Real Analysis

Chapter 14. Duality for Normed Linear Spaces

14.1. Linear Functionals, Bounded Linear Functionals, and Weak Iopologies—Proofs of Theorems

Lemma 14.1 A

for which the direct sum $X=(\operatorname{Ker}(\psi))\oplus\operatorname{span}\{x_0\}$, where $Ker(\psi) = \{x \in X \mid \psi(x) = 0\}.$ **Lemma 14.1.A.** Let X be a linear space and $\psi \in X^{\sharp}$, $\psi \neq 0$, and $x_0 \in X$

Proof. Since $\psi(x_0) \neq 0$, then $(Ker(\psi)) \cap span\{x_0\} = \{0\}$. For $x \in X$ we

$$x = \left(x - \frac{\psi(x)}{\psi(x_0)}x_0\right) + \frac{\psi(x)}{\psi(x_0)}x_0$$

where $(\psi(x)/\psi(x_0))x_0 \in \text{span}\{x_0\}$ and

$$\psi\left(x - \frac{\psi(x)}{\psi(x_0)}x_0\right) = \psi(x) - \frac{\psi(x)}{\psi(x_0)}\psi(x_0) = 0$$

the claim follows.

so that $x-(\psi(x)/\psi(x_0))x_0\in \mathrm{Ker}(\psi)$. So $x\in (\mathrm{Ker}(\psi))\oplus \mathrm{span}\{x_0\}$ and

3 / 15

Proposition 14.1

codimension 1 if and only if $X_0 = \operatorname{\mathsf{Ker}}(\psi)$ for some nonzero $\psi \in X^\sharp$ **Proposition 14.1.** A linear subspace X_0 of a linear space X is of

for some $x_1, y_1 \in X_0$ and $\lambda_x, \lambda_y \in \mathbb{R}$. So over all of $\mathbb R$ For $x,y\in X$ we have that $x=x_1+\lambda_xx_0$ and $y=y_1+\lambda_yx_0$ $x \in X_0 \oplus \operatorname{span}\{x_0\}$ we have that $x = x_1 + \lambda_x x_0$ for unique $x_1 \in X_0$ and $X = X_0 \oplus \text{span}\{x_0\}$ by the definition of "codimension 1." For suppose X_0 is a subspace of codimension 1. Then there is $x_0 \neq 0$ for which that the kernel of a linear functional is of codimension 1. For the converse **Proof.** By Lemma 14.1.A and the definition of "codimension 1," we have $\lambda_x \in \mathbb{R}$. Define $\psi(x) = \psi(x_1 + \lambda_x x_0) = \lambda_x$. Then $\psi \neq 0$ since λ ranges

$$\psi(x+y) = \psi((x_1 + \lambda_x x_0) + (y_1 + \lambda_y x_0))$$

$$=\psi((x_1+y_1)+(\lambda_x+\lambda_y)x_0)=\lambda_x+\lambda_y=\psi(x)+\psi(y)$$

and $\psi \in X^{\sharp}$. Finally, $Ker(\psi) = \{x \in X \mid x = x_1 + 0x_0, x_1 \in X_0\} = X_0$.

Proposition 14.2

X. In particular, for each nonzero $x \in X$ there is a $\psi \in X^{\sharp}$ for which each linear functional on Y is an extension to a linear functional on all of **Proposition 14.2.** Let Y be a linear subspace of a linear space X. Then

X. Now for $x_1, x_2 \in X$ we have Define $\eta(x) = \eta(y)$. Then η is an extension of η and is defined on all of to Y^{\sharp} . For $x \in X$ we have $x = y + x_0$ for unique $y \in Y$ and $x_0 \in X$. (called the *linear complement* of Y) such that $X = Y \oplus X_0$. Let η belong Zorn's Lemma when $\dim(X) = \infty$) there is a linear subspace X_0 of X**Proof.** Since Y is a subspace of X, by Exercise 13.36 (which requires

$$\eta(x_1+x_2)=\eta((y_1+x_{01})+(y_2+x_{02}))=\eta((y_1+y_2)+(x_{01}+x_{02}))$$

$$= \eta(y_1 + y_2) + \eta(y_1) + \eta(y_2) = \eta(y_1 + x_{01}) + \eta(y_2 + x_{01}) = \eta(x_1) + \eta(x_2)$$

