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Lemma 14.1.A

Lemma 14.1.A

Lemma 14.1.A. Let X be a linear space and v € X*, ¢ # 0, and xp € X
for which the direct sum X = (Ker(¢))) @ span{xo}, where
Ker(1) = {x € X | (x) = 0}.
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Lemma 14.1.A

Lemma 14.1.A. Let X be a linear space and v € X*, ¢ # 0, and xp € X
for which the direct sum X = (Ker(¢))) @ span{xo}, where

Ker(w) = {x € X | ¥(x) = 0}.

Proof. Since 9(xp) # 0, then (Ker(¢))) Nspan{xp} = {0}. For x € X we
have
()Y e
o= (= o) e
where (¥(x)/v(x0))x0 € span{xo} and
) N )
() =909 - gy ee =0

so that x — (¢(x)/9¥(x0))x0 € Ker(y)). So x € (Ker())) @ span{xp} and
the claim follows. []
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Proposition 14.1

Proposition 14.1. A linear subspace Xy of a linear space X is of
codimension 1 if and only if Xy = Ker(v)) for some nonzero 1) € X*.
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Proposition 14.1

Proposition 14.1

Proposition 14.1. A linear subspace Xy of a linear space X is of
codimension 1 if and only if Xy = Ker(v)) for some nonzero 1) € X*.

Proof. By Lemma 14.1.A and the definition of “codimension 1,” we have
that the kernel of a linear functional is of codimension 1. For the converse,
suppose Xp is a subspace of codimension 1. Then there is xg # 0 for which
X = Xo @ span{xo} by the definition of “codimension 1."
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Proposition 14.1

Proposition 14.1. A linear subspace Xy of a linear space X is of
codimension 1 if and only if Xy = Ker(v)) for some nonzero 1) € X*.

Proof. By Lemma 14.1.A and the definition of “codimension 1,” we have
that the kernel of a linear functional is of codimension 1. For the converse,
suppose Xp is a subspace of codimension 1. Then there is xg # 0 for which
X = Xo @ span{xo} by the definition of “codimension 1.” For

x € Xo @ span{xp} we have that x = x; + Axxo for unique x; € Xp and

Ax € R. Define 1(x) = 1(x1 + Axx0) = Ax. Then ¢ # 0 since A ranges
over all of R
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Proposition 14.1

Proposition 14.1. A linear subspace Xy of a linear space X is of
codimension 1 if and only if Xy = Ker(v)) for some nonzero 1) € X*.

Proof. By Lemma 14.1.A and the definition of “codimension 1,” we have
that the kernel of a linear functional is of codimension 1. For the converse,
suppose Xp is a subspace of codimension 1. Then there is xg # 0 for which
X = Xo @ span{xp} by the definition of “codimension 1."” For

x € Xo @ span{xp} we have that x = x; + Axxo for unique x; € Xp and

Ax € R. Define 1(x) = 1(x1 + Axx0) = Ax. Then ¢ # 0 since A ranges
over all of R For x,y € X we have that x = x; + A\xxp and y = y1 + Ay xo
for some xq,y1 € Xp and A, A\, € R. So

P(x +y) =9((x1 + Axxo) + (1 + Ayx0))

= (0 +y1) + (A + /\y)XO) =AM+ Ay = ¥(x) +¥(y)
and ) € X%, Finally, Ker(v)) = {x € X | x = x; + 0x0,x1 € Xo} = Xo. [
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Proposition 14.2

Proposition 14.2

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a 1) € X* for which

P(x) # 0.
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Proposition 14.2

Proposition 14.2

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a 1) € X* for which

¥(x) # 0.

Proof. Since Y is a subspace of X, by Exercise 13.36 (which requires
Zorn's Lemma when dim(X) = o0) there is a linear subspace Xy of X
(called the linear complement of Y') such that X = Y @& Xo.
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Proposition 14.2

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a 1) € X* for which

¥(x) # 0.

Proof. Since Y is a subspace of X, by Exercise 13.36 (which requires
Zorn's Lemma when dim(X) = o0) there is a linear subspace Xy of X
(called the linear complement of Y') such that X = Y @ Xp. Let 7 belong
to Y%, For x € X we have x = y + xg for unique y € Y and xp € X.
Define n(x) = n(y). Then n is an extension of 7 and is defined on all of
X.
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Proposition 14.2

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a 1) € X* for which

¥(x) # 0.

