Real Analysis

Chapter 12. Topological Spaces: Three Fundamental Theorems
12.3. The Stone-Weierstrass Theorem—Proofs of Theorems
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Lemma 12.7

Lemma 12.7 (continued 1)

Proof (continued). However, F is a closed subset of the compact space
X and so F itself is compact by Proposition 11.15. Since this holds for

each y € F, we can find a finite collection {yi,y»,...,yn} of pointsin F,
with corresponding gy,'s such that the N,,’s cover G. Define the function

g <€ Aby
H n
mHmTHWS.

Then g(x) =0,g >00n F,and 0 < g <1 on X. But a continuous
function on a compact set takes on a minimum value (Corollary 11.21), so
we may choose ¢ > 0 for which g > c on F. By possibly multiplying g by
a positive number, we may suppose ¢ < 1. On the other hand, g is
continuous at xp where g(xp) = 0, so there is a neighborhood U of xq for
which

g<c/2onU,g>conF,and0<g<1lonX.

We claim that (10) holds for this choice of neighborhood /.
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Lemma 12.7

Lemma 12.7

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of
continuous functions on X that separates points and contains the constant
functions. Then for each closed subset F of X and point xp € X ~ F,
there is a neighborhood U of xp that is disjoint from F and has the
following property: For each € > 0 there is a function h € A for which

h<eonU,h>1—con F, and0 < h<1on X.

Proof. Since A separates points, for each y € F there is f € A for which
f(x0) # f(y). The function

f—f(xo) \°
[ — £ (x0)llmax
in in A since A is a linear space closed under products containing constant
functions (by the definition of “algebra™). Also, g(xp) =0, g(y) > 0, and
0 < gy, <1on X. Since g, is continuous, there is a neighborhood N, of y
on which g, only takes on positive values.

8y =
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Lemma 12.7

Lemma 12.7 (continued 2)

Proof (continued). Let ¢ > 0. By the Weierstrass Approximation
Theorem, there is a polynomial p such that

p<eon0,c/2],p>1—con]c1,and0<p<1lon][0,1]. (14)

Consider the continuous function

L
1]
cf2 5 1

and apply the Weierstrass Approximation Theorem for £/2 < 0 to get the

desired polynomial p.
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Lemma 12.7

Lemma 12.7 (continued 3)

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of
continuous functions on X that separates points and contains the constant
functions. Then for each closed subset F of X and point xp € X ~ F,
there is a neighborhood U of xp that is disjoint from F and has the
following property: For each € > 0 there is a function h € A for which

h<eonU,h>1—con F, and0< h<1onX.

Proof (continued). Since p is a polynomial and g belongs to A, the

composition h = p o g also belongs to A (A is closed under products and

it a linear space). From (13) and (14) we have

eg<c/2onU and p<eon|[0,c/2] impliessh=pog<eonl,

eg>c/2on Fand p>1—con]c1]impliesh=pog>1—conF,
and

e0<g<1lonXand0<p<1on]|0,1] implies h = po g satisfies
0<h<1lonX.

So (10) holds for h and U. O
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Lemma 12.8 (continued)

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of

continuous functions on X that separates points and contains the constant
functions. Then for each pair of disjoint closed subsets A and B of X and
e > 0, there is a function h belonging to A for which

h<eonA h>1—conB,and0<h<1onX.

Proof. Since for each i we have 0 < h; < 1on X, then 0 < <1on X.
Also, for each i we have hj >1—¢c/non B,so h>(1—¢/n)">1—¢ on
B. Finally, for each point x € A there is an index i for which x € N,
(since the N, form a cover). Thus h;(x) < go/n < € and since for the
other indices j we have 0 < hj(x) < 1, it follows that h(x) < eo/n < e. So

function h has the desired properties. O
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Lemma 12.8

Lemma 12.8

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of

continuous functions on X that separates points and contains the constant
functions. Then for each pair of disjoint closed subsets A and B of X and
€ > 0, there is a function h belonging to A for which

h<eonA h>1—conB,and0<h<1onX.

Proof. By Lemma 12.7 with F = B, we know that for each x € A there is
a neighborhood N of x that is disjoint from B and has the property (10).
However A is a closed subset of compact space X and so A is compact
(Proposition 11.15), so there is a finite subset of points {xi,x2,...,X,} in
A with corresponding neighborhoods N, N,,, -+, N, that covers A.
Choose ¢q for which 0 < g < e and (1 —eg/n)" >1—¢. For1 <i<n,
since N, has property (1) with B = F, we choose h; € A such that

hi <eo/non Ny, hj >1—¢eg/non B, and 0 < j; <1 on X. Define

h= hihy---h, on X. Then h belongs to A (since A is closed under
products).
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of
continuous real-valued functions on X that separates points in X and
contains the constant functions. Then A is dense in C(X).

Proof. Let f belong to C(X) and let ¢ = ||f||max- If we can arbitrarily
closely uniformly approximate the function ( + ¢)/||f + ¢|Imax by
functions in A, we can do the same for f (take the function approximating
this, multiply if by the constant ||f + ¢||max, and then subtract the
constant c). Therefore, we may assume 0 < f <1on X. Let n € N,

n > 1. Consider the uniform partition {0,1/n,2/n,... (n—1)/n,1} of
[0,1]. Fix j with 1 < j < n. Define

Ai=x€eX|f(x)<(—1)/n} and Bj = {x € X | f(x) > j/n}.

