Real Analysis

Chapter 13. Continuous Linear Operators on Hilbert Between Banach Spaces

13.2. Linear Operators—Proofs of Theorems

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \rightarrow Y$ be linear.

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \rightarrow Y$ be linear.

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|| ||u||$ for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon / \|T\|$ we have for all $u \in X$ where $||u_0 - u|| < \delta$ than

 $\|T(u_0) - T(u)\| \leq \|T\| \|u_0 - u\| \leq \|T\|\delta = \|T\|\varepsilon/\|T\| = \varepsilon.$

So T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is continuous on X .

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \rightarrow Y$ be linear.

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|| ||u||$ for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon / \|T\|$ we have for all $u \in X$ where $||u_0 - u|| < \delta$ than

 $||T(u_0) - T(u)|| < ||T|| ||u_0 - u|| < ||T|| \delta = ||T|| \varepsilon / ||T|| = \varepsilon.$

So T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is continuous on X .

Now suppose $T: X \rightarrow Y$ is continuous. Since T is linear then $T(0) = T(0+0) = T(0) + T(0)$ and so $T(0) = 0$. Let $\varepsilon = 1$. Since T is continuous at $u = 0$ then there is $\delta > 0$ such that if $||u - 0|| < \delta$ then $\|T(u) - T(0)\| = \|T(u)\| < 1.$

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \rightarrow Y$ be linear.

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|| ||u||$ for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon / \|T\|$ we have for all $u \in X$ where $||u_0 - u|| < \delta$ than

$$
\|T(u_0)-T(u)\| \leq \|T\| \|u_0-u\| < \|T\|\delta = \|T\|\varepsilon/\|T\| = \varepsilon.
$$

So T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is continuous on X .

Now suppose $T : X \rightarrow Y$ is continuous. Since T is linear then $T(0) = T(0 + 0) = T(0) + T(0)$ and so $T(0) = 0$. Let $\varepsilon = 1$. Since T is continuous at $u = 0$ then there is $\delta > 0$ such that if $||u - 0|| < \delta$ then $\|T(u) - T(0)\| = \|T(u)\| < 1.$

Theorem 13.1 (continued)

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof (continued). For any $u \in X$ where $u \neq 0$, let $\lambda = \delta/(2||u||)$. So $\|\lambda u\| = |\lambda| \|u\| = \lambda \|u\| = \delta/2 < \delta$. Thus $\|T(\lambda u)\| < 1$. Since $||T(\lambda u)|| = ||\lambda T(u)|| = \lambda ||T(u)||\delta/(2||u||) < 1$ then $||T(u)|| = 2||u||/\delta - (2/\delta)||u||$ and so $||T(u)|| < M||u||$ where $M = 2/\delta$ for all $u \in X$. Therefore, T is bounded.

Theorem 13.1 (continued)

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof (continued). For any $u \in X$ where $u \neq 0$, let $\lambda = \delta/(2||u||)$. So $\|\lambda u\| = |\lambda| \|u\| = \lambda \|u\| = \delta/2 < \delta$. Thus $\|T(\lambda u)\| < 1$. Since $||T(\lambda u)|| = ||\lambda T(u)|| = \lambda ||T(u)||\delta/(2||u||) < 1$ then $||T(u)|| = 2||u||/\delta - (2/\delta)||u||$ and so $||T(u)|| < M||u||$ where $M = 2/\delta$ for all $u \in X$. Therefore, T is bounded.

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then $\| (T + S)(u) \|$ = $\| T(u) + S(u) \|$ $\leq \Vert T(u)\Vert + \Vert S(u)\Vert$ by the Triangle Inequality on R \leq $\|T\| \|u\| + \|S\| \|u\|$ by the definition of operator norm $= (||T|| + ||S||)||u||$

and so $T + S$ is bounded by $||T|| + ||S||$. So $\mathcal{L}(X, Y)$ is closed under addition.

