Real Analysis

Chapter 12. Topological Spaces: Three Fundamental Theorems 12.3. The Stone-Weierstrass Theorem—Proofs of Theorems

[Borsuk's Theorem](#page-33-0)

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point $x_0 \in X \sim F$, there is a neighborhood U of x_0 that is disjoint from F and has the following property: For each $\varepsilon > 0$ there is a function $h \in A$ for which

 $h < \varepsilon$ on U, $h > 1-\varepsilon$ on F, and $0 \le h \le 1$ on X.

Proof. Since A separates points, for each $y \in F$ there is $f \in A$ for which $f(x_0) \neq f(y)$. The function

$$
g_{y} = \left(\frac{f - f(x_0)}{\|f - f(x_0)\|_{\max}}\right)^2
$$

in in $\mathcal A$ since $\mathcal A$ is a linear space closed under products containing constant functions (by the definition of "algebra").

Lemma 12.7. Let X be a compact Hausdorff space and $\mathcal A$ an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point $x_0 \in X \sim F$, there is a neighborhood U of x_0 that is disjoint from F and has the following property: For each $\varepsilon > 0$ there is a function $h \in A$ for which

$$
h < \varepsilon \text{ on } \mathcal{U}, h > 1-\varepsilon \text{ on } F, \text{ and } 0 \le h \le 1 \text{ on } X.
$$

Proof. Since A separates points, for each $y \in F$ there is $f \in A$ for which $f(x_0) \neq f(y)$. The function

$$
g_{y}=\left(\frac{f-f(x_0)}{\|f-f(x_0)\|_{\max}}\right)^2
$$

in in $\mathcal A$ since $\mathcal A$ is a linear space closed under products containing constant **functions (by the definition of "algebra").** Also, $g(x_0) = 0$, $g(y) > 0$, and $0 \leq g_v \leq 1$ on X. Since g_v is continuous, there is a neighborhood \mathcal{N}_v of y on which g_v only takes on positive values.

Lemma 12.7. Let X be a compact Hausdorff space and $\mathcal A$ an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point $x_0 \in X \sim F$, there is a neighborhood U of x_0 that is disjoint from F and has the following property: For each $\varepsilon > 0$ there is a function $h \in A$ for which

$$
h < \varepsilon \text{ on } \mathcal{U}, h > 1-\varepsilon \text{ on } F, \text{ and } 0 \le h \le 1 \text{ on } X.
$$

Proof. Since A separates points, for each $y \in F$ there is $f \in A$ for which $f(x_0) \neq f(y)$. The function

$$
g_{y}=\left(\frac{f-f(x_0)}{\|f-f(x_0)\|_{\max}}\right)^2
$$

in in $\mathcal A$ since $\mathcal A$ is a linear space closed under products containing constant functions (by the definition of "algebra"). Also, $g(x_0) = 0$, $g(y) > 0$, and $0 \leq g_{v} \leq 1$ on X. Since g_{v} is continuous, there is a neighborhood \mathcal{N}_{v} of y on which g_v only takes on positive values.

Lemma 12.7 (continued 1)

Proof (continued). However, F is a closed subset of the compact space X and so F itself is compact by Proposition 11.15. Since this holds for each $y \in F$, we can find a finite collection $\{y_1, y_2, \ldots, y_n\}$ of points in F, with corresponding ϱ_{y_i} 's such that the $\mathcal{N}_{\mathsf{y}_i}$'s cover G . Define the function $g \in \mathcal{A}$ by

Then $g(x_0) = 0$, $g > 0$ on F, and $0 \le g \le 1$ on X. But a continuous function on a compact set takes on a minimum value (Corollary 11.21), so we may choose $c > 0$ for which $g > c$ on F. By possibly multiplying g by a positive number, we may suppose $c < 1$.

Lemma 12.7 (continued 1)

Proof (continued). However, F is a closed subset of the compact space X and so F itself is compact by Proposition 11.15. Since this holds for each $y \in F$, we can find a finite collection $\{y_1, y_2, \ldots, y_n\}$ of points in F, with corresponding $\mathcal{g}_{\mathsf{y}_i}$'s such that the $\mathcal{N}_{\mathsf{y}_i}$'s cover $G.$ Define the function $g \in \mathcal{A}$ by

$$
g=\frac{1}{n}\sum_{i=1}^n g_{y_i}.
$$

Then $g(x_0) = 0$, $g > 0$ on F, and $0 \le g \le 1$ on X. But a continuous function on a compact set takes on a minimum value (Corollary 11.21), so we may choose $c > 0$ for which $g > c$ on F. By possibly multiplying g by a positive number, we may suppose $c < 1$. On the other hand, g is continuous at x_0 where $g(x_0) = 0$, so there is a neighborhood U of x_0 for which

$g < c/2$ on U, $g > c$ on F, and $0 < g < 1$ on X.

