Chapter 12. Topological Spaces: Three Fundamental Theorems
12.1. Urysohn’s Lemma and the Tietze Extension Theorem—Proofs of Theorems
Table of contents

1. Lemma 12.2
2. Urysohn’s Lemma
3. The Tietze Extension Theorem
4. The Urysohn Metrization Theorem
Lemma 12.2

Lemma 12.2. Let \((X, \mathcal{T})\) be a normal topological space, \(F\) a closed subset of \(X\), and \(\mathcal{U}\) a neighborhood of \(F\). Then for any open, bounded interval \((a, b)\), there is a dense subset \(\Lambda\) of \((a, b)\) and a normally ascending collection of open subsets of \(X\), \(\{O_\lambda\}_{\lambda \in \Lambda}\), for which

\[
F \subseteq O_\lambda \subseteq \overline{O}_\lambda \subseteq \mathcal{U} \text{ for all } \lambda \in \Lambda.
\]

Proof. Without loss of generality, we take \((a, b) = (0, 1)\) (otherwise we continuously map \((a, b)\) to \((0, 1)\) with \(f(x) = (x - a)/(b - a)\) and then apply the result we now prove).
Lemma 12.2. Let \((X, \mathcal{T})\) be a normal topological space, \(F\) a closed subset of \(X\), and \(U\) a neighborhood of \(F\). Then for any open, bounded interval \((a, b)\), there is a dense subset \(\Lambda\) of \((a, b)\) and a normally ascending collection of open subsets of \(X\), \(\{\mathcal{O}_\lambda\}_{\lambda \in \Lambda}\), for which

\[
F \subseteq \mathcal{O}_\lambda \subseteq \overline{\mathcal{O}_\lambda} \subseteq U \text{ for all } \lambda \in \Lambda.
\]

Proof. Without loss of generality, we take \((a, b) = (0, 1)\) (otherwise we continuously map \((a, b)\) to \((0, 1)\) with \(f(x) = (x - a)/(b - a)\) and then apply the result we now prove). For the dense subset of \((0, 1)\) we choose the set of dyadic rationals in \((0, 1)\):

\[
\Lambda = \{m/2^n \mid m, n \in \mathbb{N}, 1 \leq m \leq 2^n - 1\}.
\]

Let

\[
\Lambda_n = \{m/2^n \mid m \in \mathbb{N}, 1 \leq m \leq 2^n - 1\}.
\]
Lemma 12.2

Lemma 12.2. Let (X, T) be a normal topological space, F a closed subset of X, and U a neighborhood of F. Then for any open, bounded interval (a, b), there is a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_\lambda\}_{\lambda \in \Lambda}$, for which

$$F \subseteq O_\lambda \subseteq \overline{O_\lambda} \subseteq U \text{ for all } \lambda \in \Lambda.$$

Proof. Without loss of generality, we take $(a, b) = (0, 1)$ (otherwise we continuously map (a, b) to $(0, 1)$ with $f(x) = (x - a)/(b - a)$ and then apply the result we now prove). For the dense subset of $(0, 1)$ we choose the set of dyadic rationals in $(0, 1)$:

$$\Lambda = \{m/2^n | m, n \in \mathbb{N}, 1 \leq m \leq 2^n - 1\}.$$

Let

$$\Lambda_n = \{m/2^n | m \in \mathbb{N}, 1 \leq m \leq 2^n - 1\}.$$

By Proposition 11.8, there is open $O_{1/2}$ for which $F \subseteq O_{1/2} \subseteq \overline{O_{1/2}} \subseteq U$.

\[\text{Real Analysis} \]
Lemma 12.2

Lemma 12.2. Let \((X, \mathcal{T})\) be a normal topological space, \(F\) a closed subset of \(X\), and \(U\) a neighborhood of \(F\). Then for any open, bounded interval \((a, b)\), there is a dense subset \(\Lambda\) of \((a, b)\) and a normally ascending collection of open subsets of \(X\), \(\{\mathcal{O}_\lambda\}_{\lambda \in \Lambda}\), for which

\[
F \subseteq \mathcal{O}_\lambda \subseteq \overline{\mathcal{O}_\lambda} \subseteq U \quad \text{for all } \lambda \in \Lambda.
\]

Proof. Without loss of generality, we take \((a, b) = (0, 1)\) (otherwise we continuously map \((a, b)\) to \((0, 1)\) with \(f(x) = (x - a)/(b - a)\) and then apply the result we now prove). For the dense subset of \((0, 1)\) we choose the set of dyadic rationals in \((0, 1)\):

\[
\Lambda = \{m/2^n \mid m, n \in \mathbb{N}, 1 \leq m \leq 2^n - 1\}.
\]

