## **Real Analysis**

#### **Chapter 12. Topological Spaces: Three Fundamental Theorems** 12.3. The Stone-Weierstrass Theorem—Proofs of Theorems



**Real Analysis** 





#### 4 Borsuk's Theorem

**Lemma 12.7.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , there is a neighborhood  $\mathcal{U}$  of  $x_0$  that is disjoint from F and has the following property: For each  $\varepsilon > 0$  there is a function  $h \in \mathcal{A}$  for which

 $h < \varepsilon$  on  $\mathcal{U}, h > 1 - \varepsilon$  on F, and  $0 \le h \le 1$  on X.

**Proof.** Since A separates points, for each  $y \in F$  there is  $f \in A$  for which  $f(x_0) \neq f(y)$ . The function

$$g_y = \left(\frac{f - f(x_0)}{\|f - f(x_0)\|_{\max}}\right)^2$$

in in  $\mathcal{A}$  since  $\mathcal{A}$  is a linear space closed under products containing constant functions (by the definition of "algebra").

**Lemma 12.7.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , there is a neighborhood  $\mathcal{U}$  of  $x_0$  that is disjoint from F and has the following property: For each  $\varepsilon > 0$  there is a function  $h \in \mathcal{A}$  for which

$$h < \varepsilon$$
 on  $\mathcal{U}, h > 1 - \varepsilon$  on  $F$ , and  $0 \le h \le 1$  on  $X$ .

**Proof.** Since A separates points, for each  $y \in F$  there is  $f \in A$  for which  $f(x_0) \neq f(y)$ . The function

$$g_y = \left(\frac{f - f(x_0)}{\|f - f(x_0)\|_{\max}}\right)^2$$

in in  $\mathcal{A}$  since  $\mathcal{A}$  is a linear space closed under products containing constant functions (by the definition of "algebra"). Also,  $g(x_0) = 0$ , g(y) > 0, and  $0 \le g_y \le 1$  on X. Since  $g_y$  is continuous, there is a neighborhood  $\mathcal{N}_y$  of y on which  $g_y$  only takes on positive values.

**Lemma 12.7.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , there is a neighborhood  $\mathcal{U}$  of  $x_0$  that is disjoint from F and has the following property: For each  $\varepsilon > 0$  there is a function  $h \in \mathcal{A}$  for which

$$h < \varepsilon$$
 on  $\mathcal{U}, h > 1 - \varepsilon$  on  $F$ , and  $0 \le h \le 1$  on  $X$ .

**Proof.** Since A separates points, for each  $y \in F$  there is  $f \in A$  for which  $f(x_0) \neq f(y)$ . The function

$$g_y = \left(\frac{f - f(x_0)}{\|f - f(x_0)\|_{\max}}\right)^2$$

in in  $\mathcal{A}$  since  $\mathcal{A}$  is a linear space closed under products containing constant functions (by the definition of "algebra"). Also,  $g(x_0) = 0$ , g(y) > 0, and  $0 \le g_y \le 1$  on X. Since  $g_y$  is continuous, there is a neighborhood  $\mathcal{N}_y$  of y on which  $g_y$  only takes on positive values.

**Real Analysis** 

#### Lemma 12.7 (continued 1)

**Proof (continued).** However, *F* is a closed subset of the compact space *X* and so *F* itself is compact by Proposition 11.15. Since this holds for each  $y \in F$ , we can find a finite collection  $\{y_1, y_2, \ldots, y_n\}$  of points in *F*, with corresponding  $g_{y_i}$ 's such that the  $\mathcal{N}_{y_i}$ 's cover *G*. Define the function  $g \in \mathcal{A}$  by



Then  $g(x_0) = 0$ , g > 0 on F, and  $0 \le g \le 1$  on X. But a continuous function on a compact set takes on a minimum value (Corollary 11.21), so we may choose c > 0 for which  $g \ge c$  on F. By possibly multiplying g by a positive number, we may suppose c < 1.

## Lemma 12.7 (continued 1)

**Proof (continued).** However, F is a closed subset of the compact space X and so F itself is compact by Proposition 11.15. Since this holds for each  $y \in F$ , we can find a finite collection  $\{y_1, y_2, \ldots, y_n\}$  of points in F, with corresponding  $g_{y_i}$ 's such that the  $\mathcal{N}_{y_i}$ 's cover G. Define the function  $g \in \mathcal{A}$  by

$$g=\frac{1}{n}\sum_{i=1}^{n}g_{y_i}.$$

Then  $g(x_0) = 0$ , g > 0 on F, and  $0 \le g \le 1$  on X. But a continuous function on a compact set takes on a minimum value (Corollary 11.21), so we may choose c > 0 for which  $g \ge c$  on F. By possibly multiplying g by a positive number, we may suppose c < 1. On the other hand, g is continuous at  $x_0$  where  $g(x_0) = 0$ , so there is a neighborhood  $\mathcal{U}$  of  $x_0$  for which

g < c/2 on  $\mathcal{U}$ ,  $g \ge c$  on F, and  $0 \le g \le 1$  on X.