We claim that (10) holds for this choice of neighborhood U .

Lemma 12.7 (continued 1)

Proof (continued). However, F is a closed subset of the compact space X and so F itself is compact by Proposition 11.15. Since this holds for each $y \in F$, we can find a finite collection $\{y_1, y_2, \ldots, y_n\}$ of points in F, with corresponding $\mathcal{g}_{\mathsf{y}_i}$'s such that the $\mathcal{N}_{\mathsf{y}_i}$'s cover $G.$ Define the function $g \in \mathcal{A}$ by

$$
g=\frac{1}{n}\sum_{i=1}^n g_{y_i}.
$$

Then $g(x_0) = 0$, $g > 0$ on F, and $0 \le g \le 1$ on X. But a continuous function on a compact set takes on a minimum value (Corollary 11.21), so we may choose $c > 0$ for which $g > c$ on F. By possibly multiplying g by a positive number, we may suppose $c < 1$. On the other hand, g is continuous at x_0 where $g(x_0) = 0$, so there is a neighborhood U of x_0 for which

 $g < c/2$ on U, $g > c$ on F, and $0 < g < 1$ on X.

We claim that (10) holds for this choice of neighborhood U .

Lemma 12.7 (continued 2)

Proof (continued). Let $\varepsilon > 0$. By the Weierstrass Approximation Theorem, there is a polynomial p such that

 $p < \varepsilon$ on $[0, c/2]$, $p > 1 - \varepsilon$ on $[c, 1]$, and $0 \le p \le 1$ on $[0, 1]$. (14)

Consider the continuous function

Lemma 12.7 (continued 2)

Proof (continued). Let $\varepsilon > 0$. By the Weierstrass Approximation Theorem, there is a polynomial p such that

 $p < \varepsilon$ on $[0, c/2]$, $p > 1 - \varepsilon$ on $[c, 1]$, and $0 \le p \le 1$ on $[0, 1]$. (14)

Consider the continuous function

and apply the Weierstrass Approximation Theorem for $\varepsilon/2 < 0$ to get the desired polynomial p.

Lemma 12.7 (continued 2)

Proof (continued). Let $\varepsilon > 0$. By the Weierstrass Approximation Theorem, there is a polynomial p such that

 $p < \varepsilon$ on $[0, c/2]$, $p > 1 - \varepsilon$ on $[c, 1]$, and $0 \le p \le 1$ on $[0, 1]$. (14)

Consider the continuous function

and apply the Weierstrass Approximation Theorem for $\varepsilon/2 < 0$ to get the desired polynomial p.

Lemma 12.7 (continued 3)

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point $x_0 \in X \sim F$, there is a neighborhood U of x_0 that is disjoint from F and has the following property: For each $\varepsilon > 0$ there is a function $h \in A$ for which

$$
h<\varepsilon \text{ on } \mathcal{U},\ h>1-\varepsilon \text{ on } F,\ \text{and}\ 0\leq h\leq 1 \text{ on } X.
$$

Proof (continued). Since p is a polynomial and g belongs to A, the composition $h = p \circ g$ also belongs to A (A is closed under products and it a linear space). From (13) and (14) we have

• $g < c/2$ on U and $p < \varepsilon$ on [0, $c/2$] implies $h = p \circ g < \varepsilon$ on U,

- $g > c/2$ on F and $p > 1 \varepsilon$ on [c, 1] implies $h = p \circ g > 1 \varepsilon$ on F, and
- $0 \leq g \leq 1$ on X and $0 \leq p \leq 1$ on [0, 1] implies $h = p \circ g$ satisfies $0 \leq h \leq 1$ on X.

So (10) holds for h and U .

Lemma 12.7 (continued 3)

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each closed subset F of X and point $x_0 \in X \sim F$, there is a neighborhood U of x_0 that is disjoint from F and has the following property: For each $\varepsilon > 0$ there is a function $h \in A$ for which

$$
h < \varepsilon \text{ on } \mathcal{U}, h > 1-\varepsilon \text{ on } F, \text{ and } 0 \le h \le 1 \text{ on } X.
$$

Proof (continued). Since p is a polynomial and g belongs to A, the composition $h = p \circ g$ also belongs to A (A is closed under products and it a linear space). From (13) and (14) we have

- $g < c/2$ on U and $p < \varepsilon$ on [0, $c/2$] implies $h = p \circ g < \varepsilon$ on U,
- $g > c/2$ on F and $p > 1 \varepsilon$ on $[c, 1]$ implies $h = p \circ g > 1 \varepsilon$ on F, and
- $0 \le g \le 1$ on X and $0 \le p \le 1$ on [0, 1] implies $h = p \circ g$ satisfies $0 \leq h \leq 1$ on X.