and so η is a linear functional extension on all of X

Real Analysis

April 28, 2017 5 / 15

Real Analysis

April 28, 2017 4 / 15

Proposition 14.2 (continued)

each linear functional on Y is an extension to a linear functional on all of **Proposition 14.2.** Let Y be a linear subspace of a linear space X. Then X. In particular, for each nonzero $x\in X$ there is a $\psi\in X^\sharp$ for which

define $\eta: \operatorname{span}\{x\} \to \mathbb{R}$ by $\eta(\lambda x) = \lambda ||x||$. Then **Proof (continued).** For the "in particular" part, let $x \in X$, $x \neq 0$, and

$$\eta(\lambda_1 x + \lambda_2 x) = \eta((\lambda_1 + \lambda_2)x) = (\lambda_1 + \lambda_2)||x||$$

 $= \lambda_1 ||x|| + \lambda_2 ||x|| = \lambda_1 \eta(x) + \lambda_2 \eta(x)$

and so
$$\eta$$
 is linear on span $\{x\}$. So by the previous paragraph, η has an extension to a linear functional on all of X . Also, $\eta(x) = ||x|| \neq 0$.

extension to a linear functional on all of X. Also, $\eta(x) = ||x|| \neq 0$.

Proposition 14.3

if and only if $X^{\sharp} = X^*$.

Proposition 14.3. Let X be a normed linear space X is finite dimensional

 $X^* = X^{\sharp}$ normed linear space are bounded and so if X is finite dimensional then **Proof.** By Exercise 14.3 all linear functionals on a finite dimensional

 $\psi(x) = \sum_{k=1}^{\infty} k \psi_k(x)$ for all $x \in X$. coefficient of x_k with respect to the expansion of x in the Hamel basis infinite subset). For each $k \in \mathbb{N}$ and $x \in X$, define $\psi_k(x)$ to be the countable infinite subset of \mathcal{B} , $\{x_k\}_{k=1}^{\infty}$ (every infinite set has a countable the vectors of ${\mathcal B}$ are unit vectors. Since ${\mathcal B}$ is infinite, we may "choose" normalize the vectors of ${\cal B}$, so without loss of generality we can assume Suppose X is infinite dimensional. Let \mathcal{B} be a Hamel basis for X. We can Then each ψ_k is linear and so belongs to X^\sharp . Define $\psi:X o\mathbb{R}$ as (since $\{x_k\}_{k=1}^{\infty} \subset \mathcal{B}$ we might expect $\psi_k(x)$ to be 0 for lots of $x \in X$).

Proposition 14.3 (continued)

Proof. For $x, y \in X$ we have

$$\psi(x+y) = \sum_{k=1}^{\infty} k\psi_k(x+y) = \sum_{k=1}^{\infty} (k\psi_k(x) + k\psi_k(y)).$$

the "series" $\sum_{k=1}^{\infty} (k\psi_k(x) + k\psi_k(y))$ converges absolutely and hence the elements of $\mathcal B$ and so only finitely many of the $\psi_k(x)$ are nonzero. So Since \mathcal{B} is a Hamel basis, then each $x \in X$ is a finite linear combination of

$$\psi(x+y) = \sum_{k=1}^{\infty} k \psi_k(x) + \sum_{k=1}^{\infty} k \psi_k(y) = \psi(x) + \psi(y).$$

So ψ is linear and $\psi \in X^{\sharp}$. But each x_k is a unit vector and so $\psi(x_k) =$ element of X^{\sharp} which is not in X^* and $X^* \neq X^{\sharp}$. bounded and $\psi \notin X^*$. That is, if X is infinite dimensional then there is an But then for all $k \in \mathbb{N}$, $\|\psi(x_k)\|/\|x_k\| = \|\psi_k(x_k)\| = k$ and so ψ is not

Proposition 14.4

 $\cap_{i=1}^{"}\mathsf{Ker}(\psi_i)\subset\mathsf{Ker}(\psi).$ **Proposition 14.4.** Let X be a linear space, let $\psi \in X^{\sharp}$ and $\{\psi_i\}_{i=1}^n \subset X^{\sharp}$. Then ψ is a linear combination of $\{\psi_i\}_{i=1}^n$ if and only if

 $x \in \bigcap_{i=1}^n \operatorname{Ker}(\psi_i)$, certainly $x \in \operatorname{Ker}(\psi)$. **Proof.** If ψ is a linear combination of the $\{\psi_i\}_{i=1}^n$ then for

