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Theorem 13.1

Theorem 13.1

Theorem 13.1 A linear operator between normed linear spaces is
continuous if and only if it is bounded.

Proof. Let X and Y be normed linear spaces and T : X → Y be linear.

Suppose T is bounded. Then by definition ‖T (u)‖ ≤ ‖T‖‖u‖ for all
u ∈ X and so ‖T (u)− T (v)‖ = ‖T (u − v)‖ ≤ ‖T‖‖u − v‖ for all
u, v ∈ X . So if u0 ∈ X then for any ε > 0, with δ = ε/‖T‖ we have for all
u ∈ X where ‖u0 − u‖ < δ than

‖T (u0)− T (u)‖ ≤ ‖T‖‖u0 − u‖ < ‖T‖δ = ‖T‖ε/‖T‖ = ε.

So T is continuous at u0 ∈ X and since u0 is arbitrary then T is
continuous on X .

Now suppose T : X → Y is continuous. Since T is linear then
T (0) = T (0 + 0) = T (0) + T (0) and so T (0) = 0. Let ε = 1. Since T is
continuous at u = 0 then there is δ > 0 such that if ‖u − 0‖ < δ then
‖T (u)− T (0)‖ = ‖T (u)‖ < 1.
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Theorem 13.1

Theorem 13.1 (continued)

Theorem 13.1 A linear operator between normed linear spaces is
continuous if and only if it is bounded.

Proof (continued). For any u ∈ X where u 6= 0, let λ = δ/(2‖u‖). So
‖λu‖ = |λ|‖u‖ = λ‖u‖ = δ/2 < δ. Thus ‖T (λu)‖ < 1. Since
‖T (λu)‖ = ‖λT (u)‖ = λ‖T (u)‖δ/(2‖u‖) < 1 then
‖T (u)‖ = 2‖u‖/δ − (2/δ)‖u‖ and so ‖T (u)‖ ≤ M‖u‖ where M = 2/δ for
all u ∈ X . Therefore, T is bounded.
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Proposition 13.2

Proposition 13.2

Proposition 13.2. Let X and Y be normed linear spaces. Then the
collection of bounded linear operators from X to Y , L(X ,Y ), is itself a
normed linear space.

Proof. Let T ,S ∈ L(X ,Y ). Then

‖(T + S)(u)‖ = ‖T (u) + S(u)‖
≤ ‖T (u)‖+ ‖S(u)‖ by the Triangle Inequality on R
≤ ‖T‖‖u‖+ ‖S‖‖u‖ by the definition of operator norm

= (‖T‖+ ‖S‖)‖u‖
and so T + S is bounded by ‖T‖+ ‖S‖. So L(X ,Y ) is closed under
addition.

For α ∈ R, ‖αT (u)‖ = |α|‖T (u)‖ by definition of ‖ · ‖ and so by
Exercise 13.11, ‖αT‖ = sup{‖αT (u)‖ | u ∈ X , ‖u‖ ≤ 1}
= sup{|α|‖T (u)‖ | u ∈ X , ‖u‖ ≤ 1} = |α| sup{‖T (u)‖ | u ∈ X , ‖u‖ ≤ 1}

= α‖T‖.
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Proposition 13.2

Proposition 13.2 (continued)

Proposition 13.2. Let X and Y be normed linear spaces. Then the
collection of bounded linear operators from X to Y , L(X ,Y ), is itself a
normed linear space.

Proof (continued). Finally, ‖T‖ = 0 means ‖T (u)‖ ≤ 0‖u‖ = 0 and so
T (u) = 0 for all u ∈ X . If T (u) = 0 for all u ∈ X then
‖T‖ = sup{‖T (u)‖ | u ∈ X , ‖u‖ ≤ 1} = 0. Hence ‖T‖ = 0 if and only if
T = 0. Therefore, ‖ · ‖ is a norm on L(X ,Y ) an dL(X ,Y ) is a normed
linear space.
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Theorem 13.3

Theorem 13.3

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach
space, then so is L(X ,Y ).

Proof. Let {Tn} be a Cauchy sequence in L(X ,Y ). Let u ∈ X . For all
m, n ∈ N, ‖Tn(u)− Tm(u)‖ = ‖(Tn − Tm)(u)‖ ≤ ‖Tn − Tm‖‖u‖. So
{Tn(u)} is a Cauchy sequence in Y .

Since Y is complete, then
Tn(u) → T (u) for some T (u) ∈ Y . So the resulting T : X → Y and T is
the “pointwise” limit of Tn. We need to prove that T ∈ L(X ,Y ) and
Tn → T with respect to the norm in L(X ,Y ). Let u1, u2 ∈ X . Then

T (u1) + T (u2) = lim
n→∞

Tn(u1) + lim
n→∞

Tn(u2)

= lim
n→∞

(Tn(u1) + Tn(u2)) = lim
n→∞

Tn(u1 + u2) = T (u1 + u2).

Similarly, for u ∈ X and λ ∈ R,

T (λu) = lim
n→∞

T (λu) = lim
n→∞

λTn(u) = λ lim
n→∞

Tn(u) = λT (u).

() Real Analysis April 21, 2017 7 / 8



Theorem 13.3

Theorem 13.3

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach
space, then so is L(X ,Y ).