So (10) holds for h and U .

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\varepsilon > 0$, there is a function h belonging to A for which

 $h < \varepsilon$ on A, $h > 1 - \varepsilon$ on B, and $0 \le h \le 1$ on X.

Proof. By Lemma 12.7 with $F = B$, we know that for each $x \in A$ there is a neighborhood \mathcal{N}_x of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points $\{x_1, x_2, \ldots, x_n\}$ in A with corresponding neighborhoods $\mathcal{N}_{\mathsf{x}_1},\mathcal{N}_{\mathsf{x}_2},\cdots,\mathcal{N}_{\mathsf{x}_n}$ that covers A.

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\varepsilon > 0$, there is a function h belonging to A for which

 $h < \varepsilon$ on A, $h > 1 - \varepsilon$ on B, and $0 \le h \le 1$ on X.

Proof. By Lemma 12.7 with $F = B$, we know that for each $x \in A$ there is a neighborhood \mathcal{N}_x of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points $\{x_1, x_2, \ldots, x_n\}$ in A with corresponding neighborhoods $\mathcal{N}_{\mathsf{x}_1},\mathcal{N}_{\mathsf{x}_2},\cdots,\mathcal{N}_{\mathsf{x}_n}$ that covers A . Choose ε_0 for which $0 < \varepsilon_0 < \varepsilon$ and $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$. For $1 \le i \le n$, since $\mathcal{N}_{\mathsf{x}_i}$ has property (1) with $B=F$, we choose $h_i\in\mathcal{A}$ such that $h_i < \varepsilon_0/n$ on $\mathcal{N}_{\mathbf{x}}$, $h_i > 1 - \varepsilon_0/n$ on B, and $0 \leq i_i \leq 1$ on X.

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\varepsilon > 0$, there is a function h belonging to A for which

 $h < \varepsilon$ on A, $h > 1 - \varepsilon$ on B, and $0 \le h \le 1$ on X.

Proof. By Lemma 12.7 with $F = B$, we know that for each $x \in A$ there is a neighborhood \mathcal{N}_x of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points $\{x_1, x_2, \ldots, x_n\}$ in A with corresponding neighborhoods $\mathcal{N}_{\mathsf{x}_1},\mathcal{N}_{\mathsf{x}_2},\cdots,\mathcal{N}_{\mathsf{x}_n}$ that covers A . Choose ε_0 for which $0 < \varepsilon_0 < \varepsilon$ and $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$. For $1 \le i \le n$, since $\mathcal{N}_{\mathsf{x}_i}$ has property (1) with $B=F$, we choose $h_i\in\mathcal{A}$ such that $h_i < \varepsilon_0/n$ on \mathcal{N}_x , $h_i > 1 - \varepsilon_0/n$ on B, and $0 \leq j_i \leq 1$ on X. Define $h = h_1 h_2 \cdots h_n$ on X. Then h belongs to A (since A is closed under products).

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\epsilon > 0$, there is a function h belonging to A for which

 $h < \varepsilon$ on A, $h > 1 - \varepsilon$ on B, and $0 \le h \le 1$ on X.

Proof. By Lemma 12.7 with $F = B$, we know that for each $x \in A$ there is a neighborhood \mathcal{N}_x of x that is disjoint from B and has the property (10). However A is a closed subset of compact space X and so A is compact (Proposition 11.15), so there is a finite subset of points $\{x_1, x_2, \ldots, x_n\}$ in A with corresponding neighborhoods $\mathcal{N}_{\mathsf{x}_1},\mathcal{N}_{\mathsf{x}_2},\cdots,\mathcal{N}_{\mathsf{x}_n}$ that covers A . Choose ε_0 for which $0 < \varepsilon_0 < \varepsilon$ and $(1 - \varepsilon_0/n)^n > 1 - \varepsilon$. For $1 \le i \le n$, since $\mathcal{N}_{\mathsf{x}_i}$ has property (1) with $B=F$, we choose $h_i\in\mathcal{A}$ such that $h_i < \varepsilon_0/n$ on \mathcal{N}_x , $h_i > 1 - \varepsilon_0/n$ on B, and $0 \leq j_i \leq 1$ on X. Define $h = h_1 h_2 \cdots h_n$ on X. Then h belongs to A (since A is closed under products).

Lemma 12.8 (continued)

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\varepsilon > 0$, there is a function h belonging to A for which

 $h < \varepsilon$ on A, $h > 1 - \varepsilon$ on B, and $0 \le h \le 1$ on X.

