Real Analysis

Chapter 13. Continuous Linear Operators on Hilbert Between Banach Spaces

13.2. Linear Operators—Proofs of Theorems

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \rightarrow Y$ be linear.

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \to Y$ be linear.

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|| ||u||$ for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon/||T||$ we have for all $u \in X$ where $||u_0 - u|| < \delta$ than

 $\|T(u_0) - T(u)\| \le \|T\| \|u_0 - u\| < \|T\|\delta = \|T\|\varepsilon/\|T\| = \varepsilon.$

Real Analysis

So T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is continuous on X.

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \to Y$ be linear.

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|| ||u||$ for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon/||T||$ we have for all $u \in X$ where $||u_0 - u|| < \delta$ than

 $||T(u_0) - T(u)|| \le ||T|| ||u_0 - u|| < ||T||\delta = ||T||\varepsilon/||T|| = \varepsilon.$

So T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is continuous on X.

Now suppose $T : X \to Y$ is continuous. Since T is linear then T(0) = T(0+0) = T(0) + T(0) and so T(0) = 0. Let $\varepsilon = 1$. Since T is continuous at u = 0 then there is $\delta > 0$ such that if $||u - 0|| < \delta$ then ||T(u) - T(0)|| = ||T(u)|| < 1.

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and $T : X \to Y$ be linear.

Suppose T is bounded. Then by definition $||T(u)|| \le ||T|| ||u||$ for all $u \in X$ and so $||T(u) - T(v)|| = ||T(u - v)|| \le ||T|| ||u - v||$ for all $u, v \in X$. So if $u_0 \in X$ then for any $\varepsilon > 0$, with $\delta = \varepsilon/||T||$ we have for all $u \in X$ where $||u_0 - u|| < \delta$ than

$$||T(u_0) - T(u)|| \le ||T|| ||u_0 - u|| < ||T||\delta = ||T||\varepsilon/||T|| = \varepsilon.$$

So T is continuous at $u_0 \in X$ and since u_0 is arbitrary then T is continuous on X.

Now suppose $T : X \to Y$ is continuous. Since T is linear then T(0) = T(0+0) = T(0) + T(0) and so T(0) = 0. Let $\varepsilon = 1$. Since T is continuous at u = 0 then there is $\delta > 0$ such that if $||u - 0|| < \delta$ then ||T(u) - T(0)|| = ||T(u)|| < 1.

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof (continued). For any $u \in X$ where $u \neq 0$, let $\lambda = \delta/(2||u||)$. So $||\lambda u|| = |\lambda|||u|| = \lambda ||u|| = \delta/2 < \delta$. Thus $||T(\lambda u)|| < 1$. Since $||T(\lambda u)|| = ||\lambda T(u)|| = \lambda ||T(u)|| \delta/(2||u||) < 1$ then $||T(u)|| = 2||u||/\delta - (2/\delta)||u||$ and so $||T(u)|| \le M ||u||$ where $M = 2/\delta$ for all $u \in X$. Therefore, T is bounded.

Real Analysis

Theorem 13.1 A linear operator between normed linear spaces is continuous if and only if it is bounded.

Proof (continued). For any $u \in X$ where $u \neq 0$, let $\lambda = \delta/(2||u||)$. So $||\lambda u|| = |\lambda|||u|| = \delta/2 < \delta$. Thus $||T(\lambda u)|| < 1$. Since $||T(\lambda u)|| = ||\lambda T(u)|| = \lambda ||T(u)|| \delta/(2||u||) < 1$ then $||T(u)|| = 2||u||/\delta - (2/\delta)||u||$ and so $||T(u)|| \le M||u||$ where $M = 2/\delta$ for all $u \in X$. Therefore, T is bounded.

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then $\|(T + S)(u)\| = \|T(u) + S(u)\|$ $\leq \|T(u)\| + \|S(u)\|$ by the Triangle Inequality on \mathbb{R} $\leq \|T\|\|u\| + \|S\|\|u\|$ by the definition of operator norm $= (\|T\| + \|S\|)\|u\|$

and so T + S is bounded by ||T|| + ||S||. So $\mathcal{L}(X, Y)$ is closed under addition.