We claim that (10) holds for this choice of neighborhood  $\mathcal{U}$ .

(

# Lemma 12.7 (continued 1)

**Proof (continued).** However, F is a closed subset of the compact space X and so F itself is compact by Proposition 11.15. Since this holds for each  $y \in F$ , we can find a finite collection  $\{y_1, y_2, \ldots, y_n\}$  of points in F, with corresponding  $g_{y_i}$ 's such that the  $\mathcal{N}_{y_i}$ 's cover G. Define the function  $g \in \mathcal{A}$  by

$$g=\frac{1}{n}\sum_{i=1}^{n}g_{y_i}.$$

Then  $g(x_0) = 0$ , g > 0 on F, and  $0 \le g \le 1$  on X. But a continuous function on a compact set takes on a minimum value (Corollary 11.21), so we may choose c > 0 for which  $g \ge c$  on F. By possibly multiplying g by a positive number, we may suppose c < 1. On the other hand, g is continuous at  $x_0$  where  $g(x_0) = 0$ , so there is a neighborhood  $\mathcal{U}$  of  $x_0$  for which

g < c/2 on  $\mathcal{U}$ ,  $g \geq c$  on F, and  $0 \leq g \leq 1$  on X.

We claim that (10) holds for this choice of neighborhood  $\mathcal{U}$ .

## Lemma 12.7 (continued 2)

**Proof (continued).** Let  $\varepsilon > 0$ . By the Weierstrass Approximation Theorem, there is a polynomial p such that

 $p < \varepsilon$  on [0, c/2],  $p > 1 - \varepsilon$  on [c, 1], and  $0 \le p \le 1$  on [0, 1]. (14)

Consider the continuous function

# Lemma 12.7 (continued 2)

**Proof (continued).** Let  $\varepsilon > 0$ . By the Weierstrass Approximation Theorem, there is a polynomial p such that

 $p < \varepsilon$  on [0, c/2],  $p > 1 - \varepsilon$  on [c, 1], and  $0 \le p \le 1$  on [0, 1]. (14)

Consider the continuous function



and apply the Weierstrass Approximation Theorem for  $\varepsilon/2 < 0$  to get the desired polynomial p.

()

# Lemma 12.7 (continued 2)

**Proof (continued).** Let  $\varepsilon > 0$ . By the Weierstrass Approximation Theorem, there is a polynomial p such that

 $p < \varepsilon$  on [0, c/2],  $p > 1 - \varepsilon$  on [c, 1], and  $0 \le p \le 1$  on [0, 1]. (14)

Consider the continuous function



and apply the Weierstrass Approximation Theorem for  $\varepsilon/2 < 0$  to get the desired polynomial p.

#### Lemma 12.7 (continued 3)

**Lemma 12.7.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , there is a neighborhood  $\mathcal{U}$  of  $x_0$  that is disjoint from F and has the following property: For each  $\varepsilon > 0$  there is a function  $h \in \mathcal{A}$  for which

$$h < \varepsilon$$
 on  $\mathcal{U}, h > 1 - \varepsilon$  on  $F$ , and  $0 \le h \le 1$  on  $X$ .

**Proof (continued).** Since p is a polynomial and g belongs to A, the composition  $h = p \circ g$  also belongs to A (A is closed under products and it a linear space). From (13) and (14) we have

• g < c/2 on  $\mathcal{U}$  and  $p < \varepsilon$  on [0, c/2] implies  $h = p \circ g < \varepsilon$  on  $\mathcal{U}$ ,

- $g \ge c/2$  on F and  $p > 1 \varepsilon$  on [c, 1] implies  $h = p \circ g > 1 \varepsilon$  on F, and
- $0 \le g \le 1$  on X and  $0 \le p \le 1$  on [0,1] implies  $h = p \circ g$  satisfies  $0 \le h \le 1$  on X.

So (10) holds for h and U.

## Lemma 12.7 (continued 3)

**Lemma 12.7.** Let X be a compact Hausdorff space and  $\mathcal{A}$  an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point  $x_0 \in X \sim F$ , there is a neighborhood  $\mathcal{U}$  of  $x_0$  that is disjoint from F and has the following property: For each  $\varepsilon > 0$  there is a function  $h \in \mathcal{A}$  for which

$$h < \varepsilon$$
 on  $\mathcal{U}, h > 1 - \varepsilon$  on  $F$ , and  $0 \le h \le 1$  on  $X$ .