Proof. Since for each i we have $0 \leq h_i \leq 1$ on X, then $0 \leq i \leq 1$ on X. Also, for each i we have $h_i > 1 - \varepsilon/n$ on B , so $h \geq (1 - \varepsilon/n)^n > 1 - \varepsilon$ on **B**. Finally, for each point $x \in A$ there is an index *i* for which $x \in \mathcal{N}_{x_i}$ (since the $\mathcal{N}_{\mathsf{x}_i}$ form a cover). Thus $h_i(\mathsf{x}) < \varepsilon_0/n < \varepsilon$ and since for the other indices j we have $0 \le h_i(x) \le 1$, it follows that $h(x) < \varepsilon_0/n < \varepsilon$. So function h has the desired properties.

Lemma 12.8 (continued)

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of continuous functions on X that separates points and contains the constant functions. Then for each pair of disjoint closed subsets A and B of X and $\varepsilon > 0$, there is a function h belonging to A for which

 $h < \varepsilon$ on A, $h > 1 - \varepsilon$ on B, and $0 \le h \le 1$ on X.

Proof. Since for each i we have $0 \leq h_i \leq 1$ on X, then $0 \leq i \leq 1$ on X. Also, for each i we have $h_i > 1 - \varepsilon/n$ on B , so $h \geq (1 - \varepsilon/n)^n > 1 - \varepsilon$ on B. Finally, for each point $x \in A$ there is an index *i* for which $x \in \mathcal{N}_{x}$. (since the $\mathcal{N}_{\mathsf{x}_i}$ form a cover). Thus $h_i(\mathsf{x}) < \varepsilon_0/n < \varepsilon$ and since for the other indices j we have $0 \le h_i(x) \le 1$, it follows that $h(x) < \varepsilon_0/n < \varepsilon$. So function h has the desired properties.

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in $C(X)$.

Proof. Let f belong to $C(X)$ and let $c = ||f||_{max}$. If we can arbitrarily closely uniformly approximate the function $(f + c)/||f + c||_{\text{max}}$ by functions in \mathcal{A} , we can do the same for f (take the function approximating this, multiply if by the constant $||f + c||_{max}$, and then subtract the constant c). Therefore, we may assume $0 \le f \le 1$ on X.

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in $C(X)$.

Proof. Let f belong to $C(X)$ and let $c = ||f||_{max}$. If we can arbitrarily closely uniformly approximate the function $(f + c)/||f + c||_{\text{max}}$ by functions in A , we can do the same for f (take the function approximating this, multiply if by the constant $||f + c||_{\text{max}}$, and then subtract the constant c). Therefore, we may assume $0 \le f \le 1$ on X. Let $n \in \mathbb{N}$, $n > 1$. Consider the uniform partition $\{0, 1/n, 2/n, \ldots, (n-1)/n, 1\}$ of [0, 1]. Fix *j* with $1 \leq j \leq n$.

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in $C(X)$.

Proof. Let f belong to $C(X)$ and let $c = ||f||_{max}$. If we can arbitrarily closely uniformly approximate the function $(f + c)/||f + c||_{\text{max}}$ by functions in A , we can do the same for f (take the function approximating this, multiply if by the constant $||f + c||_{\text{max}}$, and then subtract the constant c). Therefore, we may assume $0 \le f \le 1$ on X. Let $n \in \mathbb{N}$, $n > 1$. Consider the uniform partition $\{0, 1/n, 2/n, \ldots, (n-1)/n, 1\}$ of [0, 1]. Fix *j* with $1 \leq j \leq n$. Define

$$
A_j = x \in X \mid f(x) \le (j-1)/n \} \text{ and } B_j = \{ x \in X \mid f(x) \ge j/n \}.
$$

Since f is continuous, both $A_j = f^{-1}((-\infty,(j-1)/n])$ and $B_j = f^{-1}([j/n, \infty))$ are closed subsets of X which are disjoint.

The Stone-Weierstrass Approximation Theorem.

Let X be a compact Hausdorff space. Suppose A is an algebra of continuous real-valued functions on X that separates points in X and contains the constant functions. Then A is dense in $C(X)$.