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then $\|(T + S)(u)\| = \|T(u) + S(u)\|$ $\leq \|T(u)\| + \|S(u)\| \text{ by the Triangle Inequality on } \mathbb{R}$ $\leq \|T\|\|u\| + \|S\|\|u\| \text{ by the definition of operator norm}$ $= (\|T\| + \|S\|)\|u\|$

and so T + S is bounded by ||T|| + ||S||. So $\mathcal{L}(X, Y)$ is closed under addition. For $\alpha \in \mathbb{R}$, $||\alpha T(u)|| = |\alpha|||T(u)||$ by definition of $||\cdot||$ and so by Exercise 13.11, $||\alpha T|| = \sup\{||\alpha T(u)|| \mid u \in X, ||u|| \le 1\}$

 $= \sup\{|\alpha| \| T(u)\| \mid u \in X, \|u\| \le 1\} = |\alpha| \sup\{\| T(u)\| \mid u \in X, \|u\| \le 1\}$

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof. Let $T, S \in \mathcal{L}(X, Y)$. Then $\|(T + S)(u)\| = \|T(u) + S(u)\|$ $\leq \|T(u)\| + \|S(u)\|$ by the Triangle Inequality on \mathbb{R} $\leq \|T\|\|u\| + \|S\|\|u\|$ by the definition of operator norm $= (\|T\| + \|S\|)\|u\|$

and so T + S is bounded by ||T|| + ||S||. So $\mathcal{L}(X, Y)$ is closed under addition. For $\alpha \in \mathbb{R}$, $||\alpha T(u)|| = |\alpha|||T(u)||$ by definition of $||\cdot||$ and so by Exercise 13.11, $||\alpha T|| = \sup\{||\alpha T(u)|| \mid u \in X, ||u|| \le 1\}$

 $= \sup\{ |\alpha| ||T(u)|| | u \in X, ||u|| \le 1 \} = |\alpha| \sup\{ ||T(u)|| | u \in X, ||u|| \le 1 \}$ $= \alpha ||T||.$

Proposition 13.2 (continued)

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof (continued). Finally, ||T|| = 0 means $||T(u)|| \le 0||u|| = 0$ and so T(u) = 0 for all $u \in X$. If T(u) = 0 for all $u \in X$ then $||T|| = \sup\{||T(u)|| \mid u \in X, ||u|| \le 1\} = 0$. Hence ||T|| = 0 if and only if T = 0. Therefore, $|| \cdot ||$ is a norm on $\mathcal{L}(X, Y)$ an $d\mathcal{L}(X, Y)$ is a normed linear space.

Proposition 13.2 (continued)

Proposition 13.2. Let X and Y be normed linear spaces. Then the collection of bounded linear operators from X to Y, $\mathcal{L}(X, Y)$, is itself a normed linear space.

Proof (continued). Finally, ||T|| = 0 means $||T(u)|| \le 0||u|| = 0$ and so T(u) = 0 for all $u \in X$. If T(u) = 0 for all $u \in X$ then $||T|| = \sup\{||T(u)|| \mid u \in X, ||u|| \le 1\} = 0$. Hence ||T|| = 0 if and only if T = 0. Therefore, $|| \cdot ||$ is a norm on $\mathcal{L}(X, Y)$ an $d\mathcal{L}(X, Y)$ is a normed linear space.

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}$, $||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| \le ||T_n - T_m|| ||u||$. So $\{T_n(u)\}$ is a Cauchy sequence in Y.

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}$, $||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| \le ||T_n - T_m|| ||u||$. So $\{T_n(u)\}$ is a Cauchy sequence in Y. Since Y is complete, then $T_n(u) \to T(u)$ for some $T(u) \in Y$. So the resulting $T : X \to Y$ and T is the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X, Y)$ and $T_n \to T$ with respect to the norm in $\mathcal{L}(X, Y)$. Let $u_1, u_2 \in X$.

Real Analysis

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}$, $||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| \le ||T_n - T_m|| ||u||$. So $\{T_n(u)\}$ is a Cauchy sequence in Y. Since Y is complete, then $T_n(u) \to T(u)$ for some $T(u) \in Y$. So the resulting $T : X \to Y$ and T is the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X, Y)$ and $T_n \to T$ with respect to the norm in $\mathcal{L}(X, Y)$. Let $u_1, u_2 \in X$. Then

$$T(u_1) + T(u_2) = \lim_{n \to \infty} T_n(u_1) + \lim_{n \to \infty} T_n(u_2)$$

 $= \lim_{n \to \infty} (T_n(u_1) + T_n(u_2)) = \lim_{n \to \infty} T_n(u_1 + u_2) = T(u_1 + u_2).$

Similarly, for $u \in X$ and $\lambda \in \mathbb{R}$,

$$T(\lambda u) = \lim_{n \to \infty} T(\lambda u) = \lim_{n \to \infty} \lambda T_n(u) = \lambda \lim_{n \to \infty} T_n(u) = \lambda T(u).$$

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach space, then so is $\mathcal{L}(X, Y)$.

