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Theorem 13.4

Theorem 13.4

Theorem 13.4. Any two norms on a finite dimensional linear space are
equivalent.

Proof. Notice that the equivalence of norms is an equivalence relation on
the set of norms on a set X (i.e., is reflexive, symmetric, and transitive).
So the result follows if we choose a particular norm and show that any
other norm is equivalent to the particular norm.

Let dim(X ) = n and let {e1, e2, . . . , en} be a basis for Z . For any

x = x1e1 + x2e2 + · · ·+ xnen ∈ X define ‖x‖∗ =
√

x2
1 + x2

2 + · · ·+ x2
n .

Then ‖ · ‖∗is the Euclidean norm on Rn. Let ‖ · ‖ be any norm on X . Let
M = max1≤i≤n ‖ei‖ and c2 = M

√
n.
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Theorem 13.4

Theorem 13.4 (continued 1)

Proof (continued). Then

‖x‖ = ‖x1e2 + x2e2 + · · · xnen‖ ≤
n∑

i=1

|xi |‖ei‖

by the Triangle Inequality and positive homogeneity of ‖ · ‖

≤ M
n∑

i=1

|xi |.

By the Cauchy-Schwarz Inequality on Rn, |x · y | ≤ ‖x‖∗‖y‖∗. For

i = 1, 2, . . . , n define

{
1 if xi ≥ 0
−1 if xi < 0.

Then xiyi = |xi | and

|x · y | =

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

|xi |

∣∣∣∣∣ =
n∑

i=1

|xi | ≤ ‖x‖∗‖y‖∗ =
√

n‖x‖∗.

So from above we have ‖x‖ ≤ M
∑n

i=1 |xi | ≤ M
√

n‖x‖∗ = c2‖x‖∗.
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Theorem 13.4

Theorem 13.4 (continued 2)

Proof (continued). Now define f : Rn → R by
f (x1, x2, . . . , xn) = ‖

∑n
i=1 xiei‖ = ‖x‖. Notice that for any u, v ∈ X , since

‖ · ‖ is a norm, then |‖u‖ − ‖v‖| ≤ ‖u − v‖ (this follows from the Triangle
Inequality). So for any (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn, we have

|f (x1, x2, . . . , xn)− f (y1, y2, . . . , yn)| =

∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

xiei

∥∥∥∥∥−
∥∥∥∥∥

n∑
i=1

yiei

∥∥∥∥∥
∣∣∣∣∣

≤

∥∥∥∥∥
n∑

i=1

xiei −
n∑

i=1

yiei

∥∥∥∥∥ = ‖x − y‖ ≤ c2‖x − y‖∗.

So f : Rn → R is Lipschitz (where Rn has the metric induced by the
Euclidean norm and R has the metric induced by absolute value).

Since f
is Lipschitz then it is continuous (by Exercise 13.9(ii)). Since
{e1, e2, . . . , en} is a basis then it is linearly independent. So if we take
x = (x1, x2, . . . , xn) ∈ S = {x ∈ Rn |

∑m
i=1 x2

i = 1} ⊂ Rn then f (x) > 0
(norm ‖ · ‖ is zero only for the zero vector, by definition of “norm”).
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Theorem 13.4

Theorem 13.4 (continued 3)

Proof (continued). Let S is closed and bounded in Rn and so by the
Heine-Borel Theorem (Theorem 9.20) S is compact. A continuous real
valued function on a compact set takes on a minimum value by the
Extreme Value Theorem (Theorem 9.22), say m > 0. So for any
(x1, x2, . . . , xn) ∈ S ⊂ Rn we have
f (x1, x2, . . . , xn) = ‖

∑n
i=1 xiei‖ = ‖x‖ ≥ m. So for any x ′ ∈ X , say

x ′ =
∑n

i=1 x ′i ei , let N2 =
∑n

i=1(xi )
2 so that

∑m
i=1(x

′
i /N)2 = 1 and

(x ′1/N, x ′2/N, . . . , x ′n/N) ∈ S . Then

‖x ′‖ = N‖x ′/N‖ ≥ Nm = ‖(x ′1, x ′2, . . . , x ′n)‖∗m = m‖x ′‖∗.

That is, ‖x‖∗ ≤ (1/m)‖x‖ for all x ∈ X .

