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Lemma 14.1.A

Lemma 14.1.A

Lemma 14.1.A. Let X be a linear space and ψ ∈ X ], ψ 6= 0, and x0 ∈ X
for which the direct sum X = (Ker(ψ))⊕ span{x0}, where
Ker(ψ) = {x ∈ X | ψ(x) = 0}.

Proof. Since ψ(x0) 6= 0, then (Ker(ψ)) ∩ span{x0} = {0}. For x ∈ X we
have

x =

(
x − ψ(x)

ψ(x0)
x0

)
+
ψ(x)

ψ(x0)
x0

where (ψ(x)/ψ(x0))x0 ∈ span{x0} and

ψ

(
x − ψ(x)

ψ(x0)
x0

)
= ψ(x)− ψ(x)

ψ(x0)
ψ(x0) = 0

so that x − (ψ(x)/ψ(x0))x0 ∈ Ker(ψ). So x ∈ (Ker(ψ))⊕ span{x0} and
the claim follows.
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Proposition 14.1

Proposition 14.1

Proposition 14.1. A linear subspace X0 of a linear space X is of
codimension 1 if and only if X0 = Ker(ψ) for some nonzero ψ ∈ X ].

Proof. By Lemma 14.1.A and the definition of “codimension 1,” we have
that the kernel of a linear functional is of codimension 1. For the converse,
suppose X0 is a subspace of codimension 1. Then there is x0 6= 0 for which
X = X0 ⊕ span{x0} by the definition of “codimension 1.”

For
x ∈ X0 ⊕ span{x0} we have that x = x1 + λxx0 for unique x1 ∈ X0 and
λx ∈ R. Define ψ(x) = ψ(x1 + λxx0) = λx . Then ψ 6= 0 since λ ranges
over all of R For x , y ∈ X we have that x = x1 + λxx0 and y = y1 + λyx0

for some x1, y1 ∈ X0 and λx , λy ∈ R. So

ψ(x + y) = ψ((x1 + λxx0) + (y1 + λyx0))

= ψ((x1 + y1) + (λx + λy )x0) = λx + λy = ψ(x) + ψ(y)

and ψ ∈ X ]. Finally, Ker(ψ) = {x ∈ X | x = x1 + 0x0, x1 ∈ X0} = X0.
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Proposition 14.2

Proposition 14.2

Proposition 14.2. Let Y be a linear subspace of a linear space X . Then
each linear functional on Y is an extension to a linear functional on all of
X . In particular, for each nonzero x ∈ X there is a ψ ∈ X ] for which
ψ(x) 6= 0.

Proof. Since Y is a subspace of X , by Exercise 13.36 (which requires
Zorn’s Lemma when dim(X ) = ∞) there is a linear subspace X0 of X
(called the linear complement of Y ) such that X = Y ⊕ X0.

Let η belong
to Y ]. For x ∈ X we have x = y + x0 for unique y ∈ Y and x0 ∈ X .
Define η(x) = η(y). Then η is an extension of η and is defined on all of
X . Now for x1, x2 ∈ X we have

η(x1 + x2) = η((y1 + x01) + (y2 + x02)) = η((y1 + y2) + (x01 + x02))

= η(y1 + y2) + η(y1) + η(y2) = η(y1 + x01) + η(y2 + x01) = η(x1) + η(x2)

and so η is a linear functional extension on all of X .
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Proposition 14.2

Proposition 14.2 (continued)

Proposition 14.2. Let Y be a linear subspace of a linear space X . Then
each linear functional on Y is an extension to a linear functional on all of
X . In particular, for each nonzero x ∈ X there is a ψ ∈ X ] for which
ψ(x) 6= 0.

Proof (continued). For the “in particular” part, let x ∈ X , x 6= 0, and
define η : span{x} → R by η(λx) = λ‖x‖. Then

η(λ1x + λ2x) = η((λ1 + λ2)x) = (λ1 + λ2)‖x‖

= λ1‖x‖+ λ2‖x‖ = λ1η(x) + λ2η(x)

and so η is linear on span{x}. So by the previous paragraph, η has an
extension to a linear functional on all of X . Also, η(x) = ‖x‖ 6= 0.
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Proposition 14.3

Proposition 14.3

Proposition 14.3. Let X be a normed linear space X is finite dimensional
if and only if X ] = X ∗.

Proof. By Exercise 14.3 all linear functionals on a finite dimensional
normed linear space are bounded and so if X is finite dimensional then
X ∗ = X ].