Proof. Let {Tn} be a Cauchy sequence in L(X ,Y ). Let u ∈ X . For all
m, n ∈ N, ‖Tn(u)− Tm(u)‖ = ‖(Tn − Tm)(u)‖ ≤ ‖Tn − Tm‖‖u‖. So
{Tn(u)} is a Cauchy sequence in Y . Since Y is complete, then
Tn(u) → T (u) for some T (u) ∈ Y . So the resulting T : X → Y and T is
the “pointwise” limit of Tn. We need to prove that T ∈ L(X ,Y ) and
Tn → T with respect to the norm in L(X ,Y ). Let u1, u2 ∈ X .

Then

T (u1) + T (u2) = lim
n→∞

Tn(u1) + lim
n→∞

Tn(u2)

= lim
n→∞

(Tn(u1) + Tn(u2)) = lim
n→∞

Tn(u1 + u2) = T (u1 + u2).

Similarly, for u ∈ X and λ ∈ R,

T (λu) = lim
n→∞

T (λu) = lim
n→∞

λTn(u) = λ lim
n→∞

Tn(u) = λT (u).

() Real Analysis April 21, 2017 7 / 8



Theorem 13.3

Theorem 13.3

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach
space, then so is L(X ,Y ).

Proof. Let {Tn} be a Cauchy sequence in L(X ,Y ). Let u ∈ X . For all
m, n ∈ N, ‖Tn(u)− Tm(u)‖ = ‖(Tn − Tm)(u)‖ ≤ ‖Tn − Tm‖‖u‖. So
{Tn(u)} is a Cauchy sequence in Y . Since Y is complete, then
Tn(u) → T (u) for some T (u) ∈ Y . So the resulting T : X → Y and T is
the “pointwise” limit of Tn. We need to prove that T ∈ L(X ,Y ) and
Tn → T with respect to the norm in L(X ,Y ). Let u1, u2 ∈ X . Then

T (u1) + T (u2) = lim
n→∞

Tn(u1) + lim
n→∞

Tn(u2)

= lim
n→∞

(Tn(u1) + Tn(u2)) = lim
n→∞

Tn(u1 + u2) = T (u1 + u2).

Similarly, for u ∈ X and λ ∈ R,

T (λu) = lim
n→∞

T (λu) = lim
n→∞

λTn(u) = λ lim
n→∞

Tn(u) = λT (u).

() Real Analysis April 21, 2017 7 / 8



Theorem 13.3

Theorem 13.3

Theorem 13.3. Let X and Y be normed linear spaces. If Y is a Banach
space, then so is L(X ,Y ).

Proof. Let {Tn} be a Cauchy sequence in L(X ,Y ). Let u ∈ X . For all
m, n ∈ N, ‖Tn(u)− Tm(u)‖ = ‖(Tn − Tm)(u)‖ ≤ ‖Tn − Tm‖‖u‖. So
{Tn(u)} is a Cauchy sequence in Y . Since Y is complete, then
Tn(u) → T (u) for some T (u) ∈ Y . So the resulting T : X → Y and T is
the “pointwise” limit of Tn. We need to prove that T ∈ L(X ,Y ) and
Tn → T with respect to the norm in L(X ,Y ). Let u1, u2 ∈ X . Then

T (u1) + T (u2) = lim
n→∞

Tn(u1) + lim
n→∞

Tn(u2)

= lim
n→∞

(Tn(u1) + Tn(u2)) = lim
n→∞

Tn(u1 + u2) = T (u1 + u2).

Similarly, for u ∈ X and λ ∈ R,

T (λu) = lim
n→∞

T (λu) = lim
n→∞

λTn(u) = λ lim
n→∞

Tn(u) = λT (u).

() Real Analysis April 21, 2017 7 / 8



Theorem 13.3

Theorem 13.3 (continued)

Proof (continued). Combining these two results gives
T (αu1 + βu2) = αT (u1) + βT (u2) and so T is linear. Let ε > 0. Since
{Tn} is Cauchy in L(X ,Y ), choose N ∈ N such that for n ≥ N and k ≥ 1
we have ‖Tn − Tn+k‖ < ε/2. Then for all u ∈ X ,

‖Tn(u)− Tn+k(u)‖ = ‖(Tn − Tn+k)(u)‖ ≤ ‖Tn − Tn+k‖‖u‖ < ε‖u‖/2.

Fix n ≥ N and u ∈ X . Since limk→∞ Tn+k(u) = T (u) and the norm is
continuous then for u ∈ X ,

lim
k→∞

‖Tn(u)− Tn+k(u)‖ =
∥∥∥ lim

n→∞
(Tn(u)− Tn+k(u))

∥∥∥
= ‖Tn(u)− T (u)‖ ≤ ε‖u‖/2,

and so TN − T is bounded (by ε/2). Since TN is bounded then
‖T‖ = ‖Tn − T + T‖ ≤ ‖Tn − T‖+ ‖T‖ ≤ ‖T‖+ ε/2 and so T is
bounded. Therefore T ∈ L(X ,Y ). Since ε > 0 is arbitrary and for this
given ε > 0 we have ‖Tn − T‖ < ε for n ≥ N, then ‖Tn‖ → T is
L(X ,Y ).
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