Let

\[
\Lambda_n = \{m/2^n \mid m \in \mathbb{N}, 1 \leq m \leq 2^n - 1\}.
\]

By Proposition 11.8, there is open \(\mathcal{O}_{1/2}\) for which \(F \subseteq \mathcal{O}_{1/2} \subseteq \overline{\mathcal{O}_{1/2}} \subseteq U\).
Lemma 12.2 (continued)

Proof. This is O_λ for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2}$. With closed $\overline{O}_{1/2}$ and neighborhood U of $\overline{O}_{1/2}$ there is by Proposition 11.8 open $O_{3/4}$ with $\overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U$. So we have

$$F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2} \subset \overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U.$$
Lemma 12.2 (continued)

Proof. This is O_λ for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2}$. With closed $\overline{O}_{1/2}$ and neighborhood U of $\overline{O}_{1/2}$ there is by Proposition 11.8 open $O_{3/4}$ with $\overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U$. So we have

$$F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2} \subset \overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U.$$

So the normally ascending collection $\{O_\lambda\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{O_\lambda\}_{\lambda \in \Lambda_2}$. We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{O_\lambda\}_{\lambda \in \Lambda_n}$.
Lemma 12.2 (continued)

Proof. This is O_λ for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2}$. With closed $\overline{O}_{1/2}$ and neighborhood U of $\overline{O}_{1/2}$ there is by Proposition 11.8 open $O_{3/4}$ with $\overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U$. So we have

$$F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2} \subset \overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U.$$

So the normally ascending collection $\{O_\lambda\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{O_\lambda\}_{\lambda \in \Lambda_2}$. We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{O_\lambda\}_{\lambda \in \Lambda_n}$. Then $\bigcup_{n=1}^{\infty} \{O_\lambda\}_{\lambda \in \Lambda_n}$ is the desired normally ascending collection of open sets.

□
Lemma 12.2 (continued)

Proof. This is O_λ for all $\lambda \in \Lambda_1 = \{1/2\}$. Again, by Proposition 11.8, with closed F and neighborhood $U = O_{1/2}$ of F there is open $O_{1/4}$ with $F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2}$. With closed $\overline{O}_{1/2}$ and neighborhood U of $\overline{O}_{1/2}$ there is by Proposition 11.8 open $O_{3/4}$ with $\overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U$. So we have

$$F \subset O_{1/4} \subset \overline{O}_{1/4} \subset O_{1/2} \subset \overline{O}_{1/2} \subset O_{3/4} \subset \overline{O}_{3/4} \subset U.$$

So the normally ascending collection $\{O_\lambda\}_{\lambda \in \Lambda_1}$ is extended to normally ascending collection $\{O_\lambda\}_{\lambda \in \Lambda_2}$. We then proceed inductively to define for each $n \in \mathbb{N}$, the normally ascending collection of open sets $\{O_\lambda\}_{\lambda \in \Lambda_n}$. Then $\cup_{n=1}^{\infty} \{O_\lambda\}_{\lambda \in \Lambda_n}$ is the desired normally ascending collection of open sets.

Urysohn’s Lemma

Urysohn’s Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, T). Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in $[a, b]$, while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $U = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_\lambda\}_{\lambda \in \Lambda}$, for which $A \subset O_\lambda \subset X \setminus B$ for all $\lambda \in \Lambda$.
Urysohn’s Lemma

Urysohn’s Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, T). Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in $[a, b]$, while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $U = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_\lambda\}_{\lambda \in \Lambda}$, for which $A \subset O_\lambda \subset X \setminus B$ for all $\lambda \in \Lambda$. Define the function $f : X \rightarrow [a, b]$ by setting $f = b$ on $X \setminus \bigcup_{\lambda \in \Lambda} O_\lambda$ and otherwise setting $f(x) = \inf\{\lambda \in \Lambda \mid x \in O_\lambda\}$. Since $A \subset O_\lambda$ for all λ and Λ is dense in (a, b), then $f(A) = a$.
Urysohn’s Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, T). Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in $[a, b]$, while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $U = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_\lambda\}_{\lambda \in \Lambda}$, for which $A \subset O_\lambda \subset X \setminus B$ for all $\lambda \in \Lambda$. Define the function $f : X \to [a, b]$ by setting $f = b$ on $X \setminus \cup_{\lambda \in \Lambda} O_\lambda$ and otherwise setting $f(x) = \inf\{\lambda \in \Lambda \mid x \in O_\lambda\}$. Since $A \subset O_\lambda$ for all λ and Λ is dense in (a, b), then $f(A) = a$. Since $O_\lambda \subset X \setminus B$ for all λ, $B \cap (\cup_{\lambda \in \Lambda} O_\lambda) = \emptyset$ and so $f = b$ on B. By Lemma 12.1, f is continuous on X. \qed
Urysohn’s Lemma. Let A and B be disjoint closed subsets of a normal topological space (X, T). Then for any closed bounded interval of real numbers $[a, b]$, there is a continuous real-valued function f defined on X that takes values in $[a, b]$, while $f = a$ on A and $f = b$ on B.

