Real Analysis

Chapter 14. Duality for Normed Linear Spaces
14.1. Linear Functionals, Bounded Linear Functionals, and Weak
Topologies—Proofs of Theorems
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Proposition 14.1

Proposition 14.1

Proposition 14.1. A linear subspace Xy of a linear space X is of
codimension 1 if and only if Xo = Ker(¢) for some nonzero ¢ € X*.

Proof. By Lemma 14.1.A and the definition of “codimension 1,” we have
that the kernel of a linear functional is of codimension 1. For the converse,
suppose Xp is a subspace of codimension 1. Then there is xg # 0 for which
X = Xop @ span{xp} by the definition of “codimension 1.” For

x € Xo @ span{xp} we have that x = x; + \yxo for unique x; € Xy and

Ax € R. Define 1(x) = (x1 + Axx0) = Ax. Then 9 # 0 since A ranges
over all of R For x,y € X we have that x = x; + A\xg and y = y1 + A x0
for some x1,y1 € Xp and A\, A, € R. So

(x +y) = »((a + Axo0) + (y1 + Ayxo0))

= P((a +y1) + (A + Ay )x0) = A+ Ay = 9(x) + ¢(y)
and ¥ € X*. Finally, Ker(¢)) = {x € X | x = x1 + 0x0,x1 € Xo} = Xo. [
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Lemma 14.1.A

Lemma 14.1.A

Lemma 14.1.A. Let X be a linear space and v € X* ¢ # 0, and xo € X
for which the direct sum X = (Ker(1))) @ span{xp}, where
Ker(1£) = {x € X | %(x) = 0}.

Proof. Since ¢)(xp) # 0, then (Ker(¢))) Nspan{xg} = {0}. For x € X we

e TSRS
X X

X=1|Xx— @C«&Xov + GAXOVXO
where (¢¥(x)/1¥(x0))x0 € span{xp} and

) N _P(x) _

\% X QAXDvXO - @AXV N\\AXOVNBAXOV =0
so that x — (¥(x)/v¥(x0))x0 € Ker(v)). So x € (Ker(v)) & span{xp} and
the claim follows. ]
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Proposition 14.2

Proposition 14.2

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a ¢ € X* for which

¥(x) # 0.

Proof. Since Y is a subspace of X, by Exercise 13.36 (which requires
Zorn's Lemma when dim(X) = oo) there is a linear subspace Xy of X
(called the linear complement of Y) such that X = Y & Xy. Let 1 belong
to Y*. For x € X we have x = y + xo for unique y € Y and xo € X.
Define n(x) = n(y). Then 7 is an extension of 1 and is defined on all of
X. Now for x1,x» € X we have

nixa +x2) = n((y1 + xo1) + (y2 + x02)) = n((y1 + y2) + (x01 + x02))

=n(y1 + y2) +n(y1) +n(y2) = nly1 + xo1) + n(y2 + x01) = n(x1) + n(x2)

and so 7 is a linear functional extension on all of X.
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Proposition 14.2

Proposition 14.2 (continued)

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a 1) € X* for which

¥(x) # 0.

Proof (continued). For the “in particular” part, let x € X, x # 0, and
define 1 : span{x} — R by n(Ax) = A||x||. Then

n(A1x + Aax) = n((A1 + A2)x) = (A1 + A2)|x]|

= A1llx]l + A2llx]] = Aun(x) + Aan(x)

and so 7 is linear on span{x}. So by the previous paragraph, n has an
extension to a linear functional on all of X. Also, n(x) = ||x| # 0. O
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Proposition 14.3 (continued)

Proof. For x,y € X we have

oo

Dx+y) = ktn(x+y) = (ktb(x) + kvoi(y)).
k=1

k=1

Since B is a Hamel basis, then each x € X is a finite linear combination of
the elements of B and so only finitely many of the v, (x) are nonzero. So
the “series” > 72 ; (kvk(x) + kik(y)) converges absolutely and hence

x+y) =D k() + > kvbi(y) = ¢(x) + ¢(y).
k=1 k=1

So 1 is linear and ¢ € X*. But each xi is a unit vector and so ¢(xx) = k.
But then for all k € N, ||&(xi)|l/1|xk|| = |vk(xk)|| = k and so ¥ is not

bounded and v € X*. That is, if X is infinite dimensional then there is an
element of X which is not in X* and X* # X*. m
0 ]

Real Analysis

April 28, 2017 6 /15

0

April 28,2017 8/ 15

- 0

Proposition 14.3

Proposition 14.3

Proposition 14.3. Let X be a normed linear space X is finite dimensional
if and only if X = X*.

Proof. By Exercise 14.3 all linear functionals on a finite dimensional
normed linear space are bounded and so if X is finite dimensional then
X* = Xt

Suppose X is infinite dimensional. Let B be a Hamel basis for X. We can
normalize the vectors of B, so without loss of generality we can assume
the vectors of B are unit vectors. Since B is infinite, we may “choose” a
countable infinite subset of B, {xx};2 (every infinite set has a countable
infinite subset). For each k € N and x € X, define 1(x) to be the
coefficient of x, with respect to the expansion of x in the Hamel basis B
(since {xx}72; C B we might expect 1)x(x) to be 0 for lots of x € X).
Then each ) is linear and so belongs to X¥. Define ¢ : X — R as

P(x) = D 721 kipk(x) for all x € X.
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Proposition 14.4

Proposition 14.4. Let X be a linear space, let ) € X* and {¢; r,C Xt
Then 1) is a linear combination of {«;}"_, if and only if

N7, Ker(1i) C Ker(y).