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then $\| (T + S)(u) \|$ = $\| T(u) + S(u) \|$ $\leq \Vert T(u)\Vert + \Vert S(u)\Vert$ by the Triangle Inequality on R \leq $\|T\| \|u\| + \|S\| \|u\|$ by the definition of operator norm $= (||T|| + ||S||)||u||$

and so $T + S$ is bounded by $||T|| + ||S||$. So $\mathcal{L}(X, Y)$ is closed under **addition.** For $\alpha \in \mathbb{R}$, $\|\alpha \mathcal{T}(u)\| = |\alpha| \| \mathcal{T}(u) \|$ by definition of $\|\cdot\|$ and so by Exercise 13.11, $\|\alpha\mathcal{T}\| = \sup\{\|\alpha\mathcal{T}(u)\| \mid u \in X, \|u\| \leq 1\}$

 $= \sup\{| \alpha | || \mathcal{T}(u) || \mid u \in X, ||u|| \leq 1\} = |\alpha| \sup\{ || \mathcal{T}(u) || \mid u \in X, ||u|| \leq 1\}$ $= \alpha ||T||.$

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then $\| (T + S)(u) \|$ = $\| T(u) + S(u) \|$ \leq $||T(u)|| + ||S(u)||$ by the Triangle Inequality on R \leq $\|T\| \|u\| + \|S\| \|u\|$ by the definition of operator norm $= (||T|| + ||S||)||u||$

and so $T + S$ is bounded by $||T|| + ||S||$. So $\mathcal{L}(X, Y)$ is closed under addition. For $\alpha \in \mathbb{R}$, $\|\alpha \mathcal{T}(u)\| = |\alpha| \| \mathcal{T}(u)\|$ by definition of $\|\cdot\|$ and so by Exercise 13.11, $\|\alpha\mathcal{T}\| = \sup\{\|\alpha\mathcal{T}(u)\| \mid u \in X, \|u\| \leq 1\}$

 $= \sup\{|\alpha| || T(u) || | u \in X, ||u|| \leq 1\} = |\alpha| \sup\{|| T(u) || | u \in X, ||u|| \leq 1\}$ $= \alpha ||T||.$

Proposition 13.2 (continued)

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof (continued). Finally, $||T|| = 0$ means $||T(u)|| \le 0||u|| = 0$ and so $T(u) = 0$ for all $u \in X$. If $T(u) = 0$ for all $u \in X$ then $||T|| = \sup{||T(u)|| \mid u \in X, ||u|| \le 1} = 0$. Hence $||T|| = 0$ if and only if $T = 0$. Therefore, $\|\cdot\|$ is a norm on $\mathcal{L}(X, Y)$ an d $\mathcal{L}(X, Y)$ is a normed linear space.

Proposition 13.2 (continued)

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof (continued). Finally, $||T|| = 0$ means $||T(u)|| \le 0||u|| = 0$ and so $T(u) = 0$ for all $u \in X$. If $T(u) = 0$ for all $u \in X$ then $||T|| = \sup{||T(u)|| \mid u \in X, ||u|| \le 1} = 0$. Hence $||T|| = 0$ if and only if $T = 0$. Therefore, $\|\cdot\|$ is a norm on $\mathcal{L}(X, Y)$ an $d\mathcal{L}(X, Y)$ is a normed linear space.

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}, \|T_n(u) - T_m(u)\| = ||(T_n - T_m)(u)|| \leq ||T_n - T_m||||u||.$ So ${T_n(u)}$ is a Cauchy sequence in Y.

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}, ||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| < ||T_n - T_m||||u||.$ So ${T_n(u)}$ is a Cauchy sequence in Y. Since Y is complete, then $T_n(u) \to T(u)$ for some $T(u) \in Y$. So the resulting $T: X \to Y$ and T is the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X, Y)$ and $T_n \to T$ with respect to the norm in $\mathcal{L}(X, Y)$. Let $u_1, u_2 \in X$.

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}, ||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| < ||T_n - T_m||||u||.$ So ${T_n(u)}$ is a Cauchy sequence in Y. Since Y is complete, then $T_n(u) \to T(u)$ for some $T(u) \in Y$. So the resulting $T : X \to Y$ and T is the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X, Y)$ and $T_n \to T$ with respect to the norm in $\mathcal{L}(X, Y)$. Let $u_1, u_2 \in X$. Then

$$
T(u_1) + T(u_2) = \lim_{n \to \infty} T_n(u_1) + \lim_{n \to \infty} T_n(u_2)
$$

 $= \lim_{n \to \infty} (T_n(u_1) + T_n(u_2)) = \lim_{n \to \infty} T_n(u_1 + u_2) = T(u_1 + u_2).$