 $\psi(x) = \psi(x') + \alpha_x \psi(x_0) = \alpha_x(1) = \alpha_x.$ is of the form $x' + \alpha_x x_0$ where $x' \in \text{Ker}(\psi_1)$ and so $\operatorname{Ker}(\psi_1) \subset \operatorname{Ker}(\psi)$. By Lemma 14.1.A, $X = \operatorname{Ker}(\psi_1) \oplus \operatorname{span}\{x_0\}$, so $x \in X$ norm of x_0 to get $\psi(x_0) = 1$). Then $\psi_1(x_0) \neq 0$ also since So there is $x_0 \neq 0$ for which $\psi(x_0) = 1$ (first, $\psi(x_0) \neq 0$ lets us adjust the ψ_1 (since $\psi=0\psi_1=0$). So without loss of generality we consider $\psi\neq 0$. $\operatorname{Ker}(\psi_1) \subset \operatorname{Ker}(\psi)$. If $\psi = 0$ then ψ is trivially a "linear combination" of We prove the converse by induction. For n = 1, suppose

Real Analysis

Proposition 14.4 (continued 1)

Proof (continued). Let $\lambda_1 = 1/\psi_1(x_0)$. Then for $x \in X$

$$\lambda_1 \psi_1(x) = \lambda_1 \psi_1(x' + \alpha_x x_0) = \lambda_1 \psi_1(x') + \lambda_1 \alpha_x \psi_1(x_0)$$

= 0 + \alpha_x \psi_1(x_0) / \psi_1(x_0) = \alpha_x = \psi(x).

So $\psi - \lambda_1 \psi_1$, ψ is a linear combination of $\{\psi_i|_{i=1}^1$ and the result holds for

of $\{\psi_i\}_{i=1}^{k-1}$. Suppose the hypothesis holds for n=k, Now assume the result holds for n=k-1 and ψ is a linear combination

there is $x_0 \in X$ with $\psi_k(x_0) = 1$. Then by Lemma 14.1.A, and ψ is a linear combination of $\{\psi_i\}_{i=1}^k$. So without loss of generality, combination of $\{\psi_i\}_{i=1}^k \text{Ker}(\psi_i) \subset \text{Ker}(\psi)$. If $\psi_k = 0$ then the result holds $\cap_{i=1}^k {\sf Ker}(\psi_i) \subset {\sf Ker}(\psi)$. If $\psi_k=0$ then the result holds and ψ is a linear $X=T\oplus \operatorname{\mathsf{span}}\{x_0\}$ where $Y=\operatorname{\mathsf{Ker}}(\psi_k)$ and so

$$\cap_{i=1}^k \mathsf{Ker}(\psi_i) = \cap_{i=1}^{k-1} (\mathsf{Ker}(\psi_i) \cap Y) \subset \mathsf{Ker}(\psi) \cap Y.$$

Proposition 14.4 (continued 2) **Proof (continued).** By the induction assumption, there are

 $\psi(x) = \psi(x') + \alpha_x \psi(x_0) = 0 + \alpha_x \psi(x_0)$. Let $\lambda_k = \psi(x_0) - \sum_{i=1}^{k-1} \lambda_i \psi_i(x_0)$ $x = x' + \alpha_x x_0$ where $x' \in Y$, and so $\lambda_1,\lambda_2,\ldots,\lambda_{k-1}$ for which $\psi=\sum_{i=1}^{k-1}\lambda_i\psi_i$. For $x\in X$ we have

$$\sum_{i=1}^{k} \lambda_{i} \psi_{i}(x) = \sum_{i=1}^{k} \lambda_{i} \psi_{i}(x' + \alpha_{x} x_{0}) = \sum_{i=1}^{k} \lambda_{i} \psi_{i}(x') + \alpha_{x} \sum_{k=1}^{k} \lambda_{i} \psi_{i}(x_{0})$$

$$= 0 + \alpha_{x} \left(\sum_{k=1}^{k-1} \lambda_{i} \psi_{i}(x_{0}) + \lambda_{k} \psi_{k}(x_{0}) \right)$$

$$= 0 + \alpha_{x} \left(\sum_{k=1}^{k-1} \lambda_{i} \psi_{i}(x_{0}) + \left(\psi(x_{0}) - \sum_{i=1}^{k-1} \lambda_{i} \psi_{i}(x_{0}) \right) \psi_{k}(x_{0}) \right)$$

$$= \alpha_{x} \psi(x_{0}) \text{ since } \psi_{k}(x_{0}) = 1$$

$$= \psi(x).$$

Proposition 14.4 (continued 3)