**Proof (continued).** Since p is a polynomial and g belongs to A, the composition  $h = p \circ g$  also belongs to A (A is closed under products and it a linear space). From (13) and (14) we have

- g < c/2 on  $\mathcal{U}$  and  $p < \varepsilon$  on [0, c/2] implies  $h = p \circ g < \varepsilon$  on  $\mathcal{U}$ ,
- $g \ge c/2$  on F and  $p > 1 \varepsilon$  on [c, 1] implies  $h = p \circ g > 1 \varepsilon$  on F, and
- $0 \le g \le 1$  on X and  $0 \le p \le 1$  on [0, 1] implies  $h = p \circ g$  satisfies  $0 \le h \le 1$  on X.

So (10) holds for h and U.

**Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and  $\varepsilon > 0$ , there is a function h belonging to A for which

 $h < \varepsilon$  on  $A, h > 1 - \varepsilon$  on B, and  $0 \le h \le 1$  on X.

**Proof.** By Lemma 12.7 with F = B, we know that for each  $x \in A$  there is a neighborhood  $\mathcal{N}_x$  of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points  $\{x_1, x_2, \ldots, x_n\}$  in A with corresponding neighborhoods  $\mathcal{N}_{x_1}, \mathcal{N}_{x_2}, \cdots, \mathcal{N}_{x_n}$  that covers A.

**Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and  $\varepsilon > 0$ , there is a function h belonging to A for which

 $h < \varepsilon$  on A,  $h > 1 - \varepsilon$  on B, and  $0 \le h \le 1$  on X.

**Proof.** By Lemma 12.7 with F = B, we know that for each  $x \in A$  there is a neighborhood  $\mathcal{N}_x$  of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points  $\{x_1, x_2, \ldots, x_n\}$  in A with corresponding neighborhoods  $\mathcal{N}_{x_1}, \mathcal{N}_{x_2}, \cdots, \mathcal{N}_{x_n}$  that covers A. Choose  $\varepsilon_0$  for which  $0 < \varepsilon_0 < \varepsilon$  and  $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$ . For  $1 \le i \le n$ , since  $\mathcal{N}_{x_i}$  has property (1) with B = F, we choose  $h_i \in A$  such that  $h_i < \varepsilon_0/n$  on  $\mathcal{N}_x$ ,  $h_i > 1 - \varepsilon_0/n$  on B, and  $0 \le j_i \le 1$  on X.

**Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and  $\varepsilon > 0$ , there is a function h belonging to A for which

 $h < \varepsilon$  on A,  $h > 1 - \varepsilon$  on B, and  $0 \le h \le 1$  on X.

**Proof.** By Lemma 12.7 with F = B, we know that for each  $x \in A$  there is a neighborhood  $\mathcal{N}_x$  of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points  $\{x_1, x_2, \ldots, x_n\}$  in A with corresponding neighborhoods  $\mathcal{N}_{x_1}, \mathcal{N}_{x_2}, \cdots, \mathcal{N}_{x_n}$  that covers A. Choose  $\varepsilon_0$  for which  $0 < \varepsilon_0 < \varepsilon$  and  $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$ . For  $1 \le i \le n$ , since  $\mathcal{N}_{x_i}$  has property (1) with B = F, we choose  $h_i \in A$  such that  $h_i < \varepsilon_0/n$  on  $\mathcal{N}_x$ ,  $h_i > 1 - \varepsilon_0/n$  on B, and  $0 \le j_i \le 1$  on X. Define  $h = h_1 h_2 \cdots h_n$  on X. Then h belongs to  $\mathcal{A}$  (since  $\mathcal{A}$  is closed under products).

- (

**Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and  $\varepsilon > 0$ , there is a function h belonging to A for which

 $h < \varepsilon$  on A,  $h > 1 - \varepsilon$  on B, and  $0 \le h \le 1$  on X.

**Proof.** By Lemma 12.7 with F = B, we know that for each  $x \in A$  there is a neighborhood  $\mathcal{N}_x$  of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points  $\{x_1, x_2, \ldots, x_n\}$  in A with corresponding neighborhoods  $\mathcal{N}_{x_1}, \mathcal{N}_{x_2}, \cdots, \mathcal{N}_{x_n}$  that covers A. Choose  $\varepsilon_0$  for which  $0 < \varepsilon_0 < \varepsilon$  and  $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$ . For  $1 \le i \le n$ , since  $\mathcal{N}_{x_i}$  has property (1) with B = F, we choose  $h_i \in A$  such that  $h_i < \varepsilon_0/n$  on  $\mathcal{N}_x$ ,  $h_i > 1 - \varepsilon_0/n$  on B, and  $0 \le j_i \le 1$  on X. Define  $h = h_1 h_2 \cdots h_n$  on X. Then h belongs to  $\mathcal{A}$  (since  $\mathcal{A}$  is closed under products).