Proof. Since Y is a subspace of X, by Exercise 13.36 (which requires
Zorn's Lemma when dim(X) = o0) there is a linear subspace Xy of X
(called the linear complement of Y') such that X = Y @ Xp. Let 7 belong
to Y%, For x € X we have x = y + xg for unique y € Y and xp € X.
Define n(x) = n(y). Then n is an extension of 7 and is defined on all of
X. Now for x1,xp € X we have

n(x1 + x2) = n((y1 + x01) + (v2 + x02)) = 7((y1 + y2) + (%01 + X02))

=n(y1 +y2) +n(y1) + 1(y2) = nlyr +x01) + n(y2 + x01) = n(x1) + n(x2)
and so 7 is a linear functional extension on all of X.
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Proposition 14.2

Proposition 14.2 (continued)

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a ¢ € X! for which

B(x) # 0.

Proof (continued). For the “in particular” part, let x € X, x # 0, and
define i : span{x} — R by n(Ax) = AJ|x]|.
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Proposition 14.2 (continued)

Proposition 14.2. Let Y be a linear subspace of a linear space X. Then
each linear functional on Y is an extension to a linear functional on all of
X. In particular, for each nonzero x € X there is a ¢ € X! for which

B(x) # 0.

Proof (continued). For the “in particular” part, let x € X, x # 0, and
define n : span{x} — R by n(Ax) = A||x||. Then

n(Arx + Aax) = n((A1 + A2)x) = (A1 + A2)||x]]

= MlIx]] + Azllx[| = Arn(x) + Aan(x)

and so 7 is linear on span{x}. So by the previous paragraph, n has an
extension to a linear functional on all of X. Also, n(x) = ||x|| # 0. O
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Proposition 14.3

Proposition 14.3. Let X be a normed linear space X is finite dimensional
if and only if X* = X*.
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Proposition 14.3

Proposition 14.3

Proposition 14.3. Let X be a normed linear space X is finite dimensional
if and only if X* = X*.

Proof. By Exercise 14.3 all linear functionals on a finite dimensional

normed linear space are bounded and so if X is finite dimensional then
X* = Xt
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Proposition 14.3

Proposition 14.3. Let X be a normed linear space X is finite dimensional
if and only if X* = X*.

Proof. By Exercise 14.3 all linear functionals on a finite dimensional
normed linear space are bounded and so if X is finite dimensional then
X* = Xt

Suppose X is infinite dimensional. Let B be a Hamel basis for X. We can
normalize the vectors of B, so without loss of generality we can assume
the vectors of B are unit vectors. Since B is infinite, we may “choose” a
countable infinite subset of B, {x}?2; (every infinite set has a countable
infinite subset).
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Proposition 14.3

Proposition 14.3. Let X be a normed linear space X is finite dimensional
if and only if X* = X*.

Proof. By Exercise 14.3 all linear functionals on a finite dimensional
normed linear space are bounded and so if X is finite dimensional then
X* = X*

Suppose X is infinite dimensional. Let B be a Hamel basis for X. We can
normalize the vectors of B, so without loss of generality we can assume
the vectors of B are unit vectors. Since B is infinite, we may “choose” a
countable infinite subset of B, {x}?2; (every infinite set has a countable
infinite subset). For each k € N and x € X, define 1,(x) to be the
coefficient of x, with respect to the expansion of x in the Hamel basis B
(since {xx}72; C B we might expect 1,(x) to be 0 for lots of x € X).
Then each 1) is linear and so belongs to X*. Define 1) : X — R as

P(x) = > p0q kipr(x) for all x € X.
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Proposition 14.3 (continued)

Proof. For x,y € X we have

P(x+y)= kaxw > " (kou(x) + k(y)).
k=1

k=1
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Proposition 14.3

Proposition 14.3 (continued)

Proof. For x,y € X we have

P(x+y)= kaxw > " (kou(x) + k(y)).
k=1

k=1

Since B is a Hamel basis, then each x € X is a finite linear combination of
the elements of B and so only finitely many of the 1,(x) are nonzero. So
the “series” > 77 (kik(x) + kipk(y)) converges absolutely and hence

U(x+y) = kakx)+§jkwk D(x) +P(y)-

So 1 is linear and 1) € X*. But each x, is a unit vector and so 9(xx) = k.
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Proposition 14.3 (continued)

Proof. For x,y € X we have

P(x+y)= kaxw > " (kou(x) + k(y)).
k=1

k=1

Since B is a Hamel basis, then each x € X is a finite linear combination of
the elements of B and so only finitely many of the 1,(x) are nonzero. So
the “series” > 77 (kik(x) + kipk(y)) converges absolutely and hence

U(x+y) = kakx)+§jkwk D(x) +P(y)-

So 1 is linear and 1) € X*. But each x, is a unit vector and so 9(xx) = k.

