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Lemma 12.2

Lemma 12.2

Lemma 12.2. Let (X , T ) be a normal topological space, F a closed
subset of X , and U a neighborhood of F . Then for any open, bounded
interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending
collection of open subsets of X , {Oλ}λ∈Λ, for which

F ⊆ Oλ ⊆ Oλ ⊆ U for all λ ∈ Λ.

Proof. Without loss of generality, we take (a, b) = (0, 1) (otherwise we
continuously map (a, b) to (0, 1) with f (x) = (x − a)/(b − a) and then
apply the result we now prove).

For the dense subset of (0, 1) we choose
the set of dyadic rationals in (0, 1):

Λ = {m/2n | m, n ∈ N, 1 ≤ m ≤ 2n − 1}.

Let
Λn = {m/2n | m ∈ N, 1 ≤ m ≤ 2n − 1}.

By Proposition 11.8, there is open O1/2 for which F ⊂ O1/2 ⊂ O1/2 ⊂ U .
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Lemma 12.2

Lemma 12.2 (continued)

Proof. This is Oλ for all λ ∈ Λ1 = {1/2}. Again, by Proposition 11.8,
with closed F and neighborhood U = O1/2 of F there is open O1/4 with

F ⊂ O1/4 ⊂ )1/4 ⊂ O1/2. With closed O1/2 and neighborhood U of O1/2

there is by Proposition 11.8 open O3/4 with O1/2 ⊂ O3/4 ⊂ O3/4 ⊂ U . So
we have

F ⊂ O1/4 ⊂ O1/4 ⊂ O1/2 ⊂ O1/2 ⊂ O3/4 ⊂ O3/4 ⊂ U .

So the normally ascending collection {Oλ}λ∈Λ1 is extended to normally
ascending collection {Oλ}λ∈Λ2 . We then proceed inductively to define for
each n ∈ N, the normally ascending collection of open sets {Oλ}λ∈Λn .
Then ∪∞n=1{Oλ}λ∈Λn is the desired normally ascending collection of open
sets.
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Urysohn’s Lemma

Urysohn’s Lemma

Urysohn’s Lemma. Let A and B be disjoint closed subsets of a normal
topological space (X , T ). Then for any closed bounded interval of real
numbers [a, b], there is a continuous real-valued function f defined on X
that takes values in [a, b], while f = a on A and f = b on B.

Proof. By Lemma 12.2, with F = A and U = X \ B, we can choose a
dense subset Λ of (a, b) and a normally ascending collection of open
subsets of X , {Oλ}λ∈Λ, for which A ⊂ Oλ ⊂ X \ B for all λ ∈ Λ.

Define
the function f : X → [a, b] by setting f = b on X \ ∪λ∈ΛOλ and otherwise
setting f (x) = inf{λ ∈ Λ | x ∈ Oλ}. Since A ⊂ Oλ for all λ and Λ is dense
in (a, b), then f (A) = a. Since Oλ ⊂ X \ B for all λ, B ∩ (∪λ∈ΛOλ) = ∅
and so f = b on B. By Lemma 12.1, f is continuous on X .
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The Tietze Extension Theorem

The Tietze Extension Theorem

The Tietze Extension Theorem.
Let (X , T ) be a normal topological space, F a closed subset of X , and f a
continuous real-valued function on F that takes values in the closed,
bounded interval [a, b]. Then f has a continuous extension to all of X that
also takes values in [a, b].

Proof. Since [a, b] and [−2, 2] are homeomorphic (consider
f : [a, b] → [−2, 2] defined as f (x) = 4(x − a)/(b − a)− 2), we assume
without loss of generality that [a, b] = [−2, 2].

We construct a sequence {gn} of continuous real-valued functions on X
with the following properties:

(1) For each n ∈ N, |gn(x)| ≤ (2/3)n on X , and
(2) for each n ∈ N, |f − (g1 + g2 + · · ·+ gn)| ≤ (2/3)n on F .