## Lemma 12.8 (continued)

**Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and  $\varepsilon > 0$ , there is a function h belonging to A for which

 $h < \varepsilon$  on A,  $h > 1 - \varepsilon$  on B, and  $0 \le h \le 1$  on X.

**Proof.** Since for each *i* we have  $0 \le h_i \le 1$  on *X*, then  $0 \le j \le 1$  on *X*. Also, for each *i* we have  $h_i > 1 - \varepsilon/n$  on *B*, so  $h \ge (1 - \varepsilon/n)^n > 1 - \varepsilon$  on *B*. Finally, for each point  $x \in A$  there is an index *i* for which  $x \in \mathcal{N}_{x_i}$  (since the  $\mathcal{N}_{x_i}$  form a cover). Thus  $h_i(x) < \varepsilon_0/n < \varepsilon$  and since for the other indices *j* we have  $0 \le h_j(x) \le 1$ , it follows that  $h(x) < \varepsilon_0/n < \varepsilon$ . So function *h* has the desired properties.

## Lemma 12.8 (continued)

**Lemma 12.8.** Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and  $\varepsilon > 0$ , there is a function h belonging to A for which

$$h < \varepsilon$$
 on  $A, h > 1 - \varepsilon$  on  $B$ , and  $0 \le h \le 1$  on  $X$ .

**Proof.** Since for each *i* we have  $0 \le h_i \le 1$  on *X*, then  $0 \le j \le 1$  on *X*. Also, for each *i* we have  $h_i > 1 - \varepsilon/n$  on *B*, so  $h \ge (1 - \varepsilon/n)^n > 1 - \varepsilon$  on *B*. Finally, for each point  $x \in A$  there is an index *i* for which  $x \in \mathcal{N}_{x_i}$  (since the  $\mathcal{N}_{x_i}$  form a cover). Thus  $h_i(x) < \varepsilon_0/n < \varepsilon$  and since for the other indices *j* we have  $0 \le h_j(x) \le 1$ , it follows that  $h(x) < \varepsilon_0/n < \varepsilon$ . So function *h* has the desired properties.

**Real Analysis** 

#### The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in C(X).

**Proof.** Let *f* belong to C(X) and let  $c = ||f||_{max}$ . If we can arbitrarily closely uniformly approximate the function  $(f + c)/||f + c||_{max}$  by functions in  $\mathcal{A}$ , we can do the same for *f* (take the function approximating this, multiply if by the constant  $||f + c||_{max}$ , and then subtract the constant *c*). Therefore, we may assume  $0 \le f \le 1$  on X.

#### The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in C(X).

**Proof.** Let *f* belong to C(X) and let  $c = ||f||_{max}$ . If we can arbitrarily closely uniformly approximate the function  $(f + c)/||f + c||_{max}$  by functions in  $\mathcal{A}$ , we can do the same for *f* (take the function approximating this, multiply if by the constant  $||f + c||_{max}$ , and then subtract the constant *c*). Therefore, we may assume  $0 \le f \le 1$  on X. Let  $n \in \mathbb{N}$ , n > 1. Consider the uniform partition  $\{0, 1/n, 2/n, \dots, (n-1)/n, 1\}$  of [0, 1]. Fix *j* with  $1 \le j \le n$ .

#### The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in C(X).

**Proof.** Let *f* belong to C(X) and let  $c = ||f||_{max}$ . If we can arbitrarily closely uniformly approximate the function  $(f + c)/||f + c||_{max}$  by functions in  $\mathcal{A}$ , we can do the same for *f* (take the function approximating this, multiply if by the constant  $||f + c||_{max}$ , and then subtract the constant *c*). Therefore, we may assume  $0 \le f \le 1$  on X. Let  $n \in \mathbb{N}$ , n > 1. Consider the uniform partition  $\{0, 1/n, 2/n, \ldots, (n-1)/n, 1\}$  of [0, 1]. Fix *j* with  $1 \le j \le n$ . Define

$$A_j = x \in X \mid f(x) \le (j-1)/n$$
 and  $B_j = \{x \in X \mid f(x) \ge j/n\}.$ 

Since f is continuous, both  $A_j = f^{-1}((-\infty, (j-1)/n])$  and  $B_j = f^{-1}([j/n, \infty))$  are closed subsets of X which are disjoint.