But then for all k € N, [[9(xi)||/lI x|l = |¢k(xk)|| = k and so 4 is not
bounded and ¢ ¢ X*. That is, if X is infinite dimensional then there is an
element of X* which is not in X* and X* # X¥, O
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Proposition 14.4

Proposition 14.4

Proposition 14.4. Let X be a linear space, let ¢ € X* and {with, C Xt
Then 1) is a linear combination of {«;}7_, if and only if
N7, Ker(ep;) C Ker(2)).
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Proposition 14.4

Proposition 14.4. Let X be a linear space, let ¢ € X* and {with, C Xt
Then 1) is a linear combination of {«;}7_, if and only if
N7, Ker(ep;) C Ker(2)).

Proof. If ¢ is a linear combination of the {;}"_; then for
x € N7_;Ker(v;), certainly x € Ker(v)).
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Proposition 14.4

Proposition 14.4. Let X be a linear space, let ¢ € X* and {with, C Xt
Then 1) is a linear combination of {«;}7_, if and only if
N7, Ker(ep;) C Ker(2)).

Proof. If ¢ is a linear combination of the {;}"_; then for
x € N7_;Ker(v;), certainly x € Ker(v)).

We prove the converse by induction. For n =1, suppose
Ker(11) C Ker(v)). If 1p = 0 then 1) is trivially a “linear combination” of
Y1 (since ¢ = 01h1 = 0). So without loss of generality we consider 1) # 0.
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Proposition 14.4

Proposition 14.4. Let X be a linear space, let ¢ € X* and {with, C Xt
Then 1) is a linear combination of {«;}7_, if and only if
N7, Ker(ep;) C Ker(2)).

Proof. If ¢ is a linear combination of the {;}"_; then for
x € N7_;Ker(v;), certainly x € Ker(v)).

We prove the converse by induction. For n =1, suppose

Ker(11) C Ker(v)). If 1p = 0 then 1) is trivially a “linear combination” of
Y1 (since ¢ = 01h1 = 0). So without loss of generality we consider 1) # 0.
So there is xg # 0 for which ¢(x0) = 1 (first, ¥)(xo) # O lets us adjust the
norm of xp to get (xp) = 1). Then ¥1(x0) # 0 also since

Ker(¢1) C Ker(y)). By Lemma 14.1.A, X = Ker(1) @ span{xp}, so x € X
is of the form x” + axxg where x" € Ker(11) and so

w(x) = T/J(X,) + axw(XO) = ax(l) = Q.
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Proposition 14.4

Proposition 14.4 (continued 1)

Proof (continued). Let A\; = 1/¢1(xp). Then for x € X,
Mth1(x) = M1 (X + axxo) = M (X)) + Araxthr (xo)

=0+ ax1(x0)/P1(x0) = ax = ¥(x).

So ¢ — A131, 1 is a linear combination of {¢;||1_; and the result holds for
n=1.
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Proposition 14.4 (continued 1)

Proof (continued). Let A\; = 1/¢1(xp). Then for x € X,
Mth1(x) = M1 (X + axxo) = M (X)) + Araxthr (xo)

=0+ ax¥1(x0)/P1(x0) = ax = ¥(x).
So ¢ — A131, 1 is a linear combination of {¢;||1_; and the result holds for
n=1.

Now assume the result holds for n = k — 1 and ) is a linear combination
of {1/1,-};‘:_11. Suppose the hypothesis holds for n = k,

N&_, Ker(;) C Ker(t). If 1 = 0 then the result holds and ¥ is a linear
combination of {t;}%_ Ker(1;) C Ker(t). If 1, = 0 then the result holds
and %) is a linear combination of {wi}f‘zl. So without loss of generality,
there is xp € X with ¥y (x0) = 1.
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Proposition 14.4 (continued 1)

Proof (continued). Let A\; = 1/¢1(xp). Then for x € X,
M (x) = Mt (X + axx0) = At (x) + Arextba (%)
=0+ ax1(x0)/P1(x0) = ax = ¥(x).

So ¢ — A131, 1 is a linear combination of {¢;||1_; and the result holds for
n=1.

