(A) = a$.

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in [a, b], while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_\lambda\}_{\lambda\in\Lambda}$, for which $A\subset O_\lambda\subset X\setminus B$ for all $\lambda\in\Lambda$. Define the function $f : X \to [a, b]$ by setting $f = b$ on $X \setminus \bigcup_{\lambda \in \Lambda} O_{\lambda}$ and otherwise setting $f(x) = \inf \{ \lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda} \}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a, b), then $f(A) = a$. Since $\mathcal{O}_\lambda \subset X \setminus B$ for all λ , $B \cap (\cup_{\lambda \in \Lambda} \mathcal{O}_\lambda) = \emptyset$ and so $f = b$ on B. By Lemma 12.1, f is continuous on X.

Urysohn's Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, \mathcal{T}) . Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in [a, b], while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $\mathcal{U} = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_{\lambda}\}_{{\lambda}\in{\Lambda}}$, for which $A\subset O_{\lambda}\subset X\setminus B$ for all $\lambda\in{\Lambda}$. Define the function $f : X \to [a, b]$ by setting $f = b$ on $X \setminus \bigcup_{\lambda \in \Lambda} O_{\lambda}$ and otherwise setting $f(x) = \inf \{ \lambda \in \Lambda \mid x \in \mathcal{O}_{\lambda} \}$. Since $A \subset \mathcal{O}_{\lambda}$ for all λ and Λ is dense in (a, b), then $f(A) = a$. Since $\mathcal{O}_{\lambda} \subset X \setminus B$ for all λ , $B \cap (\cup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}) = \emptyset$ and so $f = b$ on B. By Lemma 12.1, f is continuous on X.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and $[-2, 2]$ are homeomorphic (consider *f* : [a, b] → [-2, 2] defined as $f(x) = 4(x - a)/(b - a) - 2$, we assume without loss of generality that $[a, b] = [-2, 2]$.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and $[-2, 2]$ are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as $f(x) = 4(x - a)/(b - a) - 2$, we assume without loss of generality that $[a, b] = [-2, 2]$.

We construct a sequence $\{g_n\}$ of continuous real-valued functions on X with the following properties:

(1) For each $n \in \mathbb{N}$, $|g_n(x)| \leq (2/3)^n$ on X, and

(2) for each $n \in \mathbb{N}$, $|f - (g_1 + g_2 + \cdots + g_n)| \leq (2/3)^n$ on F. With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in $[a, b]$.

Proof. Since [a, b] and $[-2, 2]$ are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as $f(x) = 4(x - a)/(b - a) - 2$, we assume without loss of generality that $[a, b] = [-2, 2]$.

We construct a sequence $\{g_n\}$ of continuous real-valued functions on X with the following properties:

(1) For each $n \in \mathbb{N}$, $|g_n(x)| \leq (2/3)^n$ on X, and

(2) for each $n \in \mathbb{N}$, $|f - (g_1 + g_2 + \cdots + g_n)| < (2/3)^n$ on F. With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$. By property (1) , we see that for each $x \in X$, the sequence $\{g_n(x)\}\)$ is a Cauchy sequence of real numbers and hence a convergent sequence.

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof. Since [a, b] and $[-2, 2]$ are homeomorphic (consider $f : [a, b] \rightarrow [-2, 2]$ defined as $f(x) = 4(x - a)/(b - a) - 2$, we assume without loss of generality that $[a, b] = [-2, 2]$.

We construct a sequence $\{g_n\}$ of continuous real-valued functions on X with the following properties:

(1) For each $n \in \mathbb{N}$, $|g_n(x)| \leq (2/3)^n$ on X, and

(2) for each $n \in \mathbb{N}$, $|f - (g_1 + g_2 + \cdots + g_n)| \leq (2/3)^n$ on F. With this sequence constructed, define for each $n \in \mathbb{N}$, the real-valued function s_n on X by $s_n(x) = \sum_{k=1}^n g_k(x)$ for $x \in X$. By property (1), we see that for each $x \in X$, the sequence $\{g_n(x)\}\)$ is a Cauchy sequence of real numbers and hence a convergent sequence.

The Tietze Extension Theorem (continued 1)

Proof (continued). So define $g(x) = \lim_{n\to\infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. $\sum_{n=1}^{\infty} (2/3)^n = 2$. Therefore g is continuous <u>on X</u>. By property (2), f is By property (1), $\{s_n\}$ converges to g uniformly on X (since also the (uniform) pointwise limit of $\{s_n\}$ on F, so $f = g$ on F, Notice that for each $x \in X$

$$
g(x) = \left| \sum_{k=1}^{\infty} g_n(x) \right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.
$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X.