#### The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in C(X).

**Proof.** Let *f* belong to C(X) and let  $c = ||f||_{max}$ . If we can arbitrarily closely uniformly approximate the function  $(f + c)/||f + c||_{max}$  by functions in  $\mathcal{A}$ , we can do the same for *f* (take the function approximating this, multiply if by the constant  $||f + c||_{max}$ , and then subtract the constant *c*). Therefore, we may assume  $0 \le f \le 1$  on X. Let  $n \in \mathbb{N}$ , n > 1. Consider the uniform partition  $\{0, 1/n, 2/n, \dots, (n-1)/n, 1\}$  of [0, 1]. Fix *j* with  $1 \le j \le n$ . Define

$$A_j=x\in X\mid f(x)\leq (j-1)/n\}$$
 and  $B_j=\{x\in X\mid f(x)\geq j/n\}.$ 

Since f is continuous, both  $A_j = f^{-1}((-\infty, (j-1)/n])$  and  $B_j = f^{-1}([j/n, \infty))$  are closed subsets of X which are disjoint.

# The Stone-Weierstrass Approximation Theorem (cont. 1)

**Proof (continued).** By Lemma 12.8, with  $A = A_j$ ,  $B = B_j$ , and  $\varepsilon = 1/n$ , there is a function  $g_j \in A$  for which

 $g_j(x) < 1/n \text{ if } f(x) \le (j-1)/n \text{ (i.e., } x \in A_j),$   $g_j(x) > 1 - 1/n \text{ if } f(x) \ge j/n \text{ (i.e., } x \in B_j), \text{ and } 0 \le g_j \le 1 \text{ on } X. \quad (16)$ Define  $g = (1/n) \sum_{j=1}^n g_j$ . Then  $g \in \mathcal{A}$ . We claim that

$$\|f - g\|_{\max} < 3/n.$$
 (17)

# The Stone-Weierstrass Approximation Theorem (cont. 1)

**Proof (continued).** By Lemma 12.8, with  $A = A_j$ ,  $B = B_j$ , and  $\varepsilon = 1/n$ , there is a function  $g_j \in A$  for which

$$g_j(x) < 1/n$$
 if  $f(x) \le (j-1)/n$  (i.e.,  $x \in A_j$ ),

 $g_j(x) > 1 - 1/n$  if  $f(x) \ge j/n$  (i.e.,  $x \in B_j$ ), and  $0 \le g_j \le 1$  on X. (16) Define  $g = (1/n) \sum_{j=1}^n g_j$ . Then  $g \in A$ . We claim that

$$\|f - g\|_{\max} < 3/n.$$
 (17)

With this established, given  $\varepsilon > 0$  we just select *n* such that  $3/n < \varepsilon$  and then  $\{f - g \|_{\max} < \varepsilon$  as desired. To verify (17) we first show that

if  $1 \le k \le n$  and  $f(x) \le k/n$  then  $g(x) \le k/n + 1/n$ . (18)

# The Stone-Weierstrass Approximation Theorem (cont. 1)

**Proof (continued).** By Lemma 12.8, with  $A = A_j$ ,  $B = B_j$ , and  $\varepsilon = 1/n$ , there is a function  $g_j \in A$  for which

$$g_j(x) < 1/n$$
 if  $f(x) \le (j-1)/n$  (i.e.,  $x \in A_j$ ),

 $g_j(x) > 1 - 1/n$  if  $f(x) \ge j/n$  (i.e.,  $x \in B_j$ ), and  $0 \le g_j \le 1$  on X. (16) Define  $g = (1/n) \sum_{j=1}^n g_j$ . Then  $g \in A$ . We claim that

$$\|f - g\|_{\max} < 3/n.$$
 (17)

With this established, given  $\varepsilon > 0$  we just select *n* such that  $3/n < \varepsilon$  and then  $\{f - g \|_{\max} < \varepsilon$  as desired. To verify (17) we first show that

## The Stone-Weierstrass Approximation Theorem (cont. 2)

**Proof (continued).** Indeed, for j = k + 1, k + 2, ..., n, with the assumption that  $f(x) \le k/n$ , we have that  $f(x) \le k/n \le (j-1)/n$ . Therefore  $g_j(x) \le 1/n$  by (16). Thus

$$\frac{1}{n}\sum_{j=k+1}^{n}g_{j}\leq\frac{1}{n}\left(\frac{n-k}{n}\right)\leq\frac{1}{n}.$$
(18')

## The Stone-Weierstrass Approximation Theorem (cont. 2)

**Proof (continued).** Indeed, for j = k + 1, k + 2, ..., n, with the assumption that  $f(x) \le k/n$ , we have that  $f(x) \le k/n \le (j-1)/n$ . Therefore  $g_j(x) \le 1/n$  by (16). Thus

$$\frac{1}{n}\sum_{j=k+1}^{n}g_{j}\leq\frac{1}{n}\left(\frac{n-k}{n}\right)\leq\frac{1}{n}.$$
(18')

Consequently, since each  $g_j(x) \leq 1$  by (16), for all k

$$g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) = \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \sum_{j=k+1}^{n} g_j(x)$$
  
$$\leq \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \text{ by } (18')$$
  
$$\leq \frac{k}{n} + \frac{1}{n} \text{ since } g_j(x) \leq 1.$$

Thus (18) holds.