Proof. If ¢ is a linear combination of the {¢;}7_; then for
x € NI_;Ker(1;), certainly x € Ker(1)).

We prove the converse by induction. For n =1, suppose

Ker(11) C Ker(1)). If 9» = 0 then ¢ is trivially a “linear combination” of
1 (since ¢ = 0th1 = 0). So without loss of generality we consider ¢ # 0.
So there is xg # 0 for which ¥ (xp) = 1 (first, 1(x0) # O lets us adjust the
norm of xp to get 1(xp) = 1). Then ¥1(xp) # 0 also since

Ker(1) C Ker(v). By Lemma 14.1.A, X = Ker(¢1) @ span{xp}, so x € X
is of the form x” 4+ ayxp where x” € Ker(11) and so

B(x) = () + axth(x0) = ax(1) = ax.
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Proposition 14.4

Proposition 14.4 (continued 1)

Proof (continued). Let A\; = 1/41(x0). Then for x € X,
A1 (x) = M1 (x + axxo) = M (x) + Maxii(xo)

= 0+ axP1(x0)/11(x0) = ax = P(x).

So 1 — A1t1, ¢ is a linear combination of {;||}
n=1.

_; and the result holds for

Now mmm:Bm the result holds for n = k — 1 and ¢ is a linear combination
of ?\i ! Suppose the hypothesis holds for n = k,

Nk Xm..??.v C XmAﬁS If 4k = 0 then the result holds and 9 is a linear
noBU_:m:o: of {i}_ Ker() C XQ?E. If 1, = 0 then the result holds
and 7 is a linear 83_u_:m:o: of {4;}*_,. So without loss of generality,
there is xg € X with ¢ (x0) = 1. Then by Lemma 14.1.A,

X = T @span{xo} where Y = Ker(1)x) and so

N Ker(1;) = NEE (Ker(yi) N Y) C Ker(y) N Y.
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Proposition 14.4
Proposition 14.4 (continued 3)
Proposition 14.4. Let X be a linear space, let ) € X* and {vi}th; C X*.

.;m: 1 is a linear combination of {1;}7

N7, Ker(e);) C Ker(2)).

' , if and only if

ﬁ«ooﬁ (continued). So ¢ = MU\.A Aitj, ¥ is a linear combination of
E: “ ; and the result holds for n = k. Therefore, by mathematical
_:Q:Q:o:_ the result holds for all n € N. ]
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Proposition 14.4

Proposition 14.4 (continued 2)

Proof (continued). By the induction assumption, there are

A1, A2, ..., A1 for which ¢ = Mu» ! Aiv;i. For x € X we have

x = x' + axxp where x’ € Y, and so

D(x) = P(X') + axh(x0) = 0+ axth(x0). Let A = ¥(x0) — S0 Aibi(x0)
then for x € X,

k

.Myixv =

=1 "
= 0+ ax MU

k
M \/LF x' + QxXo AX v + o M \/EF.AXOV
k=1

k
= M Ait

\%\ X0 +\/»§»AXOV

-1 k—1
= 0+ay MU Aiti(xo0) =) Aivi(x0) | Yi(x0)
k=1 i=1
= ax¥(x0) since Yi(xo) =1
= P(x).
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Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.
Then a linear functional ¢ : X — R is E-weakly continuous if and only if it
belongs to W.

Proof. By the definition of the W-weak topology, each linear functional in
W is W-weakly continuous.

For the converse, suppose ¢ : X — R is W-weakly continuous. Since 1) is
W-weakly continuous at 0, there is a neighborhood A of 0 for which
[Y(x)| = [(x) — ¥(0)] < 1if x € N (by the definition of continuity with
€ = 1). There is a neighborhood in the base for the W-topology at 0
contained in NV (by the definition of "base”). Choose £ > 0 and

1,2, ..., Yn in W for which Ny, ... s, C N is such a base element.
So if [1hk(x)| < € for all a < k < n then |¢)(x)| < 1. By the linearity of ¢
and the 9's we have the inclusion N}_, Ker(¢x) C Ker(¢)). (This claim
needs additional justification!!!) By Proposition 14.4, 1) is then a linear
combination of 1,5, ..., %,. Therefore, since W is a linear space,
belongs to W. [
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Lemma 14.1.B

Lemma 14.1.B

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded.

That is, J(x) € (X*)*.
Proof. For ¢1,1 € X* and a1, as € R we have
J(x)[a1m + aztpo] = (e1thr + coth2)(x)

= QH@HAXV + Qm@mﬁxv = QH.\AXV—@L + le\ﬁx:ﬂvm_v

so J(x) is linear. J(x) is bounded because for any ¢ € X*,
O =[£Il < [[0]l]x] and so [[J(x)[| < [x].

Proposition 14.6

Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-* topologies are the same.

Proof. By definition, X is reflexive if J(X) = X**. So if X is reflexive, the
topology induced by J(X) (the weak-* topology on X*) is the same as the
topology induced by X** (the weak topology on X*).

Conversely, suppose the weak and weak-* topologies are the same. Let

W : X* — R be a linear functional continuous with respect to the norm on
X; that is, let W € X**. By definition of the weak topology, W is
continuous with respect to the weak topology on X*. Since the weak-x
topology is weaker than the weak topology (that is, the weak-* topology is
a subset of the weak topology) then W is continuous with respect to the
weak-* topology. Since J(X) is a subspace of X** (and so of (X*)*) then
by Proposition 14.5 (with W = J(X)), ¥ € J(X). Therefore X** C J(X)
and since J(X) C X** then J(X) = X**, as claimed. O