Proof. By Lemma 12.2, with $F = A$ and $U = X \setminus B$, we can choose a dense subset Λ of (a, b) and a normally ascending collection of open subsets of X, $\{O_\lambda\}_{\lambda \in \Lambda}$, for which $A \subset O_\lambda \subset X \setminus B$ for all $\lambda \in \Lambda$. Define the function $f : X \rightarrow [a, b]$ by setting $f = b$ on $X \setminus \bigcup_{\lambda \in \Lambda} O_\lambda$ and otherwise setting $f(x) = \inf \{\lambda \in \Lambda \mid x \in O_\lambda\}$. Since $A \subset O_\lambda$ for all λ and Λ is dense in (a, b), then $f(A) = a$. Since $O_\lambda \subset X \setminus B$ for all λ, $B \cap (\bigcup_{\lambda \in \Lambda} O_\lambda) = \emptyset$ and so $f = b$ on B. By Lemma 12.1, f is continuous on X. □
The Tietze Extension Theorem

Let (X, T) be a normal topological space, F a closed subset of X, and f a continuous real-valued function on F that takes values in the closed, bounded interval $[a, b]$. Then f has a continuous extension to all of X that also takes values in $[a, b]$.

Proof. Since $[a, b]$ and $[-2, 2]$ are homeomorphic (consider $f : [a, b] \to [-2, 2]$ defined as $f(x) = 4(x - a)/(b - a) - 2$), we assume without loss of generality that $[a, b] = [-2, 2]$.
The Tietze Extension Theorem

The Tietze Extension Theorem. Let \((X, T)\) be a normal topological space, \(F\) a closed subset of \(X\), and \(f\) a continuous real-valued function on \(F\) that takes values in the closed, bounded interval \([a, b]\). Then \(f\) has a continuous extension to all of \(X\) that also takes values in \([a, b]\).

Proof. Since \([a, b]\) and \([-2, 2]\) are homeomorphic (consider \(f : [a, b] \to [-2, 2]\) defined as \(f(x) = 4(x - a)/(b - a) - 2\)), we assume without loss of generality that \([a, b] = [-2, 2]\).

We construct a sequence \(\{g_n\}\) of continuous real-valued functions on \(X\) with the following properties:

1. For each \(n \in \mathbb{N}\), \(|g_n(x)| \leq (2/3)^n\) on \(X\), and
2. for each \(n \in \mathbb{N}\), \(|f - (g_1 + g_2 + \cdots + g_n)| \leq (2/3)^n\) on \(F\).

With this sequence constructed, define for each \(n \in \mathbb{N}\), the real-valued function \(s_n\) on \(X\) by \(s_n(x) = \sum_{k=1}^{n} g_k(x)\) for \(x \in X\).
The Tietze Extension Theorem

Let \((X, T)\) be a normal topological space, \(F\) a closed subset of \(X\), and \(f\) a continuous real-valued function on \(F\) that takes values in the closed, bounded interval \([a, b]\). Then \(f\) has a continuous extension to all of \(X\) that also takes values in \([a, b]\).

Proof. Since \([a, b]\) and \([-2, 2]\) are homeomorphic (consider \(f : [a, b] \rightarrow [-2, 2]\) defined as \(f(x) = 4(x - a)/(b - a) - 2\)), we assume without loss of generality that \([a, b] = [-2, 2]\).

We construct a sequence \(\{g_n\}\) of continuous real-valued functions on \(X\) with the following properties:

1. For each \(n \in \mathbb{N}\), \(|g_n(x)| \leq (2/3)^n\) on \(X\), and
2. for each \(n \in \mathbb{N}\), \(|f - (g_1 + g_2 + \cdots + g_n)| \leq (2/3)^n\) on \(F\).