Similarly, for $u \in X$ and $\lambda \in \mathbb{R}$,

$$
T(\lambda u) = \lim_{n \to \infty} T(\lambda u) = \lim_{n \to \infty} \lambda T_n(u) = \lambda \lim_{n \to \infty} T_n(u) = \lambda T(u).
$$

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}, ||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| < ||T_n - T_m||||u||.$ So ${T_n(u)}$ is a Cauchy sequence in Y. Since Y is complete, then $T_n(u) \to T(u)$ for some $T(u) \in Y$. So the resulting $T : X \to Y$ and T is the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X, Y)$ and $T_n \to T$ with respect to the norm in $\mathcal{L}(X, Y)$. Let $u_1, u_2 \in X$. Then

$$
T(u_1) + T(u_2) = \lim_{n \to \infty} T_n(u_1) + \lim_{n \to \infty} T_n(u_2)
$$

=
$$
\lim_{n \to \infty} (T_n(u_1) + T_n(u_2)) = \lim_{n \to \infty} T_n(u_1 + u_2) = T(u_1 + u_2).
$$

Similarly, for $u \in X$ and $\lambda \in \mathbb{R}$,

$$
T(\lambda u) = \lim_{n \to \infty} T(\lambda u) = \lim_{n \to \infty} \lambda T_n(u) = \lambda \lim_{n \to \infty} T_n(u) = \lambda T(u).
$$

Theorem 13.3 (continued)

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since ${T_n}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n > N$ and $k > 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$

Theorem 13.3 (continued)

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since ${T_n}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n > N$ and $k > 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| < ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$

Fix $n \geq N$ and $u \in X$. Since $\lim_{k \to \infty} T_{n+k}(u) = T(u)$ and the norm is continuous then for $u \in X$,

$$
\lim_{k \to \infty} || T_n(u) - T_{n+k}(u) || = \left\| \lim_{n \to \infty} (T_n(u) - T_{n+k}(u)) \right\|
$$

= $|| T_n(u) - T(u) || \leq \varepsilon ||u||/2,$

and so $T_N - T$ is bounded (by $\varepsilon/2$).

Theorem 13.3 (continued)

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since ${T_n}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n > N$ and $k > 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| < ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$

Fix $n \geq N$ and $u \in X$. Since $\lim_{k \to \infty} T_{n+k}(u) = T(u)$ and the norm is continuous then for $u \in X$,

$$
\lim_{k \to \infty} || T_n(u) - T_{n+k}(u) || = \left\| \lim_{n \to \infty} (T_n(u) - T_{n+k}(u)) \right\|
$$

= $|| T_n(u) - T(u) || \leq \varepsilon ||u||/2,$

and so $T_N - T$ is bounded (by $\varepsilon/2$). Since T_N is bounded then $||T|| = ||T_n - T + T|| < ||T_n - T|| + ||T|| < ||T|| + \varepsilon/2$ and so T is bounded. Therefore $T \in \mathcal{L}(X, Y)$. Since $\varepsilon > 0$ is arbitrary and for this given $\varepsilon > 0$ we have $||T_n - T|| < \varepsilon$ for $n > N$, then $||T_n|| \to T$ is $\mathcal{L}(X,Y)$.

Theorem 13.3 (continued)

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since ${T_n}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n > N$ and $k > 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

$$
||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.
$$

Fix $n \geq N$ and $u \in X$. Since $\lim_{k \to \infty} T_{n+k}(u) = T(u)$ and the norm is continuous then for $u \in X$,

$$
\lim_{k \to \infty} || T_n(u) - T_{n+k}(u) || = \left\| \lim_{n \to \infty} (T_n(u) - T_{n+k}(u)) \right\|
$$

= $|| T_n(u) - T(u) || \leq \varepsilon ||u||/2,$

and so $T_N - T$ is bounded (by $\varepsilon/2$). Since T_N is bounded then $||T|| = ||T_n - T + T|| < ||T_n - T|| + ||T|| < ||T|| + \varepsilon/2$ and so T is bounded. Therefore $T \in \mathcal{L}(X, Y)$. Since $\varepsilon > 0$ is arbitrary and for this given $\varepsilon > 0$ we have $||T_n - T|| < \varepsilon$ for $n \ge N$, then $||T_n|| \to T$ is $\mathcal{L}(X, Y)$.