Now assume the result holds for n = k — 1 and ) is a linear combination
of {1/1,-};‘:_11. Suppose the hypothesis holds for n = k,

N&_, Ker(;) C Ker(t). If 1 = 0 then the result holds and ¥ is a linear
combination of {t;}%_ Ker(1;) C Ker(t). If 1, = 0 then the result holds
and %) is a linear combination of {wi}f‘zl. So without loss of generality,
there is xp € X with ¥x(x0) = 1. Then by Lemma 14.1.A,

X = T @ span{xp} where Y = Ker()x) and so

N Ker(y) = NE (Ker(v;) N Y) C Ker(y) N Y.
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Proposition 14.4

Proposition 14.4 (continued 2)

Proof (continued). By the induction assumption, there are
A1, A2, .., A1 for which ¢ = STK= A, For x € X we have
x = x" + a,xp where X’ € Y, and so

77ZJ(X) = ¢(X') + axw(XO) =0+ O‘xw(XO)'
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Proposition 14.4 (continued 2)

Proof (continued). By the induction assumption, there are
A1, A2, .., A1 for which ¢ = STK= A, For x € X we have
x = x" + a,xp where X’ € Y, and so

h(x) = B(x') + axth(x0) = 0+ axh(x0). Let Ak = ¥(x0) — Sh 7 A\ihi(x0)

then for x € X,

k k k k
D oAi(x) = DX+ axxo) = Y (X)) + ax > Aitdi(xo)
i=1 i=1 k=1

i=1

k—1
— 0ta (Z At (o +Akwk(xO)>
1
= 0+ ayx (Z )\l¢/ XO < ZAlwl X0 ) 1/’/( XO))

k=1
= axtp(x0) since Pi(x0) =1

|_l
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Proposition 14.4 (continued 3)

Proposition 14.4. Let X be a linear space, let 1 € X* and {¢;}7_; C X%,
Then 1) is a linear combination of {«;}7_, if and only if
N7, Ker(ep;) C Ker(2)).

Proof (continued). So ¢ = Zf-;l Aithi, 1 is a linear combination of
{4;}¥_, and the result holds for n = k. Therefore, by mathematical
induction, the result holds for all n € N.

O
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Proposition 14.4

Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.

Then a linear functional ¥ : X — R is E-weakly continuous if and only if it

belongs to W.
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Proposition 14.4

Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.

Then a linear functional ¥ : X — R is E-weakly continuous if and only if it
belongs to W.

Proof. By the definition of the W-weak topology, each linear functional in
W is W-weakly continuous.
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Proposition 14.4

Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.
Then a linear functional ¥ : X — R is E-weakly continuous if and only if it
belongs to W.

Proof. By the definition of the W-weak topology, each linear functional in
W is W-weakly continuous.

For the converse, suppose 9 : X — R is W-weakly continuous. Since v is
W-weakly continuous at 0, there is a neighborhood N of 0 for which

[(x)| = [(x) —¥(0)] < 1if x € N (by the definition of continuity with
e=1).
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Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.
Then a linear functional ¥ : X — R is E-weakly continuous if and only if it
belongs to W.

Proof. By the definition of the W-weak topology, each linear functional in
W is W-weakly continuous.

For the converse, suppose ¢ : X — R is W-weakly continuous. Since v is
W-weakly continuous at 0, there is a neighborhood N of 0 for which
[(x)| = [(x) —¥(0)] < 1if x € N (by the definition of continuity with
e =1). There is a neighborhood in the base for the W-topology at 0
contained in N (by the definition of “base”). Choose £ > 0 and

1,902, ..., Yn in W for which N¢ y, v, . C N is such a base element.
So if [1k(x)| < € for all a < k < n then [¢(x)| < 1.
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Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.
Then a linear functional ¥ : X — R is E-weakly continuous if and only if it
belongs to W.

Proof. By the definition of the W-weak topology, each linear functional in
W is W-weakly continuous.

For the converse, suppose ¢ : X — R is W-weakly continuous. Since v is
W-weakly continuous at 0, there is a neighborhood N of 0 for which
[(x)| = [(x) —¥(0)] < 1if x € N (by the definition of continuity with
e =1). There is a neighborhood in the base for the W-topology at 0
contained in N (by the definition of “base”). Choose £ > 0 and

1,902, ..., Yn in W for which N¢ y, v, . C N is such a base element.
So if [1k(x)| < € for all a < k < n then [¢)(x)| < 1. By the linearity of v
and the v,'s we have the inclusion N}_;Ker(¢) C Ker(¢). (This claim
needs additional justification!!!)
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Proposition 14.5

Proposition 14.5. Let X be a linear space and W a subspace of X*.
Then a linear functional ¢ : X — R is E-weakly continuous if and only if it
belongs to W.