The Tietze Extension Theorem (continued 1)

Proof (continued). So define $g(x) = \lim_{n\to\infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous <u>on X</u>. By property (2), f is By property (1), $\{s_n\}$ converges to g uniformly on X (since also the (uniform) pointwise limit of $\{s_n\}$ on F, so $f = g$ on F, Notice that for each $x \in X$

$$
g(x) = \left|\sum_{k=1}^{\infty} g_n(x)\right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.
$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous **extension of f to X.** We now construct the sequence $\{g_n\}$.

The Tietze Extension Theorem (continued 1)

Proof (continued). So define $g(x) = \lim_{n\to\infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous <u>on X</u>. By property (2), f is By property (1), $\{s_n\}$ converges to g uniformly on X (since also the (uniform) pointwise limit of $\{s_n\}$ on F, so $f = g$ on F, Notice that for each $x \in X$

$$
g(x) = \left|\sum_{k=1}^{\infty} g_n(x)\right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.
$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X. We now construct the sequence $\{g_n\}$.

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any $a > 0$ and continuous function $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function $g: X \to \mathbb{R}$ such that

$$
|g| \le (2/3)a
$$
 on X and $|j - g| \le (2/3)a$ on F.

We justify this claim by defining

 $A = \{x \in F \mid h(x) \leq 1(1/3)a\}$ and $B = x \in F \mid h(x) > (1/3)a\}.$

Since h is continuous, then $h^{-1}((-\infty,1(1/3)a])$ and $h^{-1}([(1/3)a,\infty))$ are closed and so (since F ic closed) sets A and B are closed.

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any $a > 0$ and continuous function $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function $g: X \to \mathbb{R}$ such that

$$
|g| \le (2/3)a
$$
 on X and $|j - g| \le (2/3)a$ on F.

We justify this claim by defining

 $A = \{x \in F \mid h(x) \leq \frac{1}{1}{3}a\}$ and $B = x \in F \mid h(x) \geq \frac{1}{3}{a}$.

Since h is continuous, then $h^{-1}((-\infty,1(1/3)a])$ and $h^{-1}([(1/3)a,\infty))$ are closed and so (since F ic closed) sets A and B are closed. Of course A and B are disjoint. Therefore, by Urysohn's Lemma, there is a continuous real-valued function g on X for which $|g| \le (1/3)a$ on X, $g(A) = -(1/3)a$, and $g(B) = (1/3)a$. Since $|h| < a$ on F, then for $x \in A$, $h(x) < -(1/3)a$ and so $|h - g| \le a - (1/3)a = (2/3)a$ on A; for $x \in B$, $h(x) \ge (1/3)a$ and so $|h - g| \le a - (1/3)a = (2/3)a$ on B;

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any $a > 0$ and continuous function $h: F \to \mathbb{R}$ for which $|h| \le a$ on F, there is a continuous function $g: X \to \mathbb{R}$ such that

$$
|g| \le (2/3)a
$$
 on X and $|j - g| \le (2/3)a$ on F.

We justify this claim by defining

$$
A = \{x \in F \mid h(x) \leq 1(1/3)a\} \text{ and } B = x \in F \mid h(x) \geq (1/3)a\}.
$$

Since h is continuous, then $h^{-1}((-\infty,1(1/3)a])$ and $h^{-1}([(1/3)a,\infty))$ are closed and so (since F ic closed) sets A and B are closed. Of course A and B are disjoint. Therefore, by Urysohn's Lemma, there is a continuous real-valued function g on X for which $|g| \le (1/3)a$ on X, $g(A) = -(1/3)a$, and $g(B) = (1/3)a$. Since $|h| < a$ on F, then for $x \in A$, $h(x) \le -(1/3)a$ and so $|h - g| \le a - (1/3)a = (2/3)a$ on A; for $x \in B$, $h(x) > (1/3)a$ and so $|h - g| < a - (1/3)a = (2/3)a$ on B;

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed. bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in $[a, b]$.

Proof (continued). since by Urysohn's Lemma, $g(x)$ is between $-(1/3)a$ and $(1/3)a$ (that is, $|g(x)| \le (1/3)a$), then for all $x \notin A \cup B$ and $x \in F$ we have $|h(x) - g(x)| \leq (2/3)a$. So $|h - g| \leq (2/3)a$ on F. So function g **satisfies the claim.** With $a = 1$, choose such a g denoted $g - 1$ with $|g_1| \leq 2/3$ on X and $f - g_1| \leq 2/3$ on F. now iterate the above process with $h = f - g_1$ and $a = 2/3$ to find a continuous $g_2 : X \to \mathbb{R}$ for which $|g_2| \leq 2/3$ on X and $|f - (g_1 + g_2)| \leq (2/3)^2$ on F. We can then inductively construct the desired sequence $\{g_n\}$ which satisfies properties (1) and (2). The result now follows.

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.

Let (X, \mathcal{T}) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed. bounded interval [a, b]. Then f has a continuous extension to all of X that also takes values in [a, b].