With this sequence constructed, define for each \(n \in \mathbb{N}\), the real-valued function \(s_n\) on \(X\) by \(s_n(x) = \sum_{k=1}^{n} g_k(x)\) for \(x \in X\). By property (1), we see that for each \(x \in X\), the sequence \(\{g_n(x)\}\) is a Cauchy sequence of real numbers and hence a convergent sequence.
The Tietze Extension Theorem

The Tietze Extension Theorem.
Let \((X, \mathcal{T})\) be a normal topological space, \(F\) a closed subset of \(X\), and \(f\) a continuous real-valued function on \(F\) that takes values in the closed, bounded interval \([a, b]\). Then \(f\) has a continuous extension to all of \(X\) that also takes values in \([a, b]\).

Proof. Since \([a, b]\) and \([-2, 2]\) are homeomorphic (consider \(f : [a, b] \to [-2, 2]\) defined as \(f(x) = 4(x - a)/(b - a) - 2\)), we assume without loss of generality that \([a, b] = [-2, 2]\).
We construct a sequence \(\{g_n\}\) of continuous real-valued functions on \(X\) with the following properties:

(1) For each \(n \in \mathbb{N}\), \(|g_n(x)| \leq (2/3)^n\) on \(X\), and
(2) for each \(n \in \mathbb{N}\), \(|f - (g_1 + g_2 + \cdots + g_n)| \leq (2/3)^n\) on \(F\).

With this sequence constructed, define for each \(n \in \mathbb{N}\), the real-valued function \(s_n\) on \(X\) by \(s_n(x) = \sum_{k=1}^{n} g_k(x)\) for \(x \in X\). By property (1), we see that for each \(x \in X\), the sequence \(\{g_n(x)\}\) is a Cauchy sequence of real numbers and hence a convergent sequence.
Proof (continued). So define \(g(x) = \lim_{n \to \infty} s_n(x) \) for each \(x \in X \). Since each \(g_n \) is continuous on \(X \) then, of course, each \(s_n \) is continuous. By property (1), \(\{s_n\} \) converges to \(g \) uniformly on \(X \) (since \(\sum_{n=1}^{\infty} (2/3)^n = 2 \)). Therefore \(g \) is continuous on \(X \). By property (2), \(f \) is also the (uniform) pointwise limit of \(\{s_n\} \) on \(F \), so \(f = g \) on \(F \). Notice that for each \(x \in X \)

\[
g(x) = \left| \sum_{k=1}^{\infty} g_n(x) \right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.
\]

So \(g(x) \in [-2, 2] \) for all \(x \in X \). Therefore \(g \) is the desired continuous extension of \(f \) to \(X \).
Proof (continued). So define $g(x) = \lim_{n \to \infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. By property (1), $\{s_n\}$ converges to g uniformly on X (since $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous on X. By property (2), f is also the (uniform) pointwise limit of $\{s_n\}$ on F, so $f = g$ on F, Notice that for each $x \in X$

$$g(x) = \left| \sum_{k=1}^{\infty} g_n(x) \right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X. We now construct the sequence $\{g_n\}$.

Proof (continued). So define $g(x) = \lim_{n \to \infty} s_n(x)$ for each $x \in X$. Since each g_n is continuous on X then, of course, each s_n is continuous. By property (1), \{s_n\} converges to g uniformly on X (since $\sum_{n=1}^{\infty} (2/3)^n = 2$). Therefore g is continuous on X. By property (2), f is also the (uniform) pointwise limit of \{s_n\} on F, so $f = g$ on F. Notice that for each $x \in X$

$$g(x) = \left| \sum_{k=1}^{\infty} g_n(x) \right| \leq \sum_{k=1}^{\infty} |g_n(x)| \leq \sum_{k=1}^{\infty} (2/3)^n = 2.$$

So $g(x) \in [-2, 2]$ for all $x \in X$. Therefore g is the desired continuous extension of f to X. We now construct the sequence \{g_n\}.

The Tietze Extension Theorem (continued 1)
The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any $a > 0$ and continuous function $h : F \to \mathbb{R}$ for which $|h| \leq a$ on F, there is a continuous function $g : X \to \mathbb{R}$ such that

$$|g| \leq \frac{2}{3}a \text{ on } X \text{ and } |j - g| \leq \frac{2}{3}a \text{ on } F.$$

We justify this claim by defining

$$A = \{x \in F \mid h(x) \leq 1(1/3)a\} \text{ and } B = \{x \in F \mid h(x) \geq (1/3)a\}.$$