Proof. By the definition of the W-weak topology, each linear functional in
W is W-weakly continuous.

For the converse, suppose ¢ : X — R is W-weakly continuous. Since v is
W-weakly continuous at 0, there is a neighborhood N of 0 for which
[(x)| = [(x) —¥(0)] < 1if x € N (by the definition of continuity with
e =1). There is a neighborhood in the base for the W-topology at 0
contained in N (by the definition of “base”). Choose £ > 0 and

1,902, ..., Yn in W for which N¢ y, v, . C N is such a base element.
So if [1k(x)| < € for all a < k < n then [¢)(x)| < 1. By the linearity of v
and the v,'s we have the inclusion N}_;Ker(¢) C Ker(¢). (This claim
needs additional justification!!!) By Proposition 14.4, v is then a linear
combination of 1,9, ...,%,. Therefore, since W is a linear space, ¥

belongs to W. O
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Lemma 14.1.B

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded.
That is, J(x) € (X*)*.
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Lemma 14.1.B

Lemma 14.1.B

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded.
That is, J(x) € (X*)*.

Proof. For ¢1,7 € X* and a1, as € R we have

J(x)[a1ms + aztp2] = (a1 + a21p2)(x)

= a1h1(x) + a292(x) = a1 J(x)[¥1] + aaJ(x)[¢2],

so J(x) is linear.

Real Analysis April 28,2017 14 / 15



Lemma 14.1.B

Lemma 14.1.B

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded.
That is, J(x) € (X*)*.

Proof. For ¢1,7 € X* and a1, as € R we have

J(x)[a1ms + aztp2] = (a1 + a21p2)(x)

= a1h1(x) + a292(x) = a1 J(x)[¥1] + aaJ(x)[¢2],

so J(x) is linear. J(x) is bounded because for any i) € X*,
SO = [0 (I < NIll1x| and so [[J()] < [x].
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Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-* topologies are the same.
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Proposition 14.6
Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-* topologies are the same.

Proof. By definition, X is reflexive if J(X) = X**. So if X is reflexive, the
topology induced by J(X) (the weak-* topology on X*) is the same as the
topology induced by X** (the weak topology on X*).
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Proposition 14.6

Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-* topologies are the same.

Proof. By definition, X is reflexive if J(X) = X**. So if X is reflexive, the
topology induced by J(X) (the weak-* topology on X*) is the same as the
topology induced by X** (the weak topology on X*).

Conversely, suppose the weak and weak-* topologies are the same. Let

Y : X* — R be a linear functional continuous with respect to the norm on
X; that is, let W € X**. By definition of the weak topology, V is
continuous with respect to the weak topology on X*.
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Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-* topologies are the same.

Proof. By definition, X is reflexive if J(X) = X**. So if X is reflexive, the
topology induced by J(X) (the weak-* topology on X*) is the same as the
topology induced by X** (the weak topology on X*).

Conversely, suppose the weak and weak-* topologies are the same. Let

Y : X* — R be a linear functional continuous with respect to the norm on
X; that is, let W € X**. By definition of the weak topology, V is
continuous with respect to the weak topology on X*. Since the weak-*
topology is weaker than the weak topology (that is, the weak-* topology is
a subset of the weak topology) then W is continuous with respect to the
weak-* topology. Since J(X) is a subspace of X** (and so of (X*)*) then
by Proposition 14.5 (with W = J(X)), ¥ € J(X).
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Proposition 14.6

Proposition 14.6. A normed linear space X is reflexive if and only if the
weak and weak-* topologies are the same.

Proof. By definition, X is reflexive if J(X) = X**. So if X is reflexive, the
topology induced by J(X) (the weak-* topology on X*) is the same as the
topology induced by X** (the weak topology on X*).

Conversely, suppose the weak and weak-* topologies are the same. Let

Y : X* — R be a linear functional continuous with respect to the norm on
X; that is, let W € X**. By definition of the weak topology, V is
continuous with respect to the weak topology on X*. Since the weak-*
topology is weaker than the weak topology (that is, the weak-* topology is
a subset of the weak topology) then W is continuous with respect to the
weak-* topology. Since J(X) is a subspace of X** (and so of (X*)*) then
by Proposition 14.5 (with W = J(X)), ¥ € J(X). Therefore X** C J(X)
and since J(X) C X** then J(X) = X**, as claimed. O
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