### Real Analysis

# Chapter 12. Topological Spaces: Three Fundamental Theorems

12.3. The Stone-Weierstrass Theorem—Proofs of Theorems



Lemma 12.7 (continued 1)

 $g \in \mathcal{A}$  by with corresponding  $g_{y_i}$ 's such that the  $\mathcal{N}_{y_i}$ 's cover G. Define the function each  $y \in F$ , we can find a finite collection  $\{y_1, y_2, \dots, y_n\}$  of points in F, **Proof** (continued). However, F is a closed subset of the compact space X and so F itself is compact by Proposition 11.15. Since this holds for

$$g = \frac{1}{n} \sum_{i=1}^{n} g_{y_i}.$$

a positive number, we may suppose c < 1. On the other hand, g is we may choose c>0 for which  $g\geq c$  on F. By possibly multiplying g by continuous at  $x_0$  where  $g(x_0)=0$ , so there is a neighborhood  $\mathcal U$  of  $x_0$  for function on a compact set takes on a minimum value (Corollary 11.21), so Then  $g(x_0)=0$ , g>0 on F, and  $0\leq g\leq 1$  on X. But a continuous

g < c/2 on  $\mathcal{U}$ ,  $g \ge c$  on F, and  $0 \le g \le 1$  on X.

### Lemma 12.7

following property: For each arepsilon>0 there is a function  $h\in\mathcal{A}$  for which there is a neighborhood  ${\mathcal U}$  of  ${\mathsf x}_0$  that is disjoint from F and has the continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , **Lemma 12.7.** Let X be a compact Hausdorff space and A an algebra of

 $h < \varepsilon$  on  $\mathcal{U}$ ,  $h > 1 - \varepsilon$  on F, and  $0 \le h \le 1$  on X.

 $f(x_0) \neq f(y)$ . The function **Proof.** Since A separates points, for each  $y \in F$  there is  $f \in A$  for which

$$g_y = \left(\frac{f - f(x_0)}{\|f - f(x_0)\|_{\text{max}}}\right)^2$$

functions (by the definition of "algebra"). Also,  $g(x_0)=0$ , g(y)>0, and in in  ${\mathcal A}$  since  ${\mathcal A}$  is a linear space closed under products containing constant on which  $g_y$  only takes on positive values.  $0 \leq g_{y} \leq 1$  on X . Since  $g_{y}$  is continuous, there is a neighborhood  $\mathcal{N}_{y}$  of y

3 / 16

## Lemma 12.7 (continued 2)

**Proof (continued).** Let  $\varepsilon > 0$ . By the Weierstrass Approximation I heorem, there is a polynomial p such that

$$p<\varepsilon$$
 on  $[0,c/2],\ p>1-\varepsilon$  on  $[c,1],\$ and  $0\le p\le 1$  on  $[0,1].$  (14)

Consider the continuous function



and apply the Weierstrass Approximation Theorem for arepsilon/2 < 0 to get the desired polynomial p.

Real Analysis

We claim that (10) holds for this choice of neighborhood  $\mathcal U.$ December 31, 2016 4 / 16

Real Analysis

December 31, 2016 5 / 16

## Lemma 12.7 (continued 3)

following property: For each  $\varepsilon > 0$  there is a function  $h \in \mathcal{A}$  for which there is a neighborhood  ${\mathcal U}$  of  $x_0$  that is disjoint from F and has the functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , continuous functions on X that separates points and contains the constant **Lemma 12.7.** Let X be a compact Hausdorff space and A an algebra of

$$h<\varepsilon$$
 on  $\mathcal{U},\ h>1-\varepsilon$  on  $F,\$ and  $0\leq h\leq 1$  on  $X.$ 

it a linear space). From (13) and (14) we have composition  $h=p\circ g$  also belongs to  $\mathcal{A}$  ( $\mathcal{A}$  is closed under products and **Proof** (continued). Since p is a polynomial and g belongs to A, the

- g < c/2 on  $\mathcal U$  and  $p < \varepsilon$  on [0,c/2] implies  $h = p \circ g < \varepsilon$  on  $\mathcal U$
- ullet  $g \geq c/2$  on F and ho > 1 arepsilon on [c,1] implies  $h = 
  ho \circ g > 1 arepsilon$  on F,
- ullet 0  $\leq g \leq 1$  on X and 0  $\leq p \leq 1$  on [0,1] implies  $h=p\circ g$  satisfies  $0 \le h \le 1$  on X.

