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Lemma 12.7

Lemma 12.7

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of
continuous functions on X that separates points and contains the constant
functions. Then for each closed subset F of X and point x0 ∈ X ∼ F ,
there is a neighborhood U of x0 that is disjoint from F and has the
following property: For each ε > 0 there is a function h ∈ A for which

h < ε on U , h > 1−ε on F , and 0 ≤ h ≤ 1 on X . (10)

Proof. Since A separates points, for each y ∈ F there is f ∈ A for which
f (x0) 6= f (y). The function

gy =

(
f − f (x0)

‖f − f (x0)‖max

)2

in in A since A is a linear space closed under products containing constant
functions (by the definition of “algebra”).

Also, g(x0) = 0, g(y) > 0, and
0 ≤ gy ≤ 1 on X . Since gy is continuous, there is a neighborhood Ny of y
on which gy only takes on positive values.
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Lemma 12.7

Lemma 12.7 (continued 1)

Proof (continued). However, F is a closed subset of the compact space
X and so F itself is compact by Proposition 11.15. Since this holds for
each y ∈ F , we can find a finite collection {y1, y2, . . . , yn} of points in F ,
with corresponding gyi ’s such that the Nyi ’s cover G . Define the function
g ∈ A by

g =
1

n

n∑
i=1

gyi .

Then g(x0) = 0, g > 0 on F , and 0 ≤ g ≤ 1 on X . But a continuous
function on a compact set takes on a minimum value (Corollary 11.21), so
we may choose c > 0 for which g ≥ c on F . By possibly multiplying g by
a positive number, we may suppose c < 1.

On the other hand, g is
continuous at x0 where g(x0) = 0, so there is a neighborhood U of x0 for
which

g < c/2 on U , g ≥ c on F , and 0 ≤ g ≤ 1 on X . (13)

We claim that (10) holds for this choice of neighborhood U .
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Lemma 12.7

Lemma 12.7 (continued 2)

Proof (continued). Let ε > 0. By the Weierstrass Approximation
Theorem, there is a polynomial p such that

p < ε on [0, c/2], p > 1− ε on [c , 1], and 0 ≤ p ≤ 1 on [0, 1]. (14)

Consider the continuous function

and apply the Weierstrass Approximation Theorem for ε/2 < 0 to get the
desired polynomial p.
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Lemma 12.7

Lemma 12.7 (continued 3)

Lemma 12.7. Let X be a compact Hausdorff space and A an algebra of
continuous functions on X that separates points and contains the constant
functions. Then for each closed subset F of X and point x0 ∈ X ∼ F ,
there is a neighborhood U of x0 that is disjoint from F and has the
following property: For each ε > 0 there is a function h ∈ A for which

h < ε on U , h > 1−ε on F , and 0 ≤ h ≤ 1 on X . (10)

Proof (continued). Since p is a polynomial and g belongs to A, the
composition h = p ◦ g also belongs to A (A is closed under products and
it a linear space). From (13) and (14) we have
• g < c/2 on U and p < ε on [0, c/2] implies h = p ◦ g < ε on U ,
• g ≥ c/2 on F and p > 1− ε on [c , 1] implies h = p ◦ g > 1− ε on F ,

and
• 0 ≤ g ≤ 1 on X and 0 ≤ p ≤ 1 on [0, 1] implies h = p ◦ g satisfies

0 ≤ h ≤ 1 on X .
So (10) holds for h and U .
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Lemma 12.8

Lemma 12.8

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of
continuous functions on X that separates points and contains the constant
functions. Then for each pair of disjoint closed subsets A and B of X and
ε > 0, there is a function h belonging to A for which

h < ε on A, h > 1− ε on B, and 0 ≤ h ≤ 1 on X .

Proof. By Lemma 12.7 with F = B, we know that for each x ∈ A there is
a neighborhood Nx of x that is disjoint from B and has the property (10).
However A is a closed subset of compact space X and so A is compact
(Proposition 11.15), so there is a finite subset of points {x1, x2, . . . , xn} in
A with corresponding neighborhoods Nx1 ,Nx2 , · · · ,Nxn that covers A.