Proof. Let $\{T_n\}$ be a Cauchy sequence in $\mathcal{L}(X, Y)$. Let $u \in X$. For all $m, n \in \mathbb{N}$, $||T_n(u) - T_m(u)|| = ||(T_n - T_m)(u)|| \le ||T_n - T_m|| ||u||$. So $\{T_n(u)\}$ is a Cauchy sequence in Y. Since Y is complete, then $T_n(u) \to T(u)$ for some $T(u) \in Y$. So the resulting $T : X \to Y$ and T is the "pointwise" limit of T_n . We need to prove that $T \in \mathcal{L}(X, Y)$ and $T_n \to T$ with respect to the norm in $\mathcal{L}(X, Y)$. Let $u_1, u_2 \in X$. Then

$$T(u_1) + T(u_2) = \lim_{n \to \infty} T_n(u_1) + \lim_{n \to \infty} T_n(u_2)$$
$$= \lim_{n \to \infty} (T_n(u_1) + T_n(u_2)) = \lim_{n \to \infty} T_n(u_1 + u_2) = T(u_1 + u_2).$$

Similarly, for $u \in X$ and $\lambda \in \mathbb{R}$,

$$T(\lambda u) = \lim_{n \to \infty} T(\lambda u) = \lim_{n \to \infty} \lambda T_n(u) = \lambda \lim_{n \to \infty} T_n(u) = \lambda T(u).$$

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so *T* is linear. Let $\varepsilon > 0$. Since $\{T_n\}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n \ge N$ and $k \ge 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since $\{T_n\}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n \ge N$ and $k \ge 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$

Fix $n \ge N$ and $u \in X$. Since $\lim_{k\to\infty} T_{n+k}(u) = T(u)$ and the norm is continuous then for $u \in X$,

$$\lim_{k \to \infty} \|T_n(u) - T_{n+k}(u)\| = \left\|\lim_{n \to \infty} (T_n(u) - T_{n+k}(u))\right\|$$
$$= \|T_n(u) - T(u)\| \le \varepsilon \|u\|/2,$$

and so $T_N - T$ is bounded (by $\varepsilon/2$).

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since $\{T_n\}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n \ge N$ and $k \ge 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$ Fix $n \ge N$ and $u \in X$. Since $\lim_{k\to\infty} T_{n+k}(u) = T(u)$ and the norm is continuous then for $u \in X$,

$$\lim_{k\to\infty} \|T_n(u) - T_{n+k}(u)\| = \left\|\lim_{n\to\infty} (T_n(u) - T_{n+k}(u))\right\|$$
$$= \|T_n(u) - T(u)\| \le \varepsilon \|u\|/2,$$

and so $T_N - T$ is bounded (by $\varepsilon/2$). Since T_N is bounded then $||T|| = ||T_n - T + T|| \le ||T_n - T|| + ||T|| \le ||T|| + \varepsilon/2$ and so T is bounded. Therefore $T \in \mathcal{L}(X, Y)$. Since $\varepsilon > 0$ is arbitrary and for this given $\varepsilon > 0$ we have $||T_n - T|| < \varepsilon$ for $n \ge N$, then $||T_n|| \to T$ is $\mathcal{L}(X, Y)$.

Proof (continued). Combining these two results gives $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$ and so T is linear. Let $\varepsilon > 0$. Since $\{T_n\}$ is Cauchy in $\mathcal{L}(X, Y)$, choose $N \in \mathbb{N}$ such that for $n \ge N$ and $k \ge 1$ we have $||T_n - T_{n+k}|| < \varepsilon/2$. Then for all $u \in X$,

 $||T_n(u) - T_{n+k}(u)|| = ||(T_n - T_{n+k})(u)|| \le ||T_n - T_{n+k}|| ||u|| < \varepsilon ||u||/2.$ Fix $n \ge N$ and $u \in X$. Since $\lim_{k\to\infty} T_{n+k}(u) = T(u)$ and the norm is continuous then for $u \in X$,

$$\lim_{k\to\infty} \|T_n(u) - T_{n+k}(u)\| = \left\|\lim_{n\to\infty} (T_n(u) - T_{n+k}(u))\right\|$$
$$= \|T_n(u) - T(u)\| \le \varepsilon \|u\|/2,$$

and so $T_N - T$ is bounded (by $\varepsilon/2$). Since T_N is bounded then $||T|| = ||T_n - T + T|| \le ||T_n - T|| + ||T|| \le ||T|| + \varepsilon/2$ and so T is bounded. Therefore $T \in \mathcal{L}(X, Y)$. Since $\varepsilon > 0$ is arbitrary and for this given $\varepsilon > 0$ we have $||T_n - T|| < \varepsilon$ for $n \ge N$, then $||T_n|| \to T$ is $\mathcal{L}(X, Y)$.