### **Real Analysis**

#### **Chapter 12. Topological Spaces: Three Fundamental Theorems** 12.2. The Tychonoff Product Theorem—Proofs of Theorems



**Real Analysis** 







**Lemma 12.5.** Let  $\mathcal{A}$  be a collection of subsets of a set X that possesses the finite intersection property. Then there is a collection  $\mathcal{B}$  of subsets of X which contains  $\mathcal{A}$ , has the finite intersection property, and is maximal with respect to this property; that is, no collection of subsets of X that properly contains  $\mathcal{B}$  possesses the finite intersection property.

**Proof.** Consider the family  $\mathcal{F}$  of all collections of subsets of X which contain  $\mathcal{A}$  and possessing the finite intersection property. Partially order  $\mathcal{F}$  by set inclusion. Every linearly ordered subfamily  $\mathcal{F}_0$  of  $\mathcal{F}$  has an upper bound consisting of the union of all the sets in  $\mathcal{F}_0$ .

**Lemma 12.5.** Let  $\mathcal{A}$  be a collection of subsets of a set X that possesses the finite intersection property. Then there is a collection  $\mathcal{B}$  of subsets of X which contains  $\mathcal{A}$ , has the finite intersection property, and is maximal with respect to this property; that is, no collection of subsets of X that properly contains  $\mathcal{B}$  possesses the finite intersection property.

**Proof.** Consider the family  $\mathcal{F}$  of all collections of subsets of X which contain  $\mathcal{A}$  and possessing the finite intersection property. Partially order  $\mathcal{F}$  by set inclusion. Every linearly ordered subfamily  $\mathcal{F}_0$  of  $\mathcal{F}$  has an upper bound consisting of the union of all the sets in  $\mathcal{F}_0$ . Then by Zorn's Lemma set  $\mathcal{F}$  has a maximal member. This maximal element is the set  $\mathcal{B}$  in the lemma.

**Lemma 12.5.** Let  $\mathcal{A}$  be a collection of subsets of a set X that possesses the finite intersection property. Then there is a collection  $\mathcal{B}$  of subsets of X which contains  $\mathcal{A}$ , has the finite intersection property, and is maximal with respect to this property; that is, no collection of subsets of X that properly contains  $\mathcal{B}$  possesses the finite intersection property.

**Proof.** Consider the family  $\mathcal{F}$  of all collections of subsets of X which contain  $\mathcal{A}$  and possessing the finite intersection property. Partially order  $\mathcal{F}$  by set inclusion. Every linearly ordered subfamily  $\mathcal{F}_0$  of  $\mathcal{F}$  has an upper bound consisting of the union of all the sets in  $\mathcal{F}_0$ . Then by Zorn's Lemma set  $\mathcal{F}$  has a maximal member. This maximal element is the set  $\mathcal{B}$  in the lemma.

### Lemma 12.6

**Lemma 12.6.** Let  $\mathcal{B}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then each intersection of a finite property. Then each intersection of a finite number of sets in  $\mathcal{B}$  is again in  $\mathcal{B}$ , and each subset of X that has nonempty intersection with each set in  $\mathcal{B}$  is itself in  $\mathcal{B}$ .

**Proof.** Let  $\mathcal{B}'$  be the collection of <u>all</u> sets that are finite intersections of sets in  $\mathcal{B}$ . Then  $\mathcal{B}'$  is a collection of sets with the finite intersection property and  $\mathcal{B} \subset \mathcal{B}'$ . Since  $\mathcal{B}$  is maximal with respect to this property, then  $\mathcal{B}' = \mathcal{B}$ .

### Lemma 12.6

**Lemma 12.6.** Let  $\mathcal{B}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then each intersection of a finite property. Then each intersection of a finite number of sets in  $\mathcal{B}$  is again in  $\mathcal{B}$ , and each subset of X that has nonempty intersection with each set in  $\mathcal{B}$  is itself in  $\mathcal{B}$ .

**Proof.** Let  $\mathcal{B}'$  be the collection of <u>all</u> sets that are finite intersections of sets in  $\mathcal{B}$ . Then  $\mathcal{B}'$  is a collection of sets with the finite intersection property and  $\mathcal{B} \subset \mathcal{B}'$ . Since  $\mathcal{B}$  is maximal with respect to this property, then  $\mathcal{B}' = \mathcal{B}$ . Now suppose that C is a subset of X that has nonempty intersection with each member of  $\mathcal{B}$ . Since  $\mathcal{B}$  contains each finite intersection of sets in  $\mathcal{B}$  (by the  $\mathcal{B}'$  argument above) then  $\mathcal{B} \cup \{C\}$  has the finite intersection property (a finite collection of sets in  $\mathcal{B}$  has nonempty intersection and this intersection itself is in  $\mathcal{B}$ , so C has nonempty intersection with the finite intersection of elements in  $\mathcal{B}$ ). Since  $\mathcal{B}$  is maximal, then  $\mathcal{B} = \mathcal{B} \cup \{C\}$  and so  $C \in \mathcal{B}$  as claimed.