## The Stone-Weierstrass Approximation Theorem (cont. 2)

**Proof (continued).** Indeed, for j = k + 1, k + 2, ..., n, with the assumption that  $f(x) \le k/n$ , we have that  $f(x) \le k/n \le (j-1)/n$ . Therefore  $g_j(x) \le 1/n$  by (16). Thus

$$\frac{1}{n}\sum_{j=k+1}^{n}g_{j}\leq\frac{1}{n}\left(\frac{n-k}{n}\right)\leq\frac{1}{n}.$$
(18')

Consequently, since each  $g_j(x) \leq 1$  by (16), for all k

$$g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) = \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \sum_{j=k+1}^{n} g_j(x)$$

$$\leq \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \text{ by } (18')$$

$$\leq \frac{k}{n} + \frac{1}{n} \text{ since } g_j(x) \leq 1.$$

Thus (18) holds.

# The Stone-Weierstrass Approximation Theorem (cont. 3)

#### Proof (continued). We now show that

if 
$$1 \le k \le n$$
 and  $(k-1)/n \le f(x)$  then  $(k-1)/n = 1/n \le g(x)$ . (19)

Indeed, for j = 1, 2, ..., k - 1 with the assumption that  $(k - 1)/n \le f(z)$ , we have that  $j/n \le (k - 1)/n \le f(x)$ . Therefore  $1 - a/n < g_j(x)$  by (16). Thus

$$\frac{1}{n}\sum_{j=1}^{k-1}g_j(x) > \frac{k-1}{n}\left(1-\frac{1}{n}\right) = \frac{k-1}{n} - \frac{k-1}{n^2}.$$
 (18")

Now  $(k-1)/n^2 \le n/n^2 = 1/n$ , so  $-(k-1)/n^2 \ge -1/n$  and

$$\frac{1}{n}\sum_{j=1}^{k-1}g_j(x) \ge \frac{k-1}{n} - \frac{k-1}{n^2} > \frac{k-1}{n} - \frac{1}{n}.$$

# The Stone-Weierstrass Approximation Theorem (cont. 3)

#### Proof (continued). We now show that

if 
$$1 \le k \le n$$
 and  $(k-1)/n \le f(x)$  then  $(k-1)/n = 1/n \le g(x)$ . (19)

Indeed, for j = 1, 2, ..., k - 1 with the assumption that  $(k - 1)/n \le f(z)$ , we have that  $j/n \le (k - 1)/n \le f(x)$ . Therefore  $1 - a/n < g_j(x)$  by (16). Thus

$$\frac{1}{n}\sum_{j=1}^{k-1}g_{j}(x) > \frac{k-1}{n}\left(1-\frac{1}{n}\right) = \frac{k-1}{n} - \frac{k-1}{n^{2}}.$$
 (18")

Now  $(k-1)/n^2 \le n/n^2 = 1/n$ , so  $-(k-1)/n^2 \ge -1/n$  and

$$\frac{1}{n}\sum_{j=1}^{k-1}g_j(x)\geq \frac{k-1}{n}-\frac{k-1}{n^2}>\frac{k-1}{n}-\frac{1}{n}.$$

# The Stone-Weierstrass Approximation Theorem (cont. 4)

**Proof (continued).** Consequently, since each  $g_j(x) \ge 0$  by (16), for all k

$$g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) \ge \frac{1}{n} \sum_{j=1}^{k-1} g_j(x) \ge \frac{k-1}{n} - \frac{1}{n}.$$
 (19)

For  $x \in X$ , choose k with  $1 \le k \le n$ , such that  $(k-1)/n \le f(x) \le k/n$ (since  $0 \le f(x) \le 1$  for all  $x \in X$  without loss of generality, as stated above, there is such k). From (18) and (19),

$$f(x) \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$$
 and  $g(x) \in \left[\frac{k-1}{n} - \frac{1}{n}, \frac{k}{n} + \frac{1}{n}\right]$ ,

so  $|f(x) - g(x)| \le 2/n < 3/n$  (consider the extremes f(x) = (k-1)/nand g(x) = k/n + 1/n AND f(x) = k/n and g(x) = (k-1)/n - 1/n). So (17) holds and the result follows.