So we have constants c1 = m and c2 such that for all x ∈ X ,
c1‖x‖∗ ≤ ‖x‖ ≤ c2‖x‖∗. Therefore ‖ · ‖∗ and ‖ · ‖ are equivalent and
hence any two norms on Rn are equivalent.
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Corollary 13.5

Corollary 13.5

Corollary 13.5. Any two normed linear spaces of the same finite
dimension are isomorphic.

Proof. Notice that isomorphisms of normed linear spaces from an
equivalence relation on the set of all normed linear spaces. So the result
follows if we choose a particular normed linear space and show that any
other normed linear space is isomorphic to the particular normed linear
space.

Let n be the common dimension and consider Rn under the Euclidean
norm. Let {e1, e2, . . . , en} be a basis for X . Define T : Rn → X by
mapping x = (x1, x2, . . . , xn) ∈ Rn to T (x) =

∑n
i=1 xiei ∈ X . Since

{e1, e2, . . . , en} is a basis then T is one to one (by the “uniqueness”
property of a basis) and onto (by the “spanning” property of a basis). T is
linear. We need to show that T and T−1 are continuous. Since a linear
operator is continuous if and only if it is bounded by Theorem 13.1, we
only need to show boundedness.
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Corollary 13.5

Corollary 13.5 (continued 1)

Proof (continued). For any x = (x1, x2, . . . , xn) ∈ Rn define
‖x‖′ = ‖T (x)‖ = ‖

∑n
i=1 xiei‖ where ‖ · ‖ is a norm on X . Since T is

linear then T (0) = 0 and since T is one to one T (x) = 0 if and only if
x = 0. So ‖x‖′ = ‖T (x)‖ = 0 if and only if x = 0 and nonnegativity holds
for ‖ · ‖′. For αx ∈ Rn,

‖αx‖′ = ‖T (αx)‖ =

∥∥∥∥∥
n∑

i=1

(αxi )ei

∥∥∥∥∥
=

∥∥∥∥∥α

n∑
i=1

xiei

∥∥∥∥∥ = |α|

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ = |α|‖T (x)‖ = |α|‖x‖′

and so ‖ · ‖′ satisfies positive homogeneity.

For x , y ∈ R,
‖x+y‖′ = ‖T (x+y)‖ = ‖T (x)+T (y)‖ ≤ ‖T (x)‖+‖T (y)‖ = ‖x‖′+‖y‖′
and so ‖ · ‖′ satisfies the Triangle Inequality. Therefore ‖ · ‖′ is a norm on
Rn.
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Corollary 13.5

Corollary 13.5 (continued 2)

Corollary 13.5. Any two normed linear spaces of the same finite
dimension are isomorphic.

Proof. By Theorem 13.4, ‖ · ‖′ is equivalent to the Euclidean norm ‖ · ‖∗,
so there are c1 ≥ 0, c2 ≥ 0 with c1‖x‖∗ ≤ ‖T (x)‖ ≤ c2‖x‖∗ for all
x ∈ Rn. So T : Rn → X is bounded (namely, ‖T‖ ≤ c2).

For y ∈ X
where y = T (x) for x ∈ Rn we have c1‖x‖∗ ≤ ‖T (x)‖ or (since
x = T−1(y)) c1‖T−1(y)‖∗ ≤ ‖y‖; that is, ‖T−1(y)‖∗ ≤ (1/c1)‖y‖
(notice in the proof of Theorem 13.4 that c1 > 0) and so T−1 is bounded.
Therefore, T and T−1 are continuous and T : Rn → X is an isomorphism.
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Corollary 13.6

Corollary 13.6

Corollary 13.6. Any finite dimensional normed linear space is complete
and therefore any finite dimensional subspace of a normed linear space is
closed.

Proof. Let X be a dimension-n normed linear space. Then by Corollary
13.5, X is isomorphic to Rn. Rn is complete by Theorem 9.12(i) (this
follows from the completeness of R).

Completeness is preserved under
normed linear space isomorphisms (continuity of the isomorphism and its
inverse gives that a sequence is Cauchy and convergent in one space if and
only if its image is Cauchy and convergent in the other space). So X is
complete.

Let Y be a finite dimensional subspace of a normed linear space X . Then
Y is complete by the previous paragraph. By Proposition 9.11, Y is
(topologically) closed.
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Corollary 13.7

Corollary 13.7

Corollary 13.7. The closed unit ball in a finite dimensional normed linear
space is compact.

Proof. Let X be a normed linear space of dimension n and B be its closed
unit ball. By Corollary 13.5, X is isomorphic to Rn, so let T : X → Rn be
an isomorphism (so, by the definition of “isomorphism,” T and T−1 are
continuous).