 $\bigcap_{i=1}^n \operatorname{Ker}(\psi_i) \subset \operatorname{Ker}(\psi).$ **Proposition 14.4.** Let X be a linear space, let $\psi \in X^{\sharp}$ and $\{\psi_i\}_{i=1}^n \subset X^{\sharp}$. Then ψ is a linear combination of $\{\psi_i\}_{i=1}^n$ if and only if

Proof (continued). So $\psi = \sum_{i=1}^k \lambda_i \psi_i$, ψ is a linear combination of induction, the result holds for all $n \in \mathbb{N}$ $\{\psi_i\}_{i=1}^k$ and the result holds for n=k. Therefore, by mathematical

Proposition 14.5

belongs to W. **Proposition 14.5.** Let X be a linear space and W a subspace of X^{\sharp} . Then a linear functional $\psi:X o\mathbb{R}$ is E-weakly continuous if and only if it

Proof. By the definition of the W-weak topology, each linear functional in W is W-weakly continuous.

 $\pi_1, \psi_2, \ldots, \psi_n$ in W for which $\mathcal{N}_{\varepsilon, \psi_1, \psi_2, \ldots, \psi_n} \subset \mathcal{N}$ is such a base element. So if $|\psi_k(x)| < \varepsilon$ for all $a \le k \le n$ then $|\psi(x)| < 1$. By the linearity of ψ and the ψ_k 's we have the inclusion $\cap_{k=1}^n \mathrm{Ker}(\psi_k) \subset \mathrm{Ker}(\psi)$. (This claim contained in ${\mathcal N}$ (by the definition of "base"). Choose ${arepsilon}>0$ and combination of $\psi_1, \psi_2, \dots, \psi_n$. Therefore, since W is a linear space, ψ **needs additional justification!!!)** By Proposition 14.4, ψ is then a linear arepsilon=1). There is a neighborhood in the base for the W-topology at 0 $|\psi(x)| = |\psi(x) - \psi(0)| < 1$ if $x \in \mathcal{N}$ (by the definition of continuity with For the converse, suppose $\psi:X\to\mathbb{R}$ is W-weakly continuous. Since ψ $W ext{-weakly continuous}$ at 0, there is a neighborhood ${\mathcal N}$ of 0 for which

Lemma 14.1 B

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded. That is, $J(x) \in (X^*)^*$.

Proof. For $\psi_1, \psi_2 \in X^*$ and $\alpha_1, \alpha_2 \in \mathbb{R}$ we have

$$J(x)[\alpha_1\pi_1 + \alpha_2\psi_2] = (\alpha_1\psi_1 + \alpha_2\psi_2)(x)$$

$$= \alpha_1 \psi_1(x) + \alpha_2 \psi_2(x) = \alpha_1 J(x) [\psi_1] + \alpha_2 J(x) [\psi_2],$$

so
$$J(x)$$
 is linear. $J(x)$ is bounded because for any $\psi \in X^*$, $|J(x)[\psi]| = |\psi(x)|| \le ||\psi|||x|$ and so $||J(x)|| \le |x|$.

Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the weak and weak-* topologies are the same. **Proof.** By definition, X is reflexive if $J(X) = X^{**}$. So if X is reflexive, the

Proof. By definition, X is reflexive if $J(X) = X^*$. So if X is reflexive, the topology induced by J(X) (the weak-* topology on X^*) is the same as the topology induced by X^{**} (the weak topology on X^*).

Conversely, suppose the weak and weak-* topologies are the same. Let $\Psi: X^* \to \mathbb{R}$ be a linear functional continuous with respect to the norm on X; that is, let $\Psi \in X^{**}$. By definition of the weak topology, Ψ is continuous with respect to the weak topology on X^* . Since the weak-* topology is weaker than the weak topology (that is, the weak-* topology is a subset of the weak topology) then Ψ is continuous with respect to the weak-* topology. Since J(X) is a subspace of X^{**} (and so of $(X^*)^*$) then by Proposition 14.5 (with W = J(X)), $\Psi \in J(X)$. Therefore $X^{**} \subset J(X)$ and since $J(X) \subset X^{**}$ then $J(X) = X^{**}$, as claimed.