Since f is continuous, both A; = f~1((—o0, (j — 1)/n]) and
B;j = f71([j/n, <)) are closed subsets of X which are disjoint.
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 1)

Proof (continued). By Lemma 12.8, with A= A;, B=B;, and ¢ = 1/n,
there is a function g; € A for which

gi(x) <1/nif f(x) < (j—1)/n (i.e, x € Aj),
gi(x)>1—-1/nif f(x) > j/n(ie, x€ Bj), and 0 < g <1lon X. (16)

Define g = (1/n) >, gj. Then g € A. We claim that

|f — gllmax < 3/n. AHNV

With this established, given £ > 0 we just select n such that 3/n < ¢ and
then {f — g||lmax < € as desired. To verify (17) we first show that

if 1l <k <nand f(x) <k/nthen g(x) < k/n+1/n. (18)

0
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 3)
Proof (continued). We now show that

ifl<k<nand (k—1)/n<f(x)then (k—1)/n=1/n<g(x). (19)
Indeed, for j =1,2,..., k — 1 with the assumption that (k —1)/n < f(z),

we have that j/n < (k —1)/n < f(x). Therefore 1 — a/n < gj(x) by (16).
Thus

k-1
1 k—1 1 k—1 k-1
e : (122 = — . 18"
P el > (1-0) = - )

Now (k —1)/n?> < n/n®> =1/n, so —(k —1)/n?> > —1/n and

HWW :v»L k-1 _ k-1 1
= (x — S
:TH@ ~ n n? n n
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 2)

Proof (continued). Indeed, for j = k+ 1,k +2,...,n, with the
assumption that f(x) < k/n, we have that f(x) < k/n < (j —1)/n.
Therefore gj(x) < 1/n _8\:33. Thus
1 1 /n—k\ 1 \
w2 s, ) < (18
Consequently, since each gj(x) < 1 by (16), for all k

n

1 1< 1
mMU@.AxVHmMU@.AxV._.m > &)
j=1 j=1

j=k+1

g(x) =

k
1 1
< L El) g by (1)
.\”

k 1
—+ —si ; <1
p + ~ since gj(x) <

IA

Thus (18) holds.
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 4)

Proof (continued). Consequently, since each gj(x) > 0 by (16), for all k

n k—1
)= g > gz -1 (19
j=1 j=1

For x € X, choose k with 1 < k < n, such that (k —1)/n < f(x) < k/n
(since 0 < f(x) <1 for all x € X without loss of generality, as stated
above, there is such k). From (18) and (19),

f(x)e |——,—| and g(x) € | — —

»IH» »IH H»
n 'n n n’ n

1
+ =1,
n
so |f(x) —g(x)] <2/n < 3/n (consider the extremes f(x) = (k —1)/n

and g(x) = k/n+1/n AND f(x) = k/n and g(x) = (k—1)/n—1/n). So
(17) holds and the result follows. O
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Borsuk’'s Theorem Borsuk’'s Theorem

Borsuk's Theorem Borsuk's Theorem (continued 1)

Borsuk’s Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable Proof (continued). Then A is an algebra that contains the constant
if and only if X is metrizable. functions and it separates points in X since it contains the f,. By the
Stone-Weierstrass Theorem, A is dense in C(X). But the collection of
functions in A that are polynomials with rational coefficients is a
countable set that is dense in A. Therefore C(X) is separable.

Proof. First, assume X is metrizable with metric p that induces the
topology on X. Then X, being a compact metric space, is separable by
Proposition 9.24. Choose a countable dense subset {x,} of X. For each

n € N, define f,(x) = p(x, xp) for all x € X. Since p induces the topology, Conversely, suppose C(X) is separable. Let {g,} be a countable dense

fn is continuous (Think: If x varies a little then p(x, x,,) varies a little and subset of C(X). For each n € N define O, = {x € X | gn(x) > 1/2}.

so fp(x) varies a little). Let u,v € X, u# v. Since {x,} is dense in X, Then {O,} is a countable collection of open sets. We now show X is
there are x,, x, in {xp} such that p(x,, u) < p(u,v)/2 and second countable. Let x € O where O is open. Since X is normal
p(xv,v) < p(u,v)/2. Then £, (u) < p(u,x)/2 and £, (v) > p(u,v)/2, so (because X is compact and Hausdorff, normality follows from Theorem
fe(u) # f,(v) and {f,} separates points in X. Define fy =1 on X. Let A 11.18), by Proposition 11.8 (since {x} is a closed set by Proposition 11.6)
be the collection of polynomials with real coefficients in a finite number of there is an open set U for which x e i/ C U C O.

the fi (that is, take polynomials in several variables and evaluate them at
some of the fy).

Borsuk's Theorem

Borsuk’s Theorem (continued 2)

Borsuk’s Theorem.
Let X be a compact Hausdorff topological space. Then C(X) is separable
if and only if X is metrizable.

Proof. By Urysohn's Lemma there is a g in C(X) such that g(x) =1 on
U C U is dense in C(X), there is n € N such that |g — g,| < 1/2 on X.
So gn(x) > 1/2 on U (since g(x) =1 onU). Hence x e C O, C O. So
{O,} is a countable base for the topological space; that is, X is second
countable. So by the Urysohn Metrization Theorem, X is metrizable. [