Since h is continuous, then $h^{-1}((-\infty, 1(1/3)a])$ and $h^{-1}([(1/3)a, \infty))$ are closed and so (since F is closed) sets A and B are closed.
The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any $a > 0$ and continuous function $h : F \rightarrow \mathbb{R}$ for which $|h| \leq a$ on F, there is a continuous function $g : X \rightarrow \mathbb{R}$ such that

$$|g| \leq \frac{2}{3}a \text{ on } X \text{ and } |j - g| \leq \frac{2}{3}a \text{ on } F.$$

We justify this claim by defining

$$A = \{x \in F \mid h(x) \leq \frac{1}{3}a\} \text{ and } B = \{x \in F \mid h(x) \geq \frac{1}{3}a\}.$$

Since h is continuous, then $h^{-1}((\infty, \frac{1}{3}a])$ and $h^{-1}([\frac{1}{3}a, \infty))$ are closed and so (since F ic closed) sets A and B are closed. Of course A and B are disjoint. Therefore, by Urysohn’s Lemma, there is a continuous real-valued function g on X for which $|g| \leq \frac{1}{3}a$ on X, $g(A) = -(\frac{1}{3})a$, and $g(B) = (\frac{1}{3})a$. Since $|h| < a$ on F, then for $x \in A$, $h(x) \leq -(\frac{1}{3})a$ and so $|h - g| \leq a - (\frac{1}{3})a = \frac{2}{3}a$ on A; for $x \in B$, $h(x) \geq (\frac{1}{3})a$ and so $|h - g| \leq a - (\frac{1}{3})a = \frac{2}{3}a$ on B;
The Tietze Extension Theorem (continued 2)

Proof (continued). We claim that for any $a > 0$ and continuous function $h : F \to \mathbb{R}$ for which $|h| \leq a$ on F, there is a continuous function $g : X \to \mathbb{R}$ such that

$$|g| \leq \left(\frac{2}{3}\right)a \text{ on } X \text{ and } |j - g| \leq \left(\frac{2}{3}\right)a \text{ on } F.$$

We justify this claim by defining

$$A = \{x \in F \mid h(x) \leq 1(1/3)a\} \text{ and } B = \{x \in F \mid h(x) \geq (1/3)a\}.$$

Since h is continuous, then $h^{-1}((-\infty, 1(1/3)a])$ and $h^{-1}([(1/3)a, \infty))$ are closed and so (since F is closed) sets A and B are closed. Of course A and B are disjoint. Therefore, by Urysohn’s Lemma, there is a continuous real-valued function g on X for which $|g| \leq (1/3)a$ on X, $g(A) = -(1/3)a$, and $g(B) = (1/3)a$. Since $|h| < a$ on F, then for $x \in A$, $h(x) \leq -(1/3)a$ and so $|h - g| \leq a - (1/3)a = (2/3)a$ on A; for $x \in B$, $h(x) \geq (1/3)a$ and so $|h - g| \leq a - (1/3)a = (2/3)a$ on B;
The Tietze Extension Theorem.
Let \((X, T)\) be a normal topological space, \(F\) a closed subset of \(X\), and \(f\) a continuous real-valued function on \(F\) that takes values in the closed, bounded interval \([a, b]\). Then \(f\) has a continuous extension to all of \(X\) that also takes values in \([a, b]\).

Proof (continued). since by Urysohn’s Lemma, \(g(x)\) is between \(-\left(\frac{1}{3}\right)a\) and \(\left(\frac{1}{3}\right)a\) (that is, \(|g(x)| \leq \left(\frac{1}{3}\right)a\)), then for all \(x \notin A \cup B\) and \(x \in F\) we have \(|h(x) - g(x)| \leq \left(\frac{2}{3}\right)a\). So \(|h - g| \leq \left(\frac{2}{3}\right)a\) on \(F\). So function \(g\) satisfies the claim. With \(a = 1\), choose such a \(g\) denoted \(g - 1\) with \(|g_1| \leq \frac{2}{3}\) on \(X\) and \(|f - g_1| \leq \frac{2}{3}\) on \(F\). now iterate the above process with \(h = f - g_1\) and \(a = \frac{2}{3}\) to find a continuous \(g_2 : X \to \mathbb{R}\) for which \(|g_2| \leq \frac{2}{3}\) on \(X\) and \(|f - (g_1 + g_2)| \leq \left(\frac{2}{3}\right)^2\) on \(F\). We can then inductively construct the desired sequence \(\{g_n\}\) which satisfies properties (1) and (2). The result now follows.
The Tietze Extension Theorem.
Let \((X, T)\) be a normal topological space, \(F\) a closed subset of \(X\), and \(f\) a continuous real-valued function on \(F\) that takes values in the closed, bounded interval \([a, b]\). Then \(f\) has a continuous extension to all of \(X\) that also takes values in \([a, b]\).