Proof. Let f belong to $C(X)$ and let $c = ||f||_{max}$. If we can arbitrarily closely uniformly approximate the function $(f + c)/||f + c||_{\text{max}}$ by functions in A , we can do the same for f (take the function approximating this, multiply if by the constant $||f + c||_{\text{max}}$, and then subtract the constant c). Therefore, we may assume $0 \le f \le 1$ on X. Let $n \in \mathbb{N}$, $n > 1$. Consider the uniform partition $\{0, 1/n, 2/n, \ldots, (n-1)/n, 1\}$ of [0, 1]. Fix *j* with $1 \le j \le n$. Define

$$
A_j = x \in X \mid f(x) \leq (j-1)/n
$$
 and
$$
B_j = \{x \in X \mid f(x) \geq j/n\}.
$$

Since f is continuous, both $A_j = f^{-1}((-\infty,(j-1)/n])$ and $B_j = f^{-1}([j/n, \infty))$ are closed subsets of X which are disjoint.

The Stone-Weierstrass Approximation Theorem (cont. 1)

Proof (continued). By Lemma 12.8, with $A=A_j$, $B=B_j$, and $\varepsilon=1/n$, there is a function $g_i \in \mathcal{A}$ for which

 $g_i(x) < 1/n$ if $f(x) \le (i - 1)/n$ (i.e., $x \in A_i$), $g_i(x) > 1 - 1/n$ if $f(x) \geq j/n$ (i.e., $x \in B_i$), and $0 \leq g_i \leq 1$ on X. (16) Define $g = (1/n) \sum_{j=1}^n g_j$. Then $g \in \mathcal{A}$. We claim that

 $||f - g||_{\text{max}} < 3/n.$ (17)

The Stone-Weierstrass Approximation Theorem (cont. 1)

Proof (continued). By Lemma 12.8, with $A=A_j$, $B=B_j$, and $\varepsilon=1/n$, there is a function $g_i \in \mathcal{A}$ for which

$$
g_j(x) < 1/n
$$
 if $f(x) \leq (j-1)/n$ (i.e., $x \in A_j$),

 $g_i(x) > 1 - 1/n$ if $f(x) \geq j/n$ (i.e., $x \in B_i$), and $0 \leq g_i \leq 1$ on X. (16) Define $g = (1/n) \sum_{j=1}^n g_j$. Then $g \in \mathcal{A}$. We claim that

$$
||f - g||_{\max} < 3/n.
$$
 (17)

With this established, given $\varepsilon > 0$ we just select n such that $3/n < \varepsilon$ and then $\{f - g\|_{\text{max}} < \varepsilon$ as desired. To verify (17) we first show that

if $1 \le k \le n$ and $f(x) \le k/n$ then $g(x) \le k/n + 1/n$. (18)

The Stone-Weierstrass Approximation Theorem (cont. 1)

Proof (continued). By Lemma 12.8, with $A=A_j$, $B=B_j$, and $\varepsilon=1/n$, there is a function $g_i \in A$ for which

$$
g_j(x) < 1/n
$$
 if $f(x) \leq (j-1)/n$ (i.e., $x \in A_j$),

 $g_i(x) > 1 - 1/n$ if $f(x) \geq j/n$ (i.e., $x \in B_i$), and $0 \leq g_i \leq 1$ on X. (16) Define $g = (1/n) \sum_{j=1}^n g_j$. Then $g \in \mathcal{A}$. We claim that

$$
||f-g||_{\max} < 3/n. \tag{17}
$$

With this established, given $\varepsilon > 0$ we just select *n* such that $3/n < \varepsilon$ and then ${f - g\Vert_{\max}} < \varepsilon$ as desired. To verify (17) we first show that

$$
\text{if } 1 \leq k \leq n \text{ and } f(x) \leq k/n \text{ then } g(x) \leq k/n + 1/n. \qquad (18)
$$

The Stone-Weierstrass Approximation Theorem (cont. 2)

Proof (continued). Indeed, for $j = k + 1, k + 2, ..., n$, with the assumption that $f(x) \le k/n$, we have that $f(x) \le k/n \le (j-1)/n$. Therefore $g_i(x) \leq 1/n$ by (16). Thus

$$
\frac{1}{n}\sum_{j=k+1}^{n}g_j \le \frac{1}{n}\left(\frac{n-k}{n}\right) \le \frac{1}{n}.\tag{18'}
$$

The Stone-Weierstrass Approximation Theorem (cont. 2)

Proof (continued). Indeed, for $j = k + 1, k + 2, ..., n$, with the assumption that $f(x) \le k/n$, we have that $f(x) \le k/n \le (j-1)/n$. Therefore $g_i(x) \leq 1/n$ by (16). Thus

$$
\frac{1}{n}\sum_{j=k+1}^{n}g_j\leq\frac{1}{n}\left(\frac{n-k}{n}\right)\leq\frac{1}{n}.
$$
 (18')

Consequently, since each $g_i(x) \leq 1$ by (16), for all k

$$
g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) = \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \sum_{j=k+1}^{n} g_j(x)
$$

$$
\leq \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \text{ by (18')}
$$

$$
\leq \frac{k}{n} + \frac{1}{n} \text{ since } g_j(x) \leq 1.
$$

Thus (18) holds.