Proof (continued). since by Urysohn's Lemma, $g(x)$ is between $-(1/3)a$ and $(1/3)a$ (that is, $|g(x)| \le (1/3)a$), then for all $x \notin A \cup B$ and $x \in F$ we have $|h(x) - g(x)| \leq (2/3)a$. So $|h - g| \leq (2/3)a$ on F. So function g satisfies the claim. With $a = 1$, choose such a g denoted $g - 1$ with $|g_1| \leq 2/3$ on X and $f - g_1 \leq 2/3$ on F. now iterate the above process with $h = f - g_1$ and $a = 2/3$ to find a continuous $g_2 : X \to \mathbb{R}$ for which $|g_2| \le 2/3$ on X and $|f - (g_1 + g_2)| \le (2/3)^2$ on F. We can then inductively construct the desired sequence $\{g_n\}$ which satisfies properties (1) and (2). The result now follows.

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{U_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X, \mathcal{T}) . Let $A \subseteq N \times N$ be defined as

$$
A = \{ (n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{U}_n \subseteq U_m \}.
$$

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X, \mathcal{T}) . Let $A \subseteq \mathbb{N} \times \mathbb{N}$ be defined as

$$
A = \{ (n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{U}_n \subseteq U_m \}.
$$

For each (n, m) ∈ A we see that $\overline{\mathcal{U}}_n$ and $X \sim \mathcal{U}_m$ are disjoint closed sets. Since (X, \mathcal{T}) is normal, Urysohn's Lemma there is a continuous real-valued function $f_{n,m}: X \to [0,1]$ for which $f_{n,m} = 0$ on \mathcal{U}_n and $f_{n,m} = 1$ on $X \sim \mathcal{U}_m$.

The Urysohn Metrization Theorem.

Let (X, \mathcal{T}) be a second countable topological space. Then (X, \mathcal{T}) is metrizable if and only if it is normal.

Proof. If (X, \mathcal{T}) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let (X, \mathcal{T}) be a second countable and normal topological space. Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a countable base (of distinct sets) for topology (X, \mathcal{T}) . Let $A \subseteq \mathbb{N} \times \mathbb{N}$ be defined as

$$
A = \{ (n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{U}_n \subseteq U_m \}.
$$

For each $(n, m) \in A$ we see that $\overline{\mathcal{U}}_n$ and $X \sim \mathcal{U}_m$ are disjoint closed sets. Since (X, \mathcal{T}) is normal, Urysohn's Lemma there is a continuous real-valued function $f_{n,m}: X \to [0,1]$ for which $f_{n,m} = 0$ on \mathcal{U}_n and $f_{n,m} = 1$ on $X \sim \mathcal{U}_{m}$.

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$
\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.
$$

Notice that $|f_{n,m}(x) - f_{n,m}(y)| \leq 1$ **for all** $x, y \in X$ **.** For $n \neq m$, we cannot have both (n, m) and (m, n) in A (or else $\overline{U}_n \subset U_m$ and $\overline{U}_m \subset U_n$, in which case $U_n = U_m$ which contradicts the fact that the sets in $\{U_n\}_{n\in\mathbb{N}}$ are distinct).

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$
\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.
$$

Notice that $|f_{n,m}(x) - f_{n,m}(y)| \leq 1$ for all $x, y \in X$. For $n \neq m$, we cannot have both (n, m) and (m, n) in A (or else $\overline{\mathcal{U}}_n \subseteq \mathcal{U}_m$ and $\overline{\mathcal{U}}_m \subseteq \mathcal{U}_n$, in which case $U_n = U_m$ which contradicts the fact that the sets in $\{U_n\}_{n\in\mathbb{N}}$ are distinct). So the elements of set A include AT MOST the following:

$$
(1, 1), (1, 2), (1, 3), (1, 4), \cdots \n(2, 2), (2, 3), (2, 4), \cdots \n(3, 3), (3, 4), \cdots \n(4, 4), \cdots
$$

. .

Proof (continued). For $x, y \in X$, define the (alleged) metric

$$
\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.
$$

Notice that $|f_{n,m}(x) - f_{n,m}(y)| \leq 1$ for all $x, y \in X$. For $n \neq m$, we cannot have both (n, m) and (m, n) in A (or else $\overline{U}_n \subset U_m$ and $\overline{U}_m \subset U_n$, in which case $U_n = U_m$ which contradicts the fact that the sets in $\{U_n\}_{n\in\mathbb{N}}$ are distinct). So the elements of set A include AT MOST the following:

$$
(1, 1), (1, 2), (1, 3), (1, 4), \cdots \n(2, 2), (2, 3), (2, 4), \cdots \n(3, 3), (3, 4), \cdots \n(4, 4), \cdots
$$

Proof (continued). So for all $x, y \in X$ we have

$$
\rho(x,y) = \sum_{(n,m)\in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|
$$