Proof (continued). Since by Urysohn’s Lemma, \(g(x)\) is between \(-\frac{1}{3}a\) and \(\frac{1}{3}a\) (that is, \(|g(x)| \leq \frac{1}{3}a\)), then for all \(x \notin A \cup B\) and \(x \in F\) we have \(|h(x) - g(x)| \leq \frac{2}{3}a\). So \(|h - g| \leq \frac{2}{3}a\) on \(F\). So function \(g\) satisfies the claim. With \(a = 1\), choose such a \(g\) denoted \(g - 1\) with \(|g_1| \leq \frac{2}{3}\) on \(X\) and \(|f - g_1| \leq \frac{2}{3}\) on \(F\). Now iterate the above process with \(h = f - g_1\) and \(a = \frac{2}{3}\) to find a continuous \(g_2 : X \to \mathbb{R}\) for which \(|g_2| \leq \frac{2}{3}\) on \(X\) and \(|f - (g_1 + g_2)| \leq (\frac{2}{3})^2\) on \(F\). We can then inductively construct the desired sequence \(\{g_n\}\) which satisfies properties (1) and (2). The result now follows.
The Urysohn Metrization Theorem

Let \((X, T)\) be a second countable topological space. Then \((X, T)\) is metrizable if and only if it is normal.

Proof. If \((X, T)\) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.
The Urysohn Metrization Theorem

Let \((X, \mathcal{T})\) be a second countable topological space. Then \((X, \mathcal{T})\) is metrizable if and only if it is normal.

Proof. If \((X, \mathcal{T})\) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let \((X, \mathcal{T})\) be a second countable and normal topological space. Let \(\{\mathcal{U}_n\}_{n \in \mathbb{N}}\) be a countable base (of distinct sets) for topology \((X, \mathcal{T})\). Let \(A \subseteq \mathbb{N} \times \mathbb{N}\) be defined as

\[
A = \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{\mathcal{U}}_n \subseteq \mathcal{U}_m\}.
\]
The Urysohn Metrization Theorem

Let \((X, \mathcal{T}) \) be a second countable topological space. Then \((X, \mathcal{T}) \) is metrizable if and only if it is normal.

Proof. If \((X, \mathcal{T}) \) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let \((X, \mathcal{T}) \) be a second countable and normal topological space. Let \(\{U_n\}_{n \in \mathbb{N}} \) be a countable base (of distinct sets) for topology \((X, \mathcal{T}) \). Let \(A \subseteq \mathbb{N} \times \mathbb{N} \) be defined as

\[
A = \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{U_n} \subseteq U_m\}.
\]

For each \((n, m) \in A \) we see that \(\overline{U_n} \) and \(X \sim U_m \) are disjoint closed sets. Since \((X, \mathcal{T}) \) is normal, Urysohn’s Lemma there is a continuous real-valued function \(f_{n,m} : X \to [0, 1] \) for which \(f_{n,m} = 0 \) on \(\overline{U_n} \) and \(f_{n,m} = 1 \) on \(X \sim U_m \).
The Urysohn Metrization Theorem.
Let \((X, \mathcal{T})\) be a second countable topological space. Then \((X, \mathcal{T})\) is metrizable if and only if it is normal.

Proof. If \((X, \mathcal{T})\) is metrizable then the result is a metric space. By Proposition 11.7, every metric space is normal.

Now let \((X, \mathcal{T})\) be a second countable and normal topological space. Let \(\{\mathcal{U}_n\}_{n \in \mathbb{N}}\) be a countable base (of distinct sets) for topology \((X, \mathcal{T})\). Let \(A \subseteq \mathbb{N} \times \mathbb{N}\) be defined as

\[
A = \{ (n, m) \in \mathbb{N} \times \mathbb{N} \mid \overline{\mathcal{U}_n} \subseteq \mathcal{U}_m \}.
\]

For each \((n, m) \in A\) we see that \(\overline{\mathcal{U}_n}\) and \(X \sim \mathcal{U}_m\) are disjoint closed sets. Since \((X, \mathcal{T})\) is normal, Urysohn’s Lemma there is a continuous real-valued function \(f_{n,m} : X \to [0, 1]\) for which \(f_{n,m} = 0\) on \(\overline{\mathcal{U}_n}\) and \(f_{n,m} = 1\) on \(X \sim \mathcal{U}_m\).
The Urysohn Metrization Theorem (continued 1)