The Stone-Weierstrass Approximation Theorem (cont. 2)

Proof (continued). Indeed, for $j = k + 1, k + 2, \ldots, n$, with the assumption that $f(x) \le k/n$, we have that $f(x) \le k/n \le (j-1)/n$. Therefore $g_i(x) \leq 1/n$ by (16). Thus

$$
\frac{1}{n}\sum_{j=k+1}^{n}g_j\leq\frac{1}{n}\left(\frac{n-k}{n}\right)\leq\frac{1}{n}.\tag{18'}
$$

Consequently, since each $g_i(x) \leq 1$ by (16), for all k

$$
g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) = \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \sum_{j=k+1}^{n} g_j(x)
$$

$$
\leq \frac{1}{n} \sum_{j=1}^{k} g_j(x) + \frac{1}{n} \text{ by (18')}
$$

$$
\leq \frac{k}{n} + \frac{1}{n} \text{ since } g_j(x) \leq 1.
$$

Thus (18) holds.

The Stone-Weierstrass Approximation Theorem (cont. 3)

Proof (continued). We now show that

if
$$
1 \le k \le n
$$
 and $(k-1)/n \le f(x)$ then $(k-1)/n = 1/n \le g(x)$. (19)

Indeed, for $j = 1, 2, ..., k - 1$ with the assumption that $(k - 1)/n \le f(z)$, we have that $j/n \leq (k-1)/n \leq f(x)$. Therefore $1 - a/n < g_i(x)$ by (16). Thus

$$
\frac{1}{n}\sum_{j=1}^{k-1}g_j(x) > \frac{k-1}{n}\left(1-\frac{1}{n}\right) = \frac{k-1}{n} - \frac{k-1}{n^2}.\tag{18''}
$$

Now $(k-1)/n^2 \le n/n^2 = 1/n$, so $-(k-1)/n^2 \ge -1/n$ and

$$
\frac{1}{n}\sum_{j=1}^{k-1}g_j(x)\geq \frac{k-1}{n}-\frac{k-1}{n^2}>\frac{k-1}{n}-\frac{1}{n}.
$$

The Stone-Weierstrass Approximation Theorem (cont. 3)

Proof (continued). We now show that

if
$$
1 \le k \le n
$$
 and $(k-1)/n \le f(x)$ then $(k-1)/n = 1/n \le g(x)$. (19)

Indeed, for $j = 1, 2, ..., k - 1$ with the assumption that $(k - 1)/n \le f(z)$, we have that $j/n \leq (k-1)/n \leq f(x)$. Therefore $1 - a/n < g_i(x)$ by (16). Thus

$$
\frac{1}{n}\sum_{j=1}^{k-1}g_j(x) > \frac{k-1}{n}\left(1-\frac{1}{n}\right) = \frac{k-1}{n} - \frac{k-1}{n^2}.\tag{18''}
$$

Now $(k-1)/n^2\le n/n^2=1/n$, so $-(k-1)/n^2\ge -1/n$ and

$$
\frac{1}{n}\sum_{j=1}^{k-1}g_j(x)\geq \frac{k-1}{n}-\frac{k-1}{n^2}>\frac{k-1}{n}-\frac{1}{n}.
$$

The Stone-Weierstrass Approximation Theorem (cont. 4)

Proof (continued). Consequently, since each $g_i(x) \ge 0$ by (16), for all k

$$
g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) \ge \frac{1}{n} \sum_{j=1}^{k-1} g_j(x) \ge \frac{k-1}{n} - \frac{1}{n}.
$$
 (19)

For $x \in X$, choose k with $1 \leq k \leq n$, such that $(k-1)/n \leq f(x) \leq k/n$ (since $0 \le f(x) \le 1$ for all $x \in X$ without loss of generality, as stated above, there is such k). From (18) and (19),

$$
f(x) \in \left[\frac{k-1}{n}, \frac{k}{n}\right] \text{ and } g(x) \in \left[\frac{k-1}{n} - \frac{1}{n}, \frac{k}{n} + \frac{1}{n}\right],
$$

so $|f(x) - g(x)| \leq 2/n < 3/n$ (consider the extremes $f(x) = (k-1)/n$ and $g(x) = k/n + 1/n$ AND $f(x) = k/n$ and $g(x) = (k-1)/n - 1/n$. So (17) holds and the result follows.