\n
$$
\leq \sum_{(n,m)\in A} \frac{1}{2^{n+m}}
$$

\n
$$
\leq \sum_{m=1}^{n} \frac{1}{2^{1+m}} + \sum_{m=2}^{n} \frac{1}{2^{2+m}} + \sum_{m=3}^{n} \frac{1}{2^{3+m}} + \cdots
$$

\n
$$
= \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \cdots
$$

\n
$$
= \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{1}{2} \frac{1}{1 - 1/4} = \frac{2}{3}.
$$

So the series determining $\rho(x, y)$ converges.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since (X, \mathcal{T}) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_X containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since (X, \mathcal{T}) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_X containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, \mathcal{T}) is normal, there is open $\mathcal{O} \in \mathcal{T}$ such that $\{x\} \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $U_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1.$

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since(X, T) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_X containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, \mathcal{T}) is normal, there is open $\mathcal{O} \in \mathcal{T}$ such that $\{x\} \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $U_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$. Therefore, $(n, m) \in A$ and $|f_{n,m}(x) - f_{n,m}(y)| = 1$, so $\rho(x, y) \neq 0$, and the claim holds.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \ge 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since(X, T) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_X containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, \mathcal{T}) is normal, there is open $\mathcal{O} \in \mathcal{T}$ such that $\{x\} \subset \mathcal{O} \subset \overline{\mathcal{O}} \subset \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $U_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}}_n \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$. Therefore, $(n, m) \in A$ and $|f_{n,m}(x) - f_{n,m}(y)| = 1$, so $\rho(x, y) \neq 0$, and the claim holds.

Proof (continued). Claim 2. For all $x, y, z \in X$, we claim $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$. For any $(n, m) \in A$ we have $|f_{n,m}(x) - f(n,m(z))| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)|$ $\leq |f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|$ by the Triangle Inequality on \mathbb{R} , $\rho(x, z) = \sum_{n=1}^{\infty} \frac{1}{2n^2}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}|f_{n,m}(x)-f_{n,m}(z)|$ \leq \sum $\frac{1}{2n+1}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}\left(|f_{n,m}(x)-f_{n,m}(y)|+|f_{n,m}(y)-f_{n,m}(z)\right)$ $=\sum \frac{1}{2n+1}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}|f_{n,m}(x)-f_{n,m}(y)|$ $+\sum_{2n}$ $(n,m)\in A$ $\frac{1}{2^{n+m}}|f_{n,m}(y)-f_{n,m}(z)|=\rho(x,y)+\rho(y,z).$

Proof (continued). Claim 2. For all $x, y, z \in X$, we claim $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$. For any $(n, m) \in A$ we have $|f_{n,m}(x) - f(n,m(z))| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)|$ $\langle f_{n,m}(x) - f_{n,m}(y) | + |f_{n,m}(y) - f_{n,m}(z)|$ by the Triangle Inequality on \mathbb{R} , $\rho(x, z) = \sum_{n=1}^{\infty} \frac{1}{2n^2}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}|f_{n,m}(x)-f_{n,m}(z)|$ \leq \sum $\frac{1}{2n+1}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}\left(|f_{n,m}(x)-f_{n,m}(y)|+|f_{n,m}(y)-f_{n,m}(z)\right)$ $=\sum \frac{1}{2n+1}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}|f_{n,m}(x)-f_{n,m}(y)|$ $+\sum_{2n+1}$ $(n,m) \in A$ $\frac{1}{2^{n+m}}|f_{n,m}(y)-f_{n,m}(z)|=\rho(x,y)+\rho(y,z).$

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore ρ is a metric. We now need to show that topology T on X is the same as the topology on X induced by metric ρ . To do so, we need to show that for each $x \in X$:

> (i) If U_n contains x, then there is an $\varepsilon > 0$ for which $B_{\rho}(x,\varepsilon)\subseteq\mathcal{U}_{n}$.

(ii) For each $\varepsilon > 0$, there is a \mathcal{U}_n that contains x and $U_n \subseteq B_\rho(x,\varepsilon)$.

It then follows that a set is open in one topology if and only if it is open in the other topology. These two properties are verified in Problem 12.7. \square

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore ρ is a metric. We now need to show that topology T on X is the same as the topology on X induced by metric ρ . To do so, we need to show that for each $x \in X$:

> (i) If U_n contains x, then there is an $\varepsilon > 0$ for which $B_{\alpha}(x,\varepsilon)\subseteq\mathcal{U}_{n}$. (ii) For each $\varepsilon > 0$, there is a \mathcal{U}_n that contains x and $\mathcal{U}_n \subseteq B_o(x,\varepsilon)$.

It then follows that a set is open in one topology if and only if it is open in the other topology. These two properties are verified in Problem 12.7. \Box