Choose ε0 for which 0 < ε0 < ε and (1− ε0/n)n > 1− ε. For 1 ≤ i ≤ n,
since Nxi has property (1) with B = F , we choose hi ∈ A such that
hi < ε0/n on Nx , hi > 1− ε0/n on B, and 0 ≤ ji ≤ 1 on X . Define
h = h1h2 · · · hn on X . Then h belongs to A (since A is closed under
products).
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Lemma 12.8

Lemma 12.8 (continued)

Lemma 12.8. Let X be a compact Hausdorff space and A an algebra of
continuous functions on X that separates points and contains the constant
functions. Then for each pair of disjoint closed subsets A and B of X and
ε > 0, there is a function h belonging to A for which

h < ε on A, h > 1− ε on B, and 0 ≤ h ≤ 1 on X .

Proof. Since for each i we have 0 ≤ hi ≤ 1 on X , then 0 ≤ j ≤ 1 on X .
Also, for each i we have hi > 1− ε/n on B, so h ≥ (1− ε/n)n > 1− ε on
B. Finally, for each point x ∈ A there is an index i for which x ∈ Nxi

(since the Nxi form a cover). Thus hi (x) < ε0/n < ε and since for the
other indices j we have 0 ≤ hj(x) ≤ 1, it follows that h(x) < ε0/n < ε. So
function h has the desired properties.
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem.
Let X be a compact Hausdorff space. Suppose A is an algebra of
continuous real-valued functions on X that separates points in X and
contains the constant functions. Then A is dense in C (X ).

Proof. Let f belong to C (X ) and let c = ‖f ‖max. If we can arbitrarily
closely uniformly approximate the function (f + c)/‖f + c‖max by
functions in A, we can do the same for f (take the function approximating
this, multiply if by the constant ‖f + c‖max, and then subtract the
constant c). Therefore, we may assume 0 ≤ f ≤ 1 on X .

Let n ∈ N,
n > 1. Consider the uniform partition {0, 1/n, 2/n, . . . , (n − 1)/n, 1} of
[0, 1]. Fix j with 1 ≤ j ≤ n. Define

Aj = x ∈ X | f (x) ≤ (j − 1)/n} and Bj = {x ∈ X | f (x) ≥ j/n}.

Since f is continuous, both Aj = f −1((−∞, (j − 1)/n]) and
Bj = f −1([j/n,∞)) are closed subsets of X which are disjoint.
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 1)

Proof (continued). By Lemma 12.8, with A = Aj , B = Bj , and ε = 1/n,
there is a function gj ∈ A for which

gj(x) < 1/n if f (x) ≤ (j − 1)/n (i.e., x ∈ Aj),

gj(x) > 1− 1/n if f (x) ≥ j/n (i.e., x ∈ Bj), and 0 ≤ gj ≤ 1 on X . (16)

Define g = (1/n)
∑n

j=1 gj . Then g ∈ A. We claim that

‖f − g‖max < 3/n. (17)

With this established, given ε > 0 we just select n such that 3/n < ε and
then {f − g‖max < ε as desired. To verify (17) we first show that

if 1 ≤ k ≤ n and f (x) ≤ k/n then g(x) ≤ k/n + 1/n. (18)
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 2)

Proof (continued). Indeed, for j = k + 1, k + 2, . . . , n, with the
assumption that f (x) ≤ k/n, we have that f (x) ≤ k/n ≤ (j − 1)/n.
Therefore gj(x) ≤ 1/n by (16). Thus

1

n

n∑
j=k+1

gj ≤
1

n

(
n − k

n

)
≤ 1

n
. (18′)

Consequently, since each gj(x) ≤ 1 by (16), for all k

g(x) =
1

n

n∑
j=1

gj(x) =
1

n

k∑
j=1

gj(x) +
1

n

n∑
j=k+1

gj(x)

≤ 1

n

k∑
j=1

gj(x) +
1

n
by (18′)

≤ k

n
+

1

n
since gj(x) ≤ 1.