The Stone-Weierstrass Approximation Theorem (cont. 4)

Proof (continued). Consequently, since each $g_i(x) \ge 0$ by (16), for all k

$$
g(x) = \frac{1}{n} \sum_{j=1}^{n} g_j(x) \ge \frac{1}{n} \sum_{j=1}^{k-1} g_j(x) \ge \frac{k-1}{n} - \frac{1}{n}.
$$
 (19)

For $x \in X$, choose k with $1 \leq k \leq n$, such that $(k-1)/n \leq f(x) \leq k/n$ (since $0 \le f(x) \le 1$ for all $x \in X$ without loss of generality, as stated above, there is such k). From (18) and (19),

$$
f(x) \in \left[\frac{k-1}{n}, \frac{k}{n}\right] \text{ and } g(x) \in \left[\frac{k-1}{n} - \frac{1}{n}, \frac{k}{n} + \frac{1}{n}\right],
$$

so $|f(x) - g(x)| \leq 2/n < 3/n$ (consider the extremes $f(x) = (k-1)/n$ and $g(x) = k/n + 1/n$ AND $f(x) = k/n$ and $g(x) = (k-1)/n - 1/n$. So (17) holds and the result follows.

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. First, assume X is metrizable with metric ρ that induces the topology on X . Then X , being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset $\{x_n\}$ of X.

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. First, assume X is metrizable with metric ρ that induces the topology on X . Then X , being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset $\{x_n\}$ of X. For each $n \in \mathbb{N}$, define $f_n(x) = \rho(x, x_n)$ for all $x \in X$. Since ρ induces the topology, f_n is continuous (Think: If x varies a little then $\rho(x, x_n)$ varies a little and so $f_n(x)$ varies a little). Let $u, v \in X$, $u \neq v$.

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. First, assume X is metrizable with metric ρ that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset $\{x_n\}$ of X. For each $n \in \mathbb{N}$, define $f_n(x) = \rho(x, x_n)$ for all $x \in X$. Since ρ induces the topology, f_n is continuous (Think: If x varies a little then $\rho(x, x_n)$ varies a little and so $f_n(x)$ varies a little). Let $u, v \in X$, $u \neq v$. Since $\{x_n\}$ is dense in X, there are x_u, x_v in $\{x_n\}$ such that $\rho(x_u, u) < \rho(u, v)/2$ and $\rho({\mathsf x}_{\mathsf v},\mathsf v)<\rho({\mathsf u},{\mathsf v})/2.$ Then $f_{{\mathsf x}_{\mathsf u}}({\mathsf u})<\rho({\mathsf u},{\mathsf x})/2$ and $f_{{\mathsf x}_{\mathsf u}}({\mathsf v})>\rho({\mathsf u},{\mathsf v})/2,$ so $f_{x_u}(u) \neq f_{x_u}(v)$ and $\{f_n\}$ separates points in X .

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. First, assume X is metrizable with metric ρ that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset $\{x_n\}$ of X. For each $n \in \mathbb{N}$, define $f_n(x) = \rho(x, x_n)$ for all $x \in X$. Since ρ induces the topology, f_n is continuous (Think: If x varies a little then $\rho(x, x_n)$ varies a little and so $f_n(x)$ varies a little). Let $u, v \in X$, $u \neq v$. Since $\{x_n\}$ is dense in X, there are x_u , x_v in $\{x_n\}$ such that $\rho(x_u, u) < \rho(u, v)/2$ and $\rho({\mathsf x}_{\mathsf v},\mathsf v)<\rho({\mathsf u},{\mathsf v})/2.$ Then $f_{{\mathsf x}_{\mathsf u}}({\mathsf u})<\rho({\mathsf u},{\mathsf x})/2$ and $f_{{\mathsf x}_{\mathsf u}}({\mathsf v})>\rho({\mathsf u},{\mathsf v})/2,$ so $f_{x_u}(u) \neq f_{x_u}(v)$ and $\{f_n\}$ separates points in X . Define $f_0 \equiv 1$ on X . Let ${\cal A}$ be the collection of polynomials with real coefficients in a finite number of the f_k (that is, take polynomials in several variables and evaluate them at some of the f_k).