Suppose X is infinite dimensional. Let B be a Hamel basis for X . We can
normalize the vectors of B, so without loss of generality we can assume
the vectors of B are unit vectors. Since B is infinite, we may “choose” a
countable infinite subset of B, {xk}∞k=1 (every infinite set has a countable
infinite subset). For each k ∈ N and x ∈ X , define ψk(x) to be the
coefficient of xk with respect to the expansion of x in the Hamel basis B
(since {xk}∞k=1 ⊂ B we might expect ψk(x) to be 0 for lots of x ∈ X ).
Then each ψk is linear and so belongs to X ]. Define ψ : X → R as
ψ(x) =

∑∞
k=1 kψk(x) for all x ∈ X .
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Proposition 14.3

Proposition 14.3 (continued)

Proof. For x , y ∈ X we have

ψ(x + y) =
∞∑

k=1

kψk(x + y) =
∞∑

k=1

(kψk(x) + kψk(y)).

Since B is a Hamel basis, then each x ∈ X is a finite linear combination of
the elements of B and so only finitely many of the ψk(x) are nonzero. So
the “series”

∑∞
k=1(kψk(x) + kψk(y)) converges absolutely and hence

ψ(x + y) =
∞∑

k=1

kψk(x) +
∞∑

k=1

kψk(y) = ψ(x) + ψ(y).

So ψ is linear and ψ ∈ X ]. But each xk is a unit vector and so ψ(xk) = k.

But then for all k ∈ N, ‖ψ(xk)‖/‖xk‖ = ‖ψk(xk)‖ = k and so ψ is not
bounded and ψ 6∈ X ∗. That is, if X is infinite dimensional then there is an
element of X ] which is not in X ∗ and X ∗ 6= X ].
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Proposition 14.4

Proposition 14.4

Proposition 14.4. Let X be a linear space, let ψ ∈ X ] and {ψi}n
i=1 ⊂ X ].

Then ψ is a linear combination of {ψi}n
i=1 if and only if

∩n
i=1Ker(ψi ) ⊂ Ker(ψ).

Proof. If ψ is a linear combination of the {ψi}n
i=1 then for

x ∈ ∩n
i=1Ker(ψi ), certainly x ∈ Ker(ψ).

We prove the converse by induction. For n = 1, suppose
Ker(ψ1) ⊂ Ker(ψ). If ψ = 0 then ψ is trivially a “linear combination” of
ψ1 (since ψ = 0ψ1 = 0). So without loss of generality we consider ψ 6= 0.
So there is x0 6= 0 for which ψ(x0) = 1 (first, ψ(x0) 6= 0 lets us adjust the
norm of x0 to get ψ(x0) = 1). Then ψ1(x0) 6= 0 also since
Ker(ψ1) ⊂ Ker(ψ). By Lemma 14.1.A, X = Ker(ψ1)⊕ span{x0}, so x ∈ X
is of the form x ′ + αxx0 where x ′ ∈ Ker(ψ1) and so
ψ(x) = ψ(x ′) + αxψ(x0) = αx(1) = αx .
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Proposition 14.4

Proposition 14.4 (continued 1)

Proof (continued). Let λ1 = 1/ψ1(x0). Then for x ∈ X ,

λ1ψ1(x) = λ1ψ1(x
′ + αxx0) = λ1ψ1(x

′) + λ1αxψ1(x0)

= 0 + αxψ1(x0)/ψ1(x0) = αx = ψ(x).

So ψ − λ1ψ1, ψ is a linear combination of {ψi‖1
i=1 and the result holds for

n = 1.

Now assume the result holds for n = k − 1 and ψ is a linear combination
of {ψi}k−1

i=1 . Suppose the hypothesis holds for n = k,
∩k

i=1Ker(ψi ) ⊂ Ker(ψ). If ψk = 0 then the result holds and ψ is a linear
combination of {ψi}k

i=1Ker(ψi ) ⊂ Ker(ψ). If ψk = 0 then the result holds
and ψ is a linear combination of {ψi}k

i=1. So without loss of generality,
there is x0 ∈ X with ψk(x0) = 1.