### Lemma 12.6

**Lemma 12.6.** Let  $\mathcal{B}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then each intersection of a finite property. Then each intersection of a finite number of sets in  $\mathcal{B}$  is again in  $\mathcal{B}$ , and each subset of X that has nonempty intersection with each set in  $\mathcal{B}$  is itself in  $\mathcal{B}$ .

**Proof.** Let  $\mathcal{B}'$  be the collection of <u>all</u> sets that are finite intersections of sets in  $\mathcal{B}$ . Then  $\mathcal{B}'$  is a collection of sets with the finite intersection property and  $\mathcal{B} \subset \mathcal{B}'$ . Since  $\mathcal{B}$  is maximal with respect to this property, then  $\mathcal{B}' = \mathcal{B}$ . Now suppose that C is a subset of X that has nonempty intersection with each member of  $\mathcal{B}$ . Since  $\mathcal{B}$  contains each finite intersection of sets in  $\mathcal{B}$  (by the  $\mathcal{B}'$  argument above) then  $\mathcal{B} \cup \{C\}$  has the finite intersection property (a finite collection of sets in  $\mathcal{B}$  has nonempty intersection and this intersection itself is in  $\mathcal{B}$ , so C has nonempty intersection with the finite intersection of elements in  $\mathcal{B}$ ). Since  $\mathcal{B}$  is maximal, then  $\mathcal{B} = \mathcal{B} \cup \{C\}$  and so  $C \in \mathcal{B}$  as claimed.

#### The Tychonoff Product Theorem.

Let  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  be a collection of compact topological spaces indexed by a set  $\Lambda$ . Then the Cartesian product  $\prod_{\lambda \in \Lambda} X_{\lambda}$ , with the product topology, also is compact.

**Proof.** Let  $\mathcal{F}$  be a collection of closed subsets of  $X = \prod_{\lambda \in \Lambda} X_{\lambda}$  possessing the finite intersection property. The result will follow by Proposition 11.14 if we can show that the intersection of all elements of  $\mathcal{F}$  is nonempty. By Lemma 12.5, there is a collection  $\mathcal{B}$  of (not necessarily closed) subsets of X that contains  $\mathcal{F}$  and is maximal with respect to the finite intersection property.

**Real Analysis** 

#### The Tychonoff Product Theorem.

Let  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  be a collection of compact topological spaces indexed by a set  $\Lambda$ . Then the Cartesian product  $\prod_{\lambda \in \Lambda} X_{\lambda}$ , with the product topology, also is compact.

**Proof.** Let  $\mathcal{F}$  be a collection of closed subsets of  $X = \prod_{\lambda \in \Lambda} X_{\lambda}$  possessing the finite intersection property. The result will follow by Proposition 11.14 if we can show that the intersection of all elements of  $\mathcal{F}$  is nonempty. By Lemma 12.5, there is a collection  $\mathcal{B}$  of (not necessarily closed) subsets of X that contains  $\mathcal{F}$  and is maximal with respect to the finite intersection property. Fix  $\lambda \in \Lambda$ . Define  $\mathcal{B}_{\lambda} = \{\pi_{\lambda}(B) \mid B \in \mathcal{B}\}$  (that is,  $\mathcal{B}_{\lambda}$  consists of the projection of all  $B \in \mathcal{B}$  onto  $X_{\lambda}$ ). Then  $\mathcal{B}_{\lambda}$  is a collection of subsets of the set  $X_{\lambda}$  that has the finite intersection property (for if the finite intersection property were not satisfied in the  $\lambda$ -th component then it would not be satisfied over all).

#### The Tychonoff Product Theorem.

Let  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  be a collection of compact topological spaces indexed by a set  $\Lambda$ . Then the Cartesian product  $\prod_{\lambda \in \Lambda} X_{\lambda}$ , with the product topology, also is compact.