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. First, assume X is metrizable with metric ρ that induces the topology on X. Then X, being a compact metric space, is separable by Proposition 9.24. Choose a countable dense subset $\{x_n\}$ of X. For each $n \in \mathbb{N}$, define $f_n(x) = \rho(x, x_n)$ for all $x \in X$. Since ρ induces the topology, f_n is continuous (Think: If x varies a little then $\rho(x, x_n)$ varies a little and so $f_n(x)$ varies a little). Let $u, v \in X$, $u \neq v$. Since $\{x_n\}$ is dense in X, there are x_u , x_v in $\{x_n\}$ such that $\rho(x_u, u) < \rho(u, v)/2$ and $\rho({\mathsf x}_{\mathsf v},\mathsf v)<\rho({\mathsf u},{\mathsf v})/2.$ Then $f_{{\mathsf x}_{\mathsf u}}({\mathsf u})<\rho({\mathsf u},{\mathsf x})/2$ and $f_{{\mathsf x}_{\mathsf u}}({\mathsf v})>\rho({\mathsf u},{\mathsf v})/2,$ so $f_{\mathsf{x}_u} (u) \neq f_{\mathsf{x}_u} (\mathsf{v})$ and $\{f_n\}$ separates points in $X.$ Define $f_0 \equiv 1$ on $X.$ Let $\mathcal A$ be the collection of polynomials with real coefficients in a finite number of the f_k (that is, take polynomials in several variables and evaluate them at some of the f_k).

Proof (continued). Then A is an algebra that contains the constant functions and it separates points in X since it contains the f_k . By the Stone-Weierstrass Theorem, A is dense in $C(X)$. But the collection of functions in A that are polynomials with rational coefficients is a countable set that is dense in A. Therefore $C(X)$ is separable.

Proof (continued). Then A is an algebra that contains the constant functions and it separates points in X since it contains the f_k . By the Stone-Weierstrass Theorem, A is dense in $C(X)$. But the collection of functions in A that are polynomials with rational coefficients is a countable set that is dense in A. Therefore $C(X)$ is separable.

Conversely, suppose $C(X)$ is separable. Let $\{g_n\}$ be a countable dense subset of $C(X)$. For each $n \in \mathbb{N}$ define $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$. Then $\{O_n\}$ is a countable collection of open sets.

Proof (continued). Then A is an algebra that contains the constant functions and it separates points in X since it contains the f_k . By the Stone-Weierstrass Theorem, A is dense in $C(X)$. But the collection of functions in A that are polynomials with rational coefficients is a countable set that is dense in A. Therefore $C(X)$ is separable.

Conversely, suppose $C(X)$ is separable. Let $\{g_n\}$ be a countable dense subset of $C(X)$. For each $n \in \mathbb{N}$ define $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$. **Then** $\{O_n\}$ is a countable collection of open sets. We now show X is second countable. Let $x \in \mathcal{O}$ where $\mathcal O$ is open. Since X is normal (because X is compact and Hausdorff, normality follows from Theorem 11.18), by Proposition 11.8 (since $\{x\}$ is a closed set by Proposition 11.6) there is an open set U for which $x \in U \subset \overline{U} \subset \mathcal{O}$.

Proof (continued). Then A is an algebra that contains the constant functions and it separates points in X since it contains the f_k . By the Stone-Weierstrass Theorem, A is dense in $C(X)$. But the collection of functions in A that are polynomials with rational coefficients is a countable set that is dense in A. Therefore $C(X)$ is separable.

Conversely, suppose $C(X)$ is separable. Let $\{g_n\}$ be a countable dense subset of $C(X)$. For each $n \in \mathbb{N}$ define $\mathcal{O}_n = \{x \in X \mid g_n(x) > 1/2\}$. Then $\{O_n\}$ is a countable collection of open sets. We now show X is second countable. Let $x \in \mathcal{O}$ where $\mathcal O$ is open. Since X is normal (because X is compact and Hausdorff, normality follows from Theorem 11.18), by Proposition 11.8 (since $\{x\}$ is a closed set by Proposition 11.6) there is an open set U for which $x \in U \subset \overline{U} \subset \mathcal{O}$.

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. By Urysohn's Lemma there is a g in $C(X)$ such that $g(x) = 1$ on $U \subset U$ is dense in $C(X)$, there is $n \in \mathbb{N}$ such that $|g - g_n| < 1/2$ on X. So $g_n(x) > 1/2$ on U (since $g(x) = 1$ on U). Hence $x \in U \subset O_n \subset O$. So $\{\mathcal{O}_n\}$ is a countable base for the topological space; that is, X is second countable. So by the Urysohn Metrization Theorem, X is metrizable.

Borsuk's Theorem.

Let X be a compact Hausdorff topological space. Then $C(X)$ is separable if and only if X is metrizable.

Proof. By Urysohn's Lemma there is a g in $C(X)$ such that $g(x) = 1$ on $U \subset \overline{U}$ is dense in $C(X)$, there is $n \in \mathbb{N}$ such that $|g - g_n| < 1/2$ on X. So $g_n(x) > 1/2$ on U (since $g(x) = 1$ on U). Hence $x \in U \subset O_n \subset O$. So $\{O_n\}$ is a countable base for the topological space; that is, X is second countable. So by the Urysohn Metrization Theorem, X is metrizable. П