I heorem 13.1

Theorem 13.1 A linear operator between normed linear spaces is

Real Analysis

Chapter 13. Continuous Linear Operators on Hilbert Between Banach Spaces

13.2. Linear Operators—Proofs of Theorems

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|||u||$ for all continuous if and only if it is bounded $u \in X$ where $||u_0 - u|| < \delta$ than $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon / \|T\|$ we have for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all **Proof.** Let X and Y be normed linear spaces and $T: X \to Y$ be linear.

 $||T(u_0) - T(u)|| \le ||T|| ||u_0 - u|| < ||T|| \delta = ||T|| \varepsilon / ||T|| = \varepsilon.$

continuous on XSo T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is

Now suppose $T:X\to Y$ is continuous. Since T is linear then ||T(u) - T(0)|| = ||T(u)|| < 1.continuous at u=0 then there is $\delta>0$ such that if $\|u-0\|<\delta$ then T(0) = T(0+0) = T(0) + T(0) and so T(0) = 0. Let $\varepsilon = 1$. Since T is

Theorem 13.1 (continued)

continuous if and only if it is bounded **Theorem 13.1** A linear operator between normed linear spaces is

all $u \in X$. Therefore, T is bounded **Proof (continued).** For any $u \in X$ where $u \neq 0$, let $\lambda = \delta/(2||u||)$. So $\|\mathit{T}(u)\| = 2\|u\|/\delta - (2/\delta)\|u\|$ and so $\|\mathit{T}(u)\| \leq M\|u\|$ where $M = 2/\delta$ for $\|\lambda u\| = |\lambda| \|u\| = \lambda \|u\| = \delta/2 < \delta$. Thus $\|T(\lambda u)\| < 1$. Since $\|\mathit{T}(\lambda u)\| = \|\lambda \mathit{T}(u)\| = \lambda \|\mathit{T}(u)\|\delta/(2\|u\|) < 1$ then

Proposition 13.2

Proposition 13.2. Let X and Y be normed linear spaces. Then the normed linear space collection of bounded linear operators from X to Y, $\mathcal{L}(X,Y)$, is itself a

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then

$$||(T+S)(u)|| = ||T(u)+S(u)||$$

 $\|T(u)\|+\|S(u)\|$ by the Triangle Inequality on $\mathbb R$

||T||||u|| + ||S||||u|| by the definition of operator norm

$$= (||T|| + ||S||)||u||$$

and so T+S is bounded by ||T||+||S||. So $\mathcal{L}(X,Y)$ is closed under addition. For $\alpha\in\mathbb{R}$, $||\alpha T(u)||=|\alpha|||T(u)||$ by definition of $||\cdot||$ and so by Exercise 13.11, $\|\alpha T\| = \sup\{\|\alpha T(u)\| \mid u \in X, \|u\| \le 1\}$ $=\sup\{|\alpha|\|\mathcal{T}(u)\|\mid u\in X, \|u\|\leq 1\}=|\alpha|\sup\{\|\mathcal{T}(u)\|\mid u\in X, \|u\|\leq 1\}$ $= \alpha \parallel I \parallel$

Real Analysis

April 21, 2017 4 / 8

Proposition 13.2 (continued)

normed linear space. collection of bounded linear operators from X to Y, $\mathcal{L}(X,Y)$, is itself a **Proposition 13.2.** Let X and Y be normed linear spaces. Then the

Proof (continued). Finally, ||T|| = 0 means $||T(u)|| \le 0||u|| = 0$ and so linear space $\|\mathcal{T}\|=\sup\{\|\mathcal{T}(u)\|\mid u\in\mathcal{X},\|u\|\leq 1\}=0.$ Hence $\|\mathcal{T}\|=0$ if and only if $\mathcal{T}=0.$ Therefore, $\|\cdot\|$ is a norm on $\mathcal{L}(X,Y)$ an $d\mathcal{L}(X,Y)$ is a normed T(u) = 0 for all $u \in X$. If T(u) = 0 for all $u \in X$ then

Theorem 13.3

space, then so is $\mathcal{L}(X, Y)$. **Theorem 13.3.** Let X and Y be normed linear spaces. If Y is a Banach

 $m,n\in\mathbb{N},\ \|T_n(u)-T_m(u)\|=\|(T_n-T_m)(u)\|\leq \|T_n-T_m\|\|u\|.$ So $\{T_n(u)\}$ is a Cauchy sequence in Y. Since Y is complete, then the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X,Y)$ and **Proof.** Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X,Y)$. Let $u \in X$. For all $\mathcal{T}_n \to \mathcal{T}$ with respect to the norm in $\mathcal{L}(X,Y)$. Let $u_1,u_2 \in X$. Then $T_n(u)
ightarrow \mathcal{T}(u)$ for some $\mathcal{T}(u) \in \mathcal{Y}.$ So the resulting $\mathcal{T}: X
ightarrow \mathcal{Y}$ and \mathcal{T} is

$$T(u_1) + T(u_2) = \lim_{n \to \infty} T_n(u_1) + \lim_{n \to \infty} T_n(u_2)$$

$$= \lim_{n \to \infty} (T_n(u_1) + T_n(u_2)) = \lim_{n \to \infty} T_n(u_1 + u_2) = T(u_1 + u_2).$$

Similarly, for $u \in X$ and $\lambda \in \mathbb{R}$,

$$T(\lambda u) = \lim_{n \to \infty} T(\lambda u) = \lim_{n \to \infty} \lambda T_n(u) = \lambda \lim_{n \to \infty} T_n(u) = \lambda T(u).$$

Theorem 13.3 (continued)

we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$, **Proof (continued).** Combining these two results gives $\{T_n\}$ is Cauchy in $\mathcal{L}(X,Y)$, choose $N\in\mathbb{N}$ such that for $n\geq N$ and $k\geq 1$ $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since

$$||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|||u|| < \varepsilon ||u||/2.$$

continuous then for $u \in X$, Fix $n \ge N$ and $u \in X$. Since $\lim_{k\to\infty} T_{n+k}(u) = T(u)$ and the norm is

$$\lim_{k \to \infty} \| T_n(u) - T_{n+k}(u) \| = \left\| \lim_{n \to \infty} (T_n(u) - T_{n+k}(u)) \right\|$$
$$= \| T_n(u) - T(u) \| \le \varepsilon \|u\| / 2,$$

given $\varepsilon>0$ we have $\|T_n-T\|<\varepsilon$ for $n\geq N$, then $\|T_n\|\to T$ is and so $T_N - T$ is bounded (by $\varepsilon/2$). Since T_N is bounded then $||T|| = ||T_n - T + T|| \le ||T_n - T|| + ||T|| \le ||T|| + \varepsilon/2$ and so T is bounded. Therefore $T \in \mathcal{L}(X, Y)$. Since $\varepsilon > 0$ is arbitrary and for this

April 21, 2017 8 / 8

Real Analysis