So (10) holds for h and  $\mathcal{U}$ .

## Lemma 12.8 (continued)

 $\varepsilon > 0$ , there is a function h belonging to  $\mathcal A$  for which functions. Then for each pair of disjoint closed subsets A and B of X and continuous functions on X that separates points and contains the constant **Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of

$$h<\varepsilon \text{ on }A,\ h>1-\varepsilon \text{ on }B, \text{ and }0\leq h\leq 1 \text{ on }X.$$

function h has the desired properties. other indices j we have  $0 \le h_j(x) \le 1$ , it follows that  $h(x) < \varepsilon_0/n < \varepsilon$ . So **Proof.** Since for each i we have  $0 \le h_i \le 1$  on X, then  $0 \le j \le 1$  on X. B. Finally, for each point  $x \in A$  there is an index i for which  $x \in \mathcal{N}_{x_i}$ Also, for each i we have  $h_i > 1 - \varepsilon/n$  on B, so  $h \ge (1 - \varepsilon/n)^n > 1 - \varepsilon$  on (since the  $\mathcal{N}_{x_i}$  form a cover). Thus  $h_i(x)<arepsilon_0/n<arepsilon$  and since for the

### Lemma 12.8

 $\varepsilon > 0$ , there is a function h belonging to  ${\cal A}$  for which functions. Then for each pair of disjoint closed subsets A and B of X and continuous functions on X that separates points and contains the constant **Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of

$$h < \varepsilon$$
 on  $A$ ,  $h > 1 - \varepsilon$  on  $B$ , and  $0 \le h \le 1$  on  $X$ .

products).  $h=h_1h_2\cdots h_n$  on X. Then h belongs to  $\mathcal A$  (since  $\mathcal A$  is closed under  $h_i < \varepsilon_0/n$  on  $\mathcal{N}_{\mathbf{x}}$ ,  $h_i > 1 - \varepsilon_0/n$  on B, and  $0 \le j_i \le 1$  on X. Define since  $\mathcal{N}_{x_i}$  has property (1) with B=F, we choose  $h_i\in\mathcal{A}$  such that Choose  $\varepsilon_0$  for which  $0 < \varepsilon_0 < \varepsilon$  and  $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$ . For  $1 \le i \le n$ , A with corresponding neighborhoods  $\mathcal{N}_{x_1}, \mathcal{N}_{x_2}, \cdots, \mathcal{N}_{x_n}$  that covers A. (Proposition 11.15), so there is a finite subset of points  $\{x_1, x_2, \dots, x_n\}$  in However A is a closed subset of compact space X and so A is compact a neighborhood  $\mathcal{N}_x$  of x that is disjoint from B and has the property (10). **Proof.** By Lemma 12.7 with F = B, we know that for each  $x \in A$  there is

## The Stone-Weierstrass Approximation Theorem

## The Stone-Weierstrass Approximation Theorem

contains the constant functions. Then A is dense in C(X). continuous real-valued functions on X that separates points in X and Let X be a compact Hausdorff space. Suppose  ${\mathcal A}$  is an algebra of

[0,1]. Fix j with  $1 \le j \le n$ . Define n>1. Consider the uniform partition  $\{0,1/n,2/n,\ldots,(n-1)/n,1\}$  of constant c). Therefore, we may assume  $0 \le f \le 1$  on X. Let  $n \in \mathbb{N}$ this, multiply if by the constant  $||f+c||_{\sf max}$ , and then subtract the functions in  $\mathcal{A}$ , we can do the same for f (take the function approximating closely uniformly approximate the function  $(f+c)/\|f+c\|_{\text{max}}$  by **Proof.** Let f belong to C(X) and let  $c = ||f||_{max}$ . If we can arbitrarily

$$A_j = x \in X \mid f(x) \le (j-1)/n$$
 and  $B_j = \{x \in X \mid f(x) \ge j/n\}$ .