Proof (continued). For \(x, y \in X \), define the (alleged) metric

\[
\rho(x, y) = \sum_{(n,m) \in A} \frac{1}{2^{n+m}}|f_{n,m}(x) - f_{n,m}(y)|.
\]

Notice that \(|f_{n,m}(x) - f_{n,m}(y)| \leq 1 \) for all \(x, y \in X \). For \(n \neq m \), we cannot have both \((n, m) \) and \((m, n) \) in \(A \) (or else \(\overline{U}_n \subseteq \overline{U}_m \) and \(\overline{U}_m \subseteq \overline{U}_n \), in which case \(U_n = U_m \) which contradicts the fact that the sets in \(\{U_n\}_{n \in \mathbb{N}} \) are distinct).
Proof (continued). For \(x, y \in X \), define the (alleged) metric

\[
\rho(x, y) = \sum_{(n, m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.
\]

Notice that \(|f_{n,m}(x) - f_{n,m}(y)| \leq 1 \) for all \(x, y \in X \). For \(n \neq m \), we cannot have both \((n, m) \) and \((m, n) \) in \(A \) (or else \(U_n \subseteq U_m \) and \(U_m \subseteq U_n \), in which case \(U_n = U_m \) which contradicts the fact that the sets in \(\{U_n\}_{n \in \mathbb{N}} \) are distinct). So the elements of set \(A \) include AT MOST the following:

\[
(1, 1), \ (1, 2), \ (1, 3), \ (1, 4), \ \cdots \\
(2, 2), \ (2, 3), \ (2, 4), \ \cdots \\
(3, 3), \ (3, 4), \ \cdots \\
(4, 4), \ \cdots \\
\cdots
\]
The Urysohn Metrization Theorem (continued 1)

Proof (continued). For \(x, y \in X \), define the (alleged) metric

\[
\rho(x, y) = \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|.
\]

Notice that \(|f_{n,m}(x) - f_{n,m}(y)| \leq 1\) for all \(x, y \in X \). For \(n \neq m \), we cannot have both \((n, m)\) and \((m, n)\) in \(A\) (or else \(\overline{U}_n \subseteq U_m\) and \(\overline{U}_m \subseteq U_n\), in which case \(U_n = U_m\) which contradicts the fact that the sets in \(\{U_n\}_{n \in \mathbb{N}}\) are distinct). So the elements of set \(A\) include AT MOST the following:

\[
(1,1), \ (1,2), \ (1,3), \ (1,4), \ \ldots \\
(2,2), \ (2,3), \ (2,4), \ \ldots \\
(3,3), \ (3,4), \ \ldots \\
(4,4), \ \ldots \\
\ldots
\]
Proof (continued). So for all $x, y \in X$ we have

$$\rho(x, y) = \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)|$$

$$\leq \sum_{(n,m) \in A} \frac{1}{2^{n+m}}$$

$$\leq \sum_{m=1}^{n} \frac{1}{2^{1+m}} + \sum_{m=2}^{n} \frac{1}{2^{2+m}} + \sum_{m=3}^{n} \frac{1}{2^{3+m}} + \cdots$$

$$= \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \cdots$$

$$= \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{1}{2} \cdot \frac{1}{1 - 1/4} = \frac{2}{3}.$$

So the series determining $\rho(x, y)$ converges.
Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \geq 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since (X, \mathcal{T}) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$.

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \geq 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since (X, \mathcal{T}) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, \mathcal{T}) is normal, there is open $\mathcal{O} \in \mathcal{T}$ such that $\{x\} \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $\mathcal{U}_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}_n} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$.
Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \geq 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since (X, \mathcal{T}) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, \mathcal{T}) is normal, there is open \mathcal{O}_x containing x and not containing y. So there is some base set \mathcal{U}_m with $x \in \mathcal{U}_m$ and $\mathcal{U}_m \subseteq \mathcal{O}_x$. By Proposition 11.8, since (X, \mathcal{T}) is normal, there is open $\mathcal{O} \in \mathcal{T}$ such that $\{x\} \subseteq \mathcal{O} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So there is a base set \mathcal{U}_n with $x \in \mathcal{U}_n$ and $\mathcal{U}_n \subseteq \mathcal{O}$. Then $\overline{\mathcal{U}_n} \subseteq \overline{\mathcal{O}} \subseteq \mathcal{U}_m$. So $f_{n,m}(x) = 0$ and, since $y \in X ~ \sim \mathcal{U}_m$, $f_{n,m}(y) = 1$. Therefore, $(n, m) \in A$ and $|f_{n,m}(x) - f_{n,m}(y)| = 1$, so $\rho(x, y) \neq 0$, and the claim holds.
The Urysohn Metrization Theorem (continued 3)

Proof (continued). Now to show that ρ is in fact a metric. Of course, $\rho(x, y) = \rho(y, x)$. Also, $\rho(x, y) \geq 0$ and $\rho(x, x) = 0$.