Then by Lemma 14.1.A,
X = T ⊕ span{x0} where Y = Ker(ψk) and so

∩k
i=1Ker(ψi ) = ∩k−1

i=1 (Ker(ψi ) ∩ Y ) ⊂ Ker(ψ) ∩ Y .
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Proposition 14.4

Proposition 14.4 (continued 2)

Proof (continued). By the induction assumption, there are
λ1, λ2, . . . , λk−1 for which ψ =

∑k−1
i=1 λiψi . For x ∈ X we have

x = x ′ + αxx0 where x ′ ∈ Y , and so
ψ(x) = ψ(x ′) + αxψ(x0) = 0 + αxψ(x0). Let λk = ψ(x0)−

∑k−1
i=1 λiψi (x0)

then for x ∈ X ,

k∑
i=1

λiψi (x) =
k∑

i=1

λiψi (x
′ + αxx0) =

k∑
i=1

λiψi (x
′) + αx

k∑
k=1

λiψi (x0)

= 0 + αx

(
k−1∑
k=1

λiψi (x0) + λkψk(x0)

)

= 0 + αx

(
k−1∑
k=1

λiψi (x0) +

(
ψ(x0)−

k−1∑
i=1

λiψi (x0)

)
ψk(x0)

)
= αxψ(x0) since ψk(x0) = 1

= ψ(x).
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Proposition 14.4

Proposition 14.4 (continued 3)

Proposition 14.4. Let X be a linear space, let ψ ∈ X ] and {ψi}n
i=1 ⊂ X ].

Then ψ is a linear combination of {ψi}n
i=1 if and only if

∩n
i=1Ker(ψi ) ⊂ Ker(ψ).

Proof (continued). So ψ =
∑k

i=1 λiψi , ψ is a linear combination of
{ψi}k

i=1 and the result holds for n = k. Therefore, by mathematical
induction, the result holds for all n ∈ N.
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Proposition 14.4

Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X ].
Then a linear functional ψ : X → R is E -weakly continuous if and only if it
belongs to W .

Proof. By the definition of the W -weak topology, each linear functional in
W is W -weakly continuous.

For the converse, suppose ψ : X → R is W -weakly continuous. Since ψ is
W -weakly continuous at 0, there is a neighborhood N of 0 for which
|ψ(x)| = |ψ(x)− ψ(0)| < 1 if x ∈ N (by the definition of continuity with
ε = 1). There is a neighborhood in the base for the W -topology at 0
contained in N (by the definition of “base”). Choose ε > 0 and
π1, ψ2, . . . , ψn in W for which Nε,ψ1,ψ2,...,ψn ⊂ N is such a base element.
So if |ψk(x)| < ε for all a ≤ k ≤ n then |ψ(x)| < 1. By the linearity of ψ
and the ψk ’s we have the inclusion ∩n

k=1Ker(ψk) ⊂ Ker(ψ). (This claim
needs additional justification!!!) By Proposition 14.4, ψ is then a linear
combination of ψ1, ψ2, . . . , ψn. Therefore, since W is a linear space, ψ
belongs to W .
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Lemma 14.1.B

Lemma 14.1.B

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded.
That is, J(x) ∈ (X ∗)∗.

Proof. For ψ1, ψ2 ∈ X ∗ and α1, α2 ∈ R we have

J(x)[α1π1 + α2ψ2] = (α1ψ1 + α2ψ2)(x)

= α1ψ1(x) + α2ψ2(x) = α1J(x)[ψ1] + α2J(x)[ψ2],

so J(x) is linear.

J(x) is bounded because for any ψ ∈ X ∗,
|J(x)[ψ]| = |ψ(x)‖ ≤ ‖ψ‖|x | and so ‖J(x)‖ ≤ |x |.
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Proposition 14.6

Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-∗ topologies are the same.

Proof. By definition, X is reflexive if J(X ) = X ∗∗. So if X is reflexive, the
topology induced by J(X ) (the weak-∗ topology on X ∗) is the same as the
topology induced by X ∗∗ (the weak topology on X ∗).

Conversely, suppose the weak and weak-∗ topologies are the same. Let
Ψ : X ∗ → R be a linear functional continuous with respect to the norm on
X ; that is, let Ψ ∈ X ∗∗. By definition of the weak topology, Ψ is
continuous with respect to the weak topology on X ∗. Since the weak-∗
topology is weaker than the weak topology (that is, the weak-∗ topology is
a subset of the weak topology) then Ψ is continuous with respect to the
weak-∗ topology. Since J(X ) is a subspace of X ∗∗ (and so of (X ∗)∗) then
by Proposition 14.5 (with W = J(X )), Ψ ∈ J(X ). Therefore X ∗∗ ⊂ J(X )
and since J(X ) ⊂ X ∗∗ then J(X ) = X ∗∗, as claimed.
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