With this sequence constructed, define for each n ∈ N, the real-valued
function sn on X by sn(x) =

∑n
k=1 gk(x) for x ∈ X . By property (1), we

see that for each x ∈ X , the sequence {gn(x)} is a Cauchy sequence of
real numbers and hence a convergent sequence.
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The Tietze Extension Theorem

The Tietze Extension Theorem (continued 1)

Proof (continued). So define g(x) = limn→∞ sn(x) for each x ∈ X .
Since each gn is continuous on X then, of course, each sn is continuous.
By property (1), {sn} converges to g uniformly on X (since∑∞

n=1(2/3)n = 2). Therefore g is continuous on X . By property (2), f is
also the (uniform) pointwise limit of {sn} on F , so f = g on F , Notice
that for each x ∈ X

g(x) =

∣∣∣∣∣
∞∑

k=1

gn(x)

∣∣∣∣∣ ≤
∞∑

k=1

|gn(x) ≤
∞∑

k=1

(2/3)n = 2.

So g(x) ∈ [−2, 2] for all x ∈ X . Therefore g is the desired continuous
extension of f to X .

We now construct the sequence {gn}.
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The Tietze Extension Theorem

The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any a > 0 and continuous function
h : F → R for which |h| ≤ a on F , there is a continuous function
g : X → R such that

|g | ≤ (2/3)a on X and |j − g | ≤ (2/3)a on F .

We justify this claim by defining

A = {x ∈ F | h(x) ≤ 1(1/3)a} and B = x ∈ F | h(x) ≥ (1/3)a}.

Since h is continuous, then h−1((−∞, 1(1/3)a]) and h−1([(1/3)a,∞)) are
closed and so (since F ic closed) sets A and B are closed.

Of course A and
B are disjoint. Therefore, by Urysohn’s Lemma, there is a continuous
real-valued function g on X for which |g | ≤ (1/3)a on X ,
g(A) = −(1/3)a, and g(B) = (1/3)a. Since |h| < a on F , then for x ∈ A,
h(x) ≤ −(1/3)a and so |h − g | ≤ a− (1/3)a = (2/3)a on A; for x ∈ B,
h(x) ≥ (1/3)a and so |h − g | ≤ a− (1/3)a = (2/3)a on B;
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The Tietze Extension Theorem

The Tietze Extension Theorem (continued 3)

The Tietze Extension Theorem.
Let (X , T ) be a normal topological space, F a closed subset of X , and f a
continuous real-valued function on F that takes values in the closed,
bounded interval [a, b]. Then f has a continuous extension to all of X that
also takes values in [a, b].

Proof (continued). since by Urysohn’s Lemma, g(x) is between −(1/3)a
and (1/3)a (that is, |g(x)| ≤ (1/3)a), then for all x 6∈ A∪B and x ∈ F we
have |h(x)− g(x)| ≤ (2/3)a. So |h − g | ≤ (2/3)a on F . So function g
satisfies the claim. With a = 1, choose such a g denoted g − 1 with
|g1| ≤ 2/3 on X and f − g1| ≤ 2/3 on F . now iterate the above process
with h = f − g1 and a = 2/3 to find a continuous g2 : X → R for which
|g2| ≤ 2/3 on X and |f − (g1 + g2)| ≤ (2/3)2 on F . We can then
inductively construct the desired sequence {gn} which satisfies properties
(1) and (2). The result now follows.
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(1) and (2). The result now follows.
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem

The Urysohn Metrization Theorem.
Let (X , T ) be a second countable topological space. Then (X , T ) is
metrizable if and only if it is normal.

Proof. If (X , T ) is metrizable then the result is a metric space. By
Proposition 11.7, every metric space is normal.

Now let (X , T ) be a second countable and normal topological space. Let
{Un}n∈N be a countable base (of distinct sets) for topology (X , T ). Let
A ⊆ N× N be defined as

A = {(n,m) ∈ N× N | Un ⊆ Um}.

For each (n,m) ∈ A we see that Un and X ∼ Um are disjoint closed sets.
Since (X , T ) is normal, Urysohn’s Lemma there is a continuous real-valued
function fn,m : X → [0, 1] for which fn,m = 0 on Un and fn,m = 1 on
X ∼ Um.
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 1)

Proof (continued). For x , y ∈ X , define the (alleged) metric

ρ(x , y) =
∑

(n,m)∈A

1

2n+m
|fn,m(x)− fn,m(y)|.