Claim 1. We claim $\rho(x, y) = 0$ implies $x = y$. We show the contrapositive. Suppose $x \neq y$. Since (X, T) is normal (and hence, by definition, Tychonoff) then $\{x\}$ and $\{y\}$ are closed sets by Proposition 11.6. Since (X, T) is normal, there is open O_x containing x and not containing y. So there is some base set U_m with $x \in U_m$ and $U_m \subseteq O_x$. By Proposition 11.8, since (X, T) is normal, there is open $O \in T$ such that $\{x\} \subseteq O \subseteq \overline{O} \subseteq U_m$. So there is a base set U_n with $x \in U_n$ and $U_n \subseteq O$. Then $\overline{U}_n \subseteq \overline{O} \subseteq U_m$. So $f_{n,m}(x) = 0$ and, since $y \in X \sim U_m$, $f_{n,m}(y) = 1$. Therefore, $(n, m) \in A$ and $|f_{n,m}(x) - f_{n,m}(y)| = 1$, so $\rho(x, y) \neq 0$, and the claim holds.
The Urysohn Metrization Theorem (continued 4)

Proof (continued). Claim 2. For all \(x, y, z \in X \), we claim \(\rho(x, z) \leq \rho(x, y) + \rho(y, z) \). For any \((n, m) \in A\) we have

\[
|f_{n,m}(x) - f_{n,m}(z)| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)| \\
\leq |f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|
\]

by the Triangle Inequality on \(\mathbb{R} \),

\[
\rho(x, z) = \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(z)| \\
\leq \sum_{(n,m) \in A} \frac{1}{2^{n+m}} (|f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|) \\
= \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)| \\
+ \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(y) - f_{n,m}(z)| = \rho(x, y) + \rho(y, z).
\]
The Urysohn Metrization Theorem (continued 4)

Proof (continued). Claim 2. For all \(x, y, z \in X \), we claim \(\rho(x, z) \leq \rho(x, y) + \rho(y, z) \). For any \((n, m) \in A\) we have

\[
|f_{n,m}(x) - f_{n,m}(z)| = |f_{n,m}(x) - f_{n,m}(y) + f_{n,m}(y) - f_{n,m}(z)| \\
\leq |f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|
\]

by the Triangle Inequality on \(\mathbb{R} \),

\[
\rho(x, z) = \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(z)|
\]

\[
\leq \sum_{(n,m) \in A} \frac{1}{2^{n+m}} (|f_{n,m}(x) - f_{n,m}(y)| + |f_{n,m}(y) - f_{n,m}(z)|)
\]

\[
= \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(x) - f_{n,m}(y)| + \sum_{(n,m) \in A} \frac{1}{2^{n+m}} |f_{n,m}(y) - f_{n,m}(z)| = \rho(x, y) + \rho(y, z).
\]
Proof (continued). So the Triangle Inequality holds and Claim 2 holds.

Therefore \(\rho \) is a metric. We now need to show that topology \(\mathcal{T} \) on \(X \) is the same as the topology on \(X \) induced by metric \(\rho \). To do so, we need to show that for each \(x \in X \):

(i) If \(U_n \) contains \(x \), then there is an \(\varepsilon > 0 \) for which \(B_\rho(x, \varepsilon) \subseteq U_n \).

(ii) For each \(\varepsilon > 0 \), there is a \(U_n \) that contains \(x \) and \(U_n \subseteq B_\rho(x, \varepsilon) \).

It then follows that a set is open in one topology if and only if it is open in the other topology. These two properties are verified in Problem 12.7.
Proof (continued). So the Triangle Inequality holds and Claim 2 holds. Therefore ρ is a metric. We now need to show that topology T on X is the same as the topology on X induced by metric ρ. To do so, we need to show that for each $x \in X$:

(i) If U_n contains x, then there is an $\varepsilon > 0$ for which $B_\rho(x, \varepsilon) \subseteq U_n$.

(ii) For each $\varepsilon > 0$, there is a U_n that contains x and $U_n \subseteq B_\rho(x, \varepsilon)$.

It then follows that a set is open in one topology if and only if it is open in the other topology. These two properties are verified in Problem 12.7.