 $B_j = f^{-1}([j/n,\infty))$  are closed subsets of X which are disjoint. Since f is continuous, both  $A_j = f^{-1}((-\infty, (j-1)/n])$  and

December 31, 2016 9 / 16

# The Stone-Weierstrass Approximation Theorem (cont. 1)

there is a function  $g_j \in \mathcal{A}$  for which **Proof (continued).** By Lemma 12.8, with  $A=A_j$ ,  $B=B_j$ , and  $\varepsilon=1/n$ ,

$$g_j(x) < 1/n \text{ if } f(x) \le (j-1)/n \text{ (i.e., } x \in A_j),$$

$$g_j(x) > 1 - 1/n \text{ if } f(x) \ge j/n \text{ (i.e., } x \in B_j), \text{ and } 0 \le g_j \le 1 \text{ on } X.$$
 (16)

Define  $g=(1/n)\sum_{j=1}^n g_j$ . Then  $g\in\mathcal{A}$ . We claim that

$$||f - g||_{\text{max}} < 3/n.$$
 (17)

With this established, given  $\varepsilon>0$  we just select n such that  $3/n<\varepsilon$  and then  $\{f-g|_{\max}<\varepsilon$  as desired. To verify (17) we first show that

if 
$$1 \le k \le n$$
 and  $f(x) \le k/n$  then  $g(x) \le k/n + 1/n$ . (18)

The Stone-Weierstrass Approximation Theorem (cont. 2)

Therefore  $g_j(x) \leq 1/n$  by (16). Thus **Proof (continued).** Indeed, for  $j=k+1,k+2,\ldots,n$ , with the assumption that  $f(x) \le k/n$ , we have that  $f(x) \le k/n \le (j-1)/n$ .

$$\frac{1}{n} \sum_{j=k+1}^{n} g_j \le \frac{1}{n} \left( \frac{n-k}{n} \right) \le \frac{1}{n}. \tag{18'}$$

Consequently, since each  $g_j(x) \leq 1$  by (16), for all k

$$\begin{split} g(x) &= \frac{1}{n} \sum_{j=1}^{n} g_{j}(x) = \frac{1}{n} \sum_{j=1}^{k} g_{j}(x) + \frac{1}{n} \sum_{j=k+1}^{n} g_{j}(x) \\ &\leq \frac{1}{n} \sum_{j=1}^{k} g_{j}(x) + \frac{1}{n} \text{ by (18')} \\ &\leq \frac{k}{n} + \frac{1}{n} \text{ since } g_{j}(x) \leq 1. \end{split}$$

Thus (18) holds

# The Stone-Weierstrass Approximation Theorem (cont. 3)

## **Proof (continued).** We now show that

if 
$$1 \le k \le n$$
 and  $(k-1)/n \le f(x)$  then  $(k-1)/n = 1/n \le g(x)$ . (19)

Indeed, for  $j=1,2,\ldots,k-1$  with the assumption that  $(k-1)/n \le f(z)$ , we have that  $j/n \le (k-1)/n \le f(x)$ . Therefore  $1-a/n < g_j(x)$  by (16).

$$\frac{1}{n} \sum_{j=1}^{k-1} g_j(x) > \frac{k-1}{n} \left( 1 - \frac{1}{n} \right) = \frac{k-1}{n} - \frac{k-1}{n^2}. \tag{18"}$$

Now 
$$(k-1)/n^2 \leq n/n^2 = 1/n$$
, so  $-(k-1)/n^2 \geq -1/n$  and

$$rac{1}{n}\sum_{j=1}^{k-1}g_j(x)\geq rac{k-1}{n}-rac{k-1}{n^2}>rac{k-1}{n}-rac{1}{n}.$$

# The Stone-Weierstrass Approximation Theorem (cont. 4)

# **Proof (continued).** Consequently, since each $g_j(x) \ge 0$ by (16), for all k

$$g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) \ge \frac{1}{n} \sum_{j=1}^{k-1} g_j(x) \ge \frac{k-1}{n} - \frac{1}{n}.$$
 (19)