Since B is a bounded set in X and T is a bounded
transformation by Theorem 13.1, then T (B) is bounded (namely, by
‖T‖ · 1). So T (B) is bounded and closed since T−1 is continuous (by
Proposition 9.8, inverse images of open sets under a continuous function
are open and similarly for closed sets). So T (B) is a closed and bounded
subset of Rn and hence by Theorem 9.20, T (B) is compact. Since T−1 is
continuous then T−1(T (B)) = B is compact by Proposition 9.21, as
claimed.
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Riesz’s Lemma

Riesz’s Lemma

Riesz’s Lemma. Let Y be a (topologically) closed proper linear subspace
of a normed linear space X . Then for each ε > 0 there is a unit vector
x0 ∈ X for which ‖x0 − y‖ > 1− ε for all y ∈ Y .

Proof. We give the proof for the case ε = 1/2 and leave the general case
as Exercise 13.24. We only need the result for ε = 1/2 to prove the Riesz
Theorem.

Since Y is a proper subset of X then there is x ∈ X \ Y . Since
Y is a (topologically) closed subset of X then X \ Y is open and so there
is a ball of some positive radius centered at x that is disjoint from Y . So if
we take infimum of the distance from x to an element of Y then we get a
distance d > 0: inf{‖x − y ′‖ | y ′ ∈ Y ‖ = d > 0. Choose y1 ∈ Y for which
‖x − y1‖ < 2d (which can be done by the infimum definition of d). Define
x0 = (x − y1)/‖x − y1‖. Then for any y ∈ Y ,

x0 − y =
x − y1

‖x − y1‖
− y =

x − y1 − y‖x − y1‖
‖x − y1‖

=
1− y ′

‖x − y1‖
where y ′ = y1 + y‖x − y1‖ ∈ Y .
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Riesz’s Lemma

Riesz’s Lemma (continued)

Riesz’s Lemma. Let Y be a (topologically) closed proper linear subspace
of a normed linear space X . Then for each ε > 0 there is a unit vector
x0 ∈ X for which ‖x0 − y‖ > 1− ε for all y ∈ Y .

Proof (continued). Then

‖x0 − y‖ =
‖x − y ′‖
‖x − y1‖

since x0 − y = (x − y ′)/‖x − y1‖

> ‖x − y ′‖/(2d) since ‖x − y1‖ < 2d

≥ d/(2d) since d ≤ ‖x − y ′‖ by the choice of d

= 1/2.

Since y ∈ Y is arbitrary, the result follows.
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Riesz’s Theorem

Riesz’z Theorem

Riesz’s Theorem. The closed unit ball of a normed linear space X is
compact if and only if X is finite dimensional.

Proof. If X is finite dimensional then the closed unit ball is compact by
Corollary 13.7.

Assume dim(X ) = ∞. We show that X is not sequentially compact. Let
x1 ∈ B. Consider the space of {x1},
X1 = {x ∈ X | x = αx1 for some α ∈ R}. Then X1 is a closed proper
linear subspace of X (“closed” because any convergent sequence of
elements of X1 converges to an element of X1, so that X1 contains all of
its limit points; “proper” because dim(X ) = ∞). So by Riesz’s Lemma
with ε = 1/2, there is x2 ∈ B for which ‖x1 − x2‖ > 1/2. We now use
induction. Suppose we have chosen n vectors in B, {x1, x2, . . . , xn}, each
pair of which are more than a distance 1/2 apart. Let Xn be the span of
{x1, x2, . . . , xn}.
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Riesz’s Theorem

Riesz’z Theorem (continued)

Riesz’s Theorem. The closed unit ball of a normed linear space X is
compact if and only if X is finite dimensional.

Proof (continued). Then Xn is a finite dimensional subspace of X and is
closed by Corollary 13.6, and Xn is a proper subspace of X since
dim(X ) = ∞. Again, by Riesz’s Lemma with ε = 1/2, there is xn+1 ∈ B
for which ‖xi − xn+1‖ > 1/2 for 1 ≤ i ≤ n. The resulting sequence
(xi ) ⊂ B satisfies ‖xn − xm‖ > 1/2 for any n 6= m, so it has no Cauchy
subsequence and therefore no convergent subsequences (recall that
convergent sequences are always Cauchy by the Triangle Inequality).

So B
is not sequentially compact (by the definition) and by Theorem 9.16, B is
not compact (here we treat B as a metric space).
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