# The Stone-Weierstrass Approximation Theorem (cont. 4)

**Proof (continued).** Consequently, since each  $g_j(x) \ge 0$  by (16), for all k

$$g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) \ge \frac{1}{n} \sum_{j=1}^{k-1} g_j(x) \ge \frac{k-1}{n} - \frac{1}{n}.$$
 (19)

For  $x \in X$ , choose k with  $1 \le k \le n$ , such that  $(k-1)/n \le f(x) \le k/n$ (since  $0 \le f(x) \le 1$  for all  $x \in X$  without loss of generality, as stated above, there is such k). From (18) and (19),

$$f(x) \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$$
 and  $g(x) \in \left[\frac{k-1}{n} - \frac{1}{n}, \frac{k}{n} + \frac{1}{n}\right]$ ,

so  $|f(x) - g(x)| \le 2/n < 3/n$  (consider the extremes f(x) = (k-1)/nand g(x) = k/n + 1/n AND f(x) = k/n and g(x) = (k-1)/n - 1/n). So (17) holds and the result follows.

#### Borsuk's Theorem.

# Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** First, assume X is metrizable with metric  $\rho$  that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset  $\{x_n\}$  of X.

#### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** First, assume X is metrizable with metric  $\rho$  that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset  $\{x_n\}$  of X. For each  $n \in \mathbb{N}$ , define  $f_n(x) = \rho(x, x_n)$  for all  $x \in X$ . Since  $\rho$  induces the topology,  $f_n$  is continuous (Think: If x varies a little then  $\rho(x, x_n)$  varies a little and so  $f_n(x)$  varies a little). Let  $u, v \in X$ ,  $u \neq v$ .

#### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** First, assume X is metrizable with metric  $\rho$  that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset  $\{x_n\}$  of X. For each  $n \in \mathbb{N}$ , define  $f_n(x) = \rho(x, x_n)$  for all  $x \in X$ . Since  $\rho$  induces the topology,  $f_n$  is continuous (Think: If x varies a little then  $\rho(x, x_n)$  varies a little and so  $f_n(x)$  varies a little). Let  $u, v \in X$ ,  $u \neq v$ . Since  $\{x_n\}$  is dense in X, there are  $x_u, x_v$  in  $\{x_n\}$  such that  $\rho(x_u, u) < \rho(u, v)/2$  and  $\rho(x_v, v) < \rho(u, v)/2$ . Then  $f_{x_u}(u) < \rho(u, x)/2$  and  $f_{x_u}(v) > \rho(u, v)/2$ , so  $f_{x_u}(u) \neq f_{x_u}(v)$  and  $\{f_n\}$  separates points in X.

#### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** First, assume X is metrizable with metric  $\rho$  that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset  $\{x_n\}$  of X. For each  $n \in \mathbb{N}$ , define  $f_n(x) = \rho(x, x_n)$  for all  $x \in X$ . Since  $\rho$  induces the topology,  $f_n$  is continuous (Think: If x varies a little then  $\rho(x, x_n)$  varies a little and so  $f_n(x)$  varies a little). Let  $u, v \in X$ ,  $u \neq v$ . Since  $\{x_n\}$  is dense in X, there are  $x_u, x_v$  in  $\{x_n\}$  such that  $\rho(x_u, u) < \rho(u, v)/2$  and  $\rho(x_v, v) < \rho(u, v)/2$ . Then  $f_{x_u}(u) < \rho(u, x)/2$  and  $f_{x_u}(v) > \rho(u, v)/2$ , so  $f_{X_n}(u) \neq f_{X_n}(v)$  and  $\{f_n\}$  separates points in X. Define  $f_0 \equiv 1$  on X. Let  $\mathcal{A}$ be the collection of polynomials with real coefficients in a finite number of the  $f_k$  (that is, take polynomials in several variables and evaluate them at some of the  $f_k$ ).

- ()

#### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** First, assume X is metrizable with metric  $\rho$  that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset  $\{x_n\}$  of X. For each  $n \in \mathbb{N}$ , define  $f_n(x) = \rho(x, x_n)$  for all  $x \in X$ . Since  $\rho$  induces the topology,  $f_n$  is continuous (Think: If x varies a little then  $\rho(x, x_n)$  varies a little and so  $f_n(x)$  varies a little). Let  $u, v \in X$ ,  $u \neq v$ . Since  $\{x_n\}$  is dense in X, there are  $x_u, x_v$  in  $\{x_n\}$  such that  $\rho(x_u, u) < \rho(u, v)/2$  and  $\rho(x_v, v) < \rho(u, v)/2$ . Then  $f_{x_u}(u) < \rho(u, x)/2$  and  $f_{x_u}(v) > \rho(u, v)/2$ , so  $f_{X_n}(u) \neq f_{X_n}(v)$  and  $\{f_n\}$  separates points in X. Define  $f_0 \equiv 1$  on X. Let A be the collection of polynomials with real coefficients in a finite number of the  $f_k$  (that is, take polynomials in several variables and evaluate them at some of the  $f_k$ ).