**Proof.** Let  $\mathcal{F}$  be a collection of closed subsets of  $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ possessing the finite intersection property. The result will follow by Proposition 11.14 if we can show that the intersection of all elements of  ${\cal F}$ is nonempty. By Lemma 12.5, there is a collection  $\mathcal{B}$  of (not necessarily closed) subsets of X that contains  $\mathcal{F}$  and is maximal with respect to the finite intersection property. Fix  $\lambda \in \Lambda$ . Define  $\mathcal{B}_{\lambda} = \{\pi_{\lambda}(B) \mid B \in \mathcal{B}\}$ (that is,  $\mathcal{B}_{\lambda}$  consists of the projection of all  $B \in \mathcal{B}$  onto  $X_{\lambda}$ ). Then  $\mathcal{B}_{\lambda}$  is a collection of subsets of the set  $X_{\lambda}$  that has the finite intersection property (for if the finite intersection property were not satisfied in the  $\lambda$ -th component then it would not be satisfied over all). So the closure of the members of  $\mathcal{B}_{\lambda}$  also have the finite intersection property.

#### The Tychonoff Product Theorem.

Let  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  be a collection of compact topological spaces indexed by a set  $\Lambda$ . Then the Cartesian product  $\prod_{\lambda \in \Lambda} X_{\lambda}$ , with the product topology, also is compact.

**Proof.** Let  $\mathcal{F}$  be a collection of closed subsets of  $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ possessing the finite intersection property. The result will follow by Proposition 11.14 if we can show that the intersection of all elements of  ${\cal F}$ is nonempty. By Lemma 12.5, there is a collection  $\mathcal{B}$  of (not necessarily closed) subsets of X that contains  $\mathcal{F}$  and is maximal with respect to the finite intersection property. Fix  $\lambda \in \Lambda$ . Define  $\mathcal{B}_{\lambda} = \{\pi_{\lambda}(B) \mid B \in \mathcal{B}\}$ (that is,  $\mathcal{B}_{\lambda}$  consists of the projection of all  $B \in \mathcal{B}$  onto  $X_{\lambda}$ ). Then  $\mathcal{B}_{\lambda}$  is a collection of subsets of the set  $X_{\lambda}$  that has the finite intersection property (for if the finite intersection property were not satisfied in the  $\lambda$ -th component then it would not be satisfied over all). So the closure of the members of  $\mathcal{B}_{\lambda}$  also have the finite intersection property.

## The Tychonoff Product Theorem (continued 1)

**Proof (continued).** Since  $X_{\lambda}$  is compact, by Proposition 11.14 there is a point  $x_{\lambda} \in X_{\lambda}$  for which  $x_{\lambda} \in \bigcap_{B \in \mathcal{B}} \overline{\pi_{\lambda}(B)}$ . Define x to be the point in X whose  $\lambda$ -th coordinate is  $x_{\lambda}$ . We claim that

$$x \in \cap_{F \in \mathcal{F}} F. \tag{7}$$

Indeed, the point x has the property that for each index  $\lambda$ ,  $x_{\lambda}$  is a point of closure of  $\pi_{\lambda}(B)$  for every  $B \in \mathcal{B}$ .

We define an open set of the form  $\mathcal{O} = \prod_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$  where each  $\mathcal{O}_{\lambda} = X_{\lambda}$  except for one value of  $\lambda$ , say  $\lambda_0$ , where  $\mathcal{O}_{\lambda_0}$  is an open set in  $X_{\lambda_0}$ , as a *subbasic set*. The finite intersection of subbasic sets is a *basic set* (for which all but finitely many  $\mathcal{O}_{\lambda} = X_{\lambda}$  and the remaining  $\mathcal{O}_{\lambda}$  are open in the respective space).

## The Tychonoff Product Theorem (continued 1)

**Proof (continued).** Since  $X_{\lambda}$  is compact, by Proposition 11.14 there is a point  $x_{\lambda} \in X_{\lambda}$  for which  $x_{\lambda} \in \bigcap_{B \in \mathcal{B}} \overline{\pi_{\lambda}(B)}$ . Define x to be the point in X whose  $\lambda$ -th coordinate is  $x_{\lambda}$ . We claim that

$$x \in \cap_{F \in \mathcal{F}} F. \tag{7}$$

Indeed, the point x has the property that for each index  $\lambda$ ,  $x_{\lambda}$  is a point of closure of  $\pi_{\lambda}(B)$  for every  $B \in \mathcal{B}$ .