Thus (18) holds.
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 3)

Proof (continued). We now show that

if 1 ≤ k ≤ n and (k − 1)/n ≤ f (x) then (k − 1)/n = 1/n ≤ g(x). (19)

Indeed, for j = 1, 2, . . . , k − 1 with the assumption that (k − 1)/n ≤ f (z),
we have that j/n ≤ (k − 1)/n ≤ f (x). Therefore 1− a/n < gj(x) by (16).
Thus

1

n

k−1∑
j=1

gi (x) >
k − 1

n

(
1− 1

n

)
=

k − 1

n
− k − 1

n2
. (18′′)

Now (k − 1)/n2 ≤ n/n2 = 1/n, so −(k − 1)/n2 ≥ −1/n and

1

n

k−1∑
j=1

gj(x) ≥ k − 1

n
− k − 1

n2
>

k − 1

n
− 1

n
.
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The Stone-Weierstrass Approximation Theorem

The Stone-Weierstrass Approximation Theorem (cont. 4)

Proof (continued). Consequently, since each gj(x) ≥ 0 by (16), for all k

g(x) =
1

n

n∑
j=1

gj(x) ≥ 1

n

k−1∑
j=1

gj(x) ≥ k − 1

n
− 1

n
. (19)

For x ∈ X , choose k with 1 ≤ k ≤ n, such that (k − 1)/n ≤ f (x) ≤ k/n
(since 0 ≤ f (x) ≤ 1 for all x ∈ X without loss of generality, as stated
above, there is such k). From (18) and (19),

f (x) ∈
[
k − 1

n
,
k

n

]
and g(x) ∈

[
k − 1

n
− 1

n
,
k

n
+

1

n

]
,

so |f (x)− g(x)| ≤ 2/n < 3/n (consider the extremes f (x) = (k − 1)/n
and g(x) = k/n + 1/n AND f (x) = k/n and g(x) = (k − 1)/n− 1/n). So
(17) holds and the result follows.
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Borsuk’s Theorem

Borsuk’s Theorem

Borsuk’s Theorem.
Let X be a compact Hausdorff topological space. Then C (X ) is separable
if and only if X is metrizable.

Proof. First, assume X is metrizable with metric ρ that induces the
topology on X . Then X , being a compact metric space, is separable by
Proposition 9.24. Choose a countable dense subset {xn} of X .

For each
n ∈ N, define fn(x) = ρ(x , xn) for all x ∈ X . Since ρ induces the topology,
fn is continuous (Think: If x varies a little then ρ(x , xn) varies a little and
so fn(x) varies a little). Let u, v ∈ X , u 6= v . Since {xn} is dense in X ,
there are xu, xv in {xn} such that ρ(xu, u) < ρ(u, v)/2 and
ρ(xv , v) < ρ(u, v)/2. Then fxu(u) < ρ(u, x)/2 and fxu(v) > ρ(u, v)/2, so
fxu(u) 6= fxu(v) and {fn} separates points in X . Define f0 ≡ 1 on X . Let A
be the collection of polynomials with real coefficients in a finite number of
the fk (that is, take polynomials in several variables and evaluate them at
some of the fk).
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Borsuk’s Theorem

Borsuk’s Theorem (continued 1)

Proof (continued). Then A is an algebra that contains the constant
functions and it separates points in X since it contains the fk . By the
Stone-Weierstrass Theorem, A is dense in C (X ). But the collection of
functions in A that are polynomials with rational coefficients is a
countable set that is dense in A. Therefore C (X ) is separable.

Conversely, suppose C (X ) is separable. Let {gn} be a countable dense
subset of C (X ). For each n ∈ N define On = {x ∈ X | gn(x) > 1/2}.
Then {On} is a countable collection of open sets. We now show X is
second countable. Let x ∈ O where O is open. Since X is normal
(because X is compact and Hausdorff, normality follows from Theorem
11.18), by Proposition 11.8 (since {x} is a closed set by Proposition 11.6)
there is an open set U for which x ∈ U ⊂ U ⊂ O.
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Borsuk’s Theorem

Borsuk’s Theorem (continued 2)

Borsuk’s Theorem.
Let X be a compact Hausdorff topological space. Then C (X ) is separable
if and only if X is metrizable.

Proof. By Urysohn’s Lemma there is a g in C (X ) such that g(x) = 1 on
U ⊂ U is dense in C (X ), there is n ∈ N such that |g − gn| < 1/2 on X .
So gn(x) > 1/2 on U (since g(x) = 1 on U). Hence x ∈ U ⊂ On ⊂ O. So
{On} is a countable base for the topological space; that is, X is second
countable. So by the Urysohn Metrization Theorem, X is metrizable.
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