Notice that |fn,m(x)− fn,m(y)| ≤ 1 for all x , y ∈ X . For n 6= m, we cannot
have both (n,m) and (m, n) in A (or else Un ⊆ Um and Um ⊆ Un, in
which case Un = Um which contradicts the fact that the sets in {Un}n∈N
are distinct).

So the elements of set A include AT MOST the following:

(1, 1), (1, 2), (1, 3), (1, 4), · · ·
(2, 2), (2, 3), (2, 4), · · ·

(3, 3), (3, 4), · · ·
(4, 4), · · ·

. . .
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 2)

Proof (continued). So for all x , y ∈ X we have

ρ(x , y) =
∑

(n,m)∈A

1

2n+m
|fn,m(x)− fn,m(y)|

≤
∑

(n,m)∈A

1

2n+m

≤
n∑

m=1

1

21+m
+

n∑
m=2

1

22+m
+

n∑
m=3

1

23+m
+ · · ·

=
1

2
+

1

8
+

1

32
+ · · ·

=
1

2

∞∑
k=0

1

4k
=

1

2

1

1− 1/4
=

2

3
.

So the series determining ρ(x , y) converges.
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 3)

Proof (continued). Now to show that ρ is in fact a metric. Of course,
ρ(x , y) = ρ(y , x). Also, ρ(x , y) ≥ 0 and ρ(x , x) = 0.

Claim 1. We claim ρ(x , y) = 0 implies x = y . We show the
contrapositive. Suppose x 6= y . Since(X , T ) is normal (and hence, by
definition, Tychonoff) then {x} and {y} are closed sets by Proposition
11.6. Since (X , T ) is normal, there is open Ox containing x and not
containing y . So there is some base set Um with x ∈ Um and Um ⊆ Ox .

By Proposition 11.8, since (X , T ) is normal, there is open O ∈ T such
that {x} ⊆ O ⊆ O ⊆ Um. So there is a base set Un with x ∈ Un and
Un ⊆ O. Then Un ⊆ O ⊆ Um. So fn,m(x) = 0 and, since y ∈ X ∼ Um,
fn,m(y) = 1. Therefore, (n,m) ∈ A and |fn,m(x)− fn,m(y)| = 1, so
ρ(x , y) 6= 0, and the claim holds.
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 4)

Proof (continued). Claim 2. For all x , y , z ∈ X , we claim
ρ(x , z) ≤ ρ(x , y) + ρ(y , z). For any (n,m) ∈ A we have

|fn,m(x)− f )n,m(z)| = |fn,m(x)− fn,m(y) + fn,m(y)− fn,m(z)|
≤ |fn,m(x)− fn,m(y)|+ |fn,m(y)− fn,m(z)|

by the Triangle Inequality on R,

ρ(x , z) =
∑

(n,m)∈A

1

2n+m
|fn,m(x)− fn,m(z)|

≤
∑

(n,m)∈A

1

2n+m
(|fn,m(x)− fn,m(y)|+ |fn,m(y)− fn,m(z))

=
∑

(n,m)∈A

1

2n+m
|fn,m(x)− fn,m(y)|

+
∑

(n,m)∈A

1

2n+m
|fn,m(y)− fn,m(z)| = ρ(x , y) + ρ(y , z).
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The Urysohn Metrization Theorem

The Urysohn Metrization Theorem (continued 5)

Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore ρ is a metric. We now need to show that topology T on X is
the same as the topology on X induced by metric ρ. To do so, we need to
show that for each x ∈ X :

(i) If Un contains x , then there is an ε > 0 for which
Bρ(x , ε) ⊆ Un.

(ii) For each ε > 0, there is a Un that contains x and
Un ⊆ Bρ(x , ε).

It then follows that a set is open in one topology if and only if it is open in
the other topology. These two properties are verified in Problem 12.7.
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