We define an open set of the form  $\mathcal{O} = \prod_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$  where each  $\mathcal{O}_{\lambda} = X_{\lambda}$  except for one value of  $\lambda$ , say  $\lambda_0$ , where  $\mathcal{O}_{\lambda_0}$  is an open set in  $X_{\lambda_0}$ , as a *subbasic set*. The finite intersection of subbasic sets is a *basic set* (for which all but finitely many  $\mathcal{O}_{\lambda} = X_{\lambda}$  and the remaining  $\mathcal{O}_{\lambda}$  are open in the respective space). Thus every subbasic neighborhood  $\mathcal{N}_x$  of x has a nonempty intersection with every  $B \in \mathcal{B}$ . By Lemma 12.6, since  $\mathcal{B}$  is maximal, every subbasic neighborhood of x is in  $\mathcal{B}$ . So every basic neighborhoods of x (being a finite intersection of subbasic neighborhoods of x) is, again by Lemma 12.6, in  $\mathcal{B}$ .

()

## The Tychonoff Product Theorem (continued 1)

**Proof (continued).** Since  $X_{\lambda}$  is compact, by Proposition 11.14 there is a point  $x_{\lambda} \in X_{\lambda}$  for which  $x_{\lambda} \in \bigcap_{B \in \mathcal{B}} \overline{\pi_{\lambda}(B)}$ . Define x to be the point in X whose  $\lambda$ -th coordinate is  $x_{\lambda}$ . We claim that

$$x \in \cap_{F \in \mathcal{F}} F. \tag{7}$$

Indeed, the point x has the property that for each index  $\lambda$ ,  $x_{\lambda}$  is a point of closure of  $\pi_{\lambda}(B)$  for every  $B \in \mathcal{B}$ .

We define an open set of the form  $\mathcal{O} = \prod_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$  where each  $\mathcal{O}_{\lambda} = X_{\lambda}$  except for one value of  $\lambda$ , say  $\lambda_0$ , where  $\mathcal{O}_{\lambda_0}$  is an open set in  $X_{\lambda_0}$ , as a *subbasic set*. The finite intersection of subbasic sets is a *basic set* (for which all but finitely many  $\mathcal{O}_{\lambda} = X_{\lambda}$  and the remaining  $\mathcal{O}_{\lambda}$  are open in the respective space). Thus every subbasic neighborhood  $\mathcal{N}_x$  of x has a nonempty intersection with every  $B \in \mathcal{B}$ . By Lemma 12.6, since  $\mathcal{B}$  is maximal, every subbasic neighborhood of x is in  $\mathcal{B}$ . So every basic neighborhoods of x (being a finite intersection of subbasic neighborhoods of x) is, again by Lemma 12.6, in  $\mathcal{B}$ .

Real Analysis

# The Tychonoff Product Theorem (continued 2)

#### The Tychonoff Product Theorem.

Let  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  be a collection of compact topological spaces indexed by a set  $\Lambda$ . Then the Cartesian product  $\prod_{\lambda \in \Lambda} X_{\lambda}$ , with the product topology, also is compact.

**Proof (continued).** But  $\mathcal{B}$  (by choice) has the finite intersection property and contains the collection  $\mathcal{F}$ . Let F be a set in  $\mathcal{F}$ . Then F is in  $\mathcal{B}$  and so every basic neighborhood of x (which is in  $\mathcal{B}$  as explained above) has nonempty intersection with F (applying the finite intersection property to the basic neighborhood and set F). Hence x is a point of closure of the closed set F (since the basic open sets are a base for the product topology by definition of product topology). Hence,  $x \in F$  and (7) holds. So the intersection of all elements of  $\mathcal{F}$  is nonempty and by Proposition 11.4, Xis compact.

# The Tychonoff Product Theorem (continued 2)

#### The Tychonoff Product Theorem.

Let  $\{X_{\lambda}\}_{\lambda \in \Lambda}$  be a collection of compact topological spaces indexed by a set  $\Lambda$ . Then the Cartesian product  $\prod_{\lambda \in \Lambda} X_{\lambda}$ , with the product topology, also is compact.

**Proof (continued).** But  $\mathcal{B}$  (by choice) has the finite intersection property and contains the collection  $\mathcal{F}$ . Let F be a set in  $\mathcal{F}$ . Then F is in  $\mathcal{B}$  and so every basic neighborhood of x (which is in  $\mathcal{B}$  as explained above) has nonempty intersection with F (applying the finite intersection property to the basic neighborhood and set F). Hence x is a point of closure of the closed set F (since the basic open sets are a base for the product topology by definition of product topology). Hence,  $x \in F$  and (7) holds. So the intersection of all elements of  $\mathcal{F}$  is nonempty and by Proposition 11.4, Xis compact.