For  $x \in X$ , choose k with  $1 \le k \le n$ , such that  $(k-1)/n \le f(x) \le k/n$  (since  $0 \le f(x) \le 1$  for all  $x \in X$  without loss of generality, as stated above, there is such k). From (18) and (19),

$$f(x) \in \left[rac{k-1}{n}, rac{k}{n}
ight]$$
 and  $g(x) \in \left[rac{k-1}{n} - rac{1}{n}, rac{k}{n} + rac{1}{n}
ight],$ 

so  $|f(x) - g(x)| \le 2/n < 3/n$  (consider the extremes f(x) = (k-1)/n and g(x) = k/n + 1/n AND f(x) = k/n and g(x) = (k-1)/n - 1/n). So (17) holds and the result follows.

Borsuk's Theorem (continued 1)

### Borsuk's Theorem

### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** First, assume X is metrizable with metric  $\rho$  that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset  $\{x_n\}$  of X. For each  $n \in \mathbb{N}$ , define  $f_n(x) = \rho(x, x_n)$  for all  $x \in X$ . Since  $\rho$  induces the topology,  $f_n$  is continuous (Think: If x varies a little then  $\rho(x, x_n)$  varies a little and so  $f_n(x)$  varies a little). Let  $u, v \in X$ ,  $u \neq v$ . Since  $\{x_n\}$  is dense in X, there are  $x_u, x_v$  in  $\{x_n\}$  such that  $\rho(x_u, u) < \rho(u, v)/2$  and  $\rho(x_v, v) < \rho(u, v)/2$ . Then  $f_{x_u}(u) < \rho(u, x)/2$  and  $f_{x_u}(v) > \rho(u, v)/2$ , so  $f_{x_u}(u) \neq f_{x_u}(v)$  and  $\{f_n\}$  separates points in X. Define  $f_0 \equiv 1$  on X. Let  $\mathcal{A}$  be the collection of polynomials with real coefficients in a finite number of the  $f_k$  (that is, take polynomials in several variables and evaluate them at some of the  $f_k$ ).

**Proof (continued).** Then  $\mathcal{A}$  is an algebra that contains the constant functions and it separates points in X since it contains the  $f_k$ . By the Stone-Weierstrass Theorem,  $\mathcal{A}$  is dense in C(X). But the collection of functions in  $\mathcal{A}$  that are polynomials with rational coefficients is a countable set that is dense in  $\mathcal{A}$ . Therefore C(X) is separable.

Conversely, suppose C(X) is separable. Let  $\{g_n\}$  be a countable dense subset of C(X). For each  $n \in \mathbb{N}$  define  $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$ . Then  $\{\mathcal{O}_n\}$  is a countable collection of open sets. We now show X is second countable. Let  $x \in \mathcal{O}$  where  $\mathcal{O}$  is open. Since X is normal (because X is compact and Hausdorff, normality follows from Theorem 11.18), by Proposition 11.8 (since  $\{x\}$  is a closed set by Proposition 11.6) there is an open set  $\mathcal{U}$  for which  $x \in \mathcal{U} \subset \overline{\mathcal{U}} \subset \mathcal{O}$ .

# Real Analysis 14 / 16

## Borsuk's Theorem (continued 2)

### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then  $\mathcal{C}(X)$  is separable if and only if X is metrizable.

**Proof.** By Urysohn's Lemma there is a g in C(X) such that g(x)=1 on  $\mathcal{U} \subset \overline{\mathcal{U}}$  is dense in C(X), there is  $n \in \mathbb{N}$  such that  $|g-g_n|<1/2$  on X. So  $g_n(x)>1/2$  on  $\mathcal{U}$  (since g(x)=1 on  $\mathcal{U}$ ). Hence  $x \in \mathcal{U} \subset \mathcal{O}_n \subset \mathcal{O}$ . So  $\{\mathcal{O}_n\}$  is a countable base for the topological space; that is, X is second countable. So by the Urysohn Metrization Theorem, X is metrizable.

Real Analysis December 31, 2016 16 / 16