- ()

**Proof (continued).** Then  $\mathcal{A}$  is an algebra that contains the constant functions and it separates points in X since it contains the  $f_k$ . By the Stone-Weierstrass Theorem,  $\mathcal{A}$  is dense in  $\mathcal{C}(X)$ . But the collection of functions in  $\mathcal{A}$  that are polynomials with rational coefficients is a countable set that is dense in  $\mathcal{A}$ . Therefore  $\mathcal{C}(X)$  is separable.

**Proof (continued).** Then  $\mathcal{A}$  is an algebra that contains the constant functions and it separates points in X since it contains the  $f_k$ . By the Stone-Weierstrass Theorem,  $\mathcal{A}$  is dense in  $\mathcal{C}(X)$ . But the collection of functions in  $\mathcal{A}$  that are polynomials with rational coefficients is a countable set that is dense in  $\mathcal{A}$ . Therefore  $\mathcal{C}(X)$  is separable.

Conversely, suppose C(X) is separable. Let  $\{g_n\}$  be a countable dense subset of C(X). For each  $n \in \mathbb{N}$  define  $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$ . Then  $\{\mathcal{O}_n\}$  is a countable collection of open sets.

**Proof (continued).** Then  $\mathcal{A}$  is an algebra that contains the constant functions and it separates points in X since it contains the  $f_k$ . By the Stone-Weierstrass Theorem,  $\mathcal{A}$  is dense in  $\mathcal{C}(X)$ . But the collection of functions in  $\mathcal{A}$  that are polynomials with rational coefficients is a countable set that is dense in  $\mathcal{A}$ . Therefore  $\mathcal{C}(X)$  is separable.

Conversely, suppose C(X) is separable. Let  $\{g_n\}$  be a countable dense subset of C(X). For each  $n \in \mathbb{N}$  define  $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$ . Then  $\{\mathcal{O}_n\}$  is a countable collection of open sets. We now show X is second countable. Let  $x \in \mathcal{O}$  where  $\mathcal{O}$  is open. Since X is normal (because X is compact and Hausdorff, normality follows from Theorem 11.18), by Proposition 11.8 (since  $\{x\}$  is a closed set by Proposition 11.6) there is an open set  $\mathcal{U}$  for which  $x \in \mathcal{U} \subset \overline{\mathcal{U}} \subset \mathcal{O}$ .

**Proof (continued).** Then  $\mathcal{A}$  is an algebra that contains the constant functions and it separates points in X since it contains the  $f_k$ . By the Stone-Weierstrass Theorem,  $\mathcal{A}$  is dense in  $\mathcal{C}(X)$ . But the collection of functions in  $\mathcal{A}$  that are polynomials with rational coefficients is a countable set that is dense in  $\mathcal{A}$ . Therefore  $\mathcal{C}(X)$  is separable.

Conversely, suppose C(X) is separable. Let  $\{g_n\}$  be a countable dense subset of C(X). For each  $n \in \mathbb{N}$  define  $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$ . Then  $\{\mathcal{O}_n\}$  is a countable collection of open sets. We now show X is second countable. Let  $x \in \mathcal{O}$  where  $\mathcal{O}$  is open. Since X is normal (because X is compact and Hausdorff, normality follows from Theorem 11.18), by Proposition 11.8 (since  $\{x\}$  is a closed set by Proposition 11.6) there is an open set  $\mathcal{U}$  for which  $x \in \mathcal{U} \subset \overline{\mathcal{U}} \subset \mathcal{O}$ .

#### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** By Urysohn's Lemma there is a g in C(X) such that g(x) = 1 on  $\mathcal{U} \subset \overline{\mathcal{U}}$  is dense in C(X), there is  $n \in \mathbb{N}$  such that  $|g - g_n| < 1/2$  on X. So  $g_n(x) > 1/2$  on  $\mathcal{U}$  (since g(x) = 1 on  $\mathcal{U}$ ). Hence  $x \in \mathcal{U} \subset \mathcal{O}_n \subset \mathcal{O}$ . So  $\{\mathcal{O}_n\}$  is a countable base for the topological space; that is, X is second countable. So by the Urysohn Metrization Theorem, X is metrizable.

#### Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then C(X) is separable if and only if X is metrizable.

**Proof.** By Urysohn's Lemma there is a g in C(X) such that g(x) = 1 on  $\mathcal{U} \subset \overline{\mathcal{U}}$  is dense in C(X), there is  $n \in \mathbb{N}$  such that  $|g - g_n| < 1/2$  on X. So  $g_n(x) > 1/2$  on  $\mathcal{U}$  (since g(x) = 1 on  $\mathcal{U}$ ). Hence  $x \in \mathcal{U} \subset \mathcal{O}_n \subset \mathcal{O}$ . So  $\{\mathcal{O}_n\}$  is a countable base for the topological space; that is, X is second countable. So by the Urysohn Metrization Theorem, X is metrizable.