Real Analysis

Chapter 14. Duality for Normed Linear Spaces

14.2. The Hahn-Banach Theorem—Proofs of Theorems

The Hahn-Banach Lemma

 $\operatorname{span}[Y+z]$ for which $\psi \leq p$ on $\operatorname{span}[Y+z]$. subadditive functional on the linear space X and Y a subspace of X on belong to $X\setminus Y$. Then ψ can be extended to a linear functional ψ on which there is defined a linear functional ψ for which $\psi \leq p$ on Y. Let z**The Hahn-Banach Lemma.** Let p be a positively homogeneous,

 $\operatorname{span}[Y+z]$ by defining $\psi(y+\lambda z)=\psi(y)+\lambda\psi(z)$ where the value of show that for all $y \in Y$ and all $\lambda \in \mathbb{R}$ we have $\psi(z)$ is given below. So to show $\psi \leq p$ on $\operatorname{span}[Y+z]$, it is sufficient to and $\lambda_1 = \lambda_2$; it follows that $y_1 = y_2$). We extend ψ from Y to $(\lambda_1-\lambda_2)z\in Y$, but $z
ot\in Y$ and Y a linear space implies that $\lambda_1-\lambda_2=0$ uniquely as $y + \lambda z$ for $y \in Y$ and $\lambda \in \mathbb{R}$ (if $y_1 + \lambda_1 z = y_2 + \lambda_2 z$ then **Proof.** Since $x \notin X \setminus Y$, then every vector in span[Y + z] can be written

$$\psi(y + \lambda z) = \psi(y) + \lambda \psi(z) \le \rho(y + \lambda z). \tag{9}$$

May 1, 2017

The Hahn-Banach Lemma (continued 1)

 $y_1,y_2\in Y$, since ψ is linear, $\psi\leq p$ on Y and p is subadditive, then **Proof (continued).** We now choose a value for $\psi(z)$. For any vectors

$$\psi(y_1) + \psi(y_2) = \psi(y_1 + y_2) \le \rho(y_1 + y_2)$$
$$= \rho((y_1 - z) + (y_2 + z)) \le \rho(y_1 - z) + \rho(y_2 + z).$$

only y_2 's on the right, then Since this holds for all y_1 and y_2 and there are only y_1 's on the left and

define $\psi(z)$ to be any value between $\sup\{\psi(y)-p(y-z)\}$ and any $y \in Y$, $\psi(y) - \rho(y-z) \le \psi(z) \le -\psi(y) + \rho(y+z)$ (we could in fact $\sup\{\psi(y)=\rho(y-z)\}\leq\inf\{-\psi(y)+\rho(y+z)\}$ (notice that both of $\inf\{-\psi(y) + \rho(y+z)\}\).$ these are finite). Define $\psi(z) = \sup\{\psi(y) - p(y-z) \mid y \in Y\}$. Then for

Let $y \in Y$. For $\lambda > 0$, in the inequality $\psi(z) \leq -\psi(y) + \rho(y+z)$, replace $\psi(y) + \lambda \psi(z) \le \rho(y + \lambda z)$, which is (9) and the result holds for $\lambda > 0$. y with y/λ to get $\psi(z) \le -\psi(y/\lambda) + \rho(y/\lambda + z)$ or $\lambda \psi(z) \le -\lambda \psi(y/\lambda) + \lambda \rho(y/\lambda + z)$ or $\lambda \psi(z) \le -\psi(y) + \rho(y + \lambda z)$ or

The Hahn-Banach Lemma (continued 2)

span[Y + z] for which $\psi \le p$ on span[Y + z]. which there is defined a linear functional ψ for which $\psi \leq p$ on Y. Let zsubadditive functional on the linear space X and Y a subspace of X on belong to $X \setminus Y$. Then ψ can be extended to a linear functional ψ on **The Hahn-Banach Lemma.** Let p be a positively homogeneous

Proof (continued). For $\lambda < 0$ in the inequality $\psi(-y/\lambda) - p(-y/\lambda - z) \le \psi(z)$ or

course, (9) holds trivially for $\lambda=0$. Hence, ψ defined as $\psi(y) + \lambda \psi(z) \le \rho(y + \lambda z)$ which is (0) and the result holds for $\lambda < 0$. Of $_{\lambda}\psi(-y/\lambda)+\lambda p(-y/\lambda-z)\leq -\lambda \psi(z)$ or $\psi(y)-p(y+\lambda z)\leq -\lambda \psi(z)$ or

 $\psi(y) + \lambda \psi(z) = \psi(y + \lambda z) \le p(y + \lambda z)$ on span[Y + z] as claimed.

May 1, 2017 4 / 18

Real Analysis

May 1, 2017 5 / 18

Real Analysis

The Hahn-Banach I heorem

The Hahn-Banach Theorem (continued 1)

which there is defined a linear functional ψ for which $\psi \leq p$ on Y . Then ψ may be extended to a linear functional ψ on all of X for which $\psi \leq p$ on subadditive functional on a linear space X and Y a subspace of X on **The Hahn-Banach Theorem.** Let p be a positively homogeneous

 ${\mathcal F}$ by defining $\eta \prec \eta_2$ if $Y_{\eta_1} \subset T_{\eta_2}$ and $\eta_1 = \eta_2$ on Y_{η_1} . subspace Y_{η} of X for which $Y \subset Y_{\eta}$, $\eta = \psi$ on Y, and $\eta \leq p$ on Y_n . **Proof.** Consider the family $\mathcal F$ of all linear functionals η defined on a Notice that $\psi \in \mathcal{F}$ where $Y_{\psi} = Y$ and so \mathcal{F} is nonempty. Partially order

of \mathcal{F} . Define Z to be the union of the domains of the functionals in \mathcal{F}_0 subfamily of ${\mathcal F}$ has an upper bound. Let ${\mathcal F}_0$ be a totally ordered subfamily (that is, the union of the Y_{η} 's for $\eta \in \mathcal{F}_0$).

> arbitrary totally ordered subfamily \mathcal{F}_0 of \mathcal{F} has an upper bound, then spaces then this domain contains every linear combination of elements of Zorn's Lemma applies to \mathcal{F} . $\eta^*=Z$ and $\eta=\eta^*$ on Y_η for all $\eta\in\mathcal{F}_0$, then $\eta\prec\eta^*$ for all $\eta\in\mathcal{F}_0$. So is linear in Z. Now $\eta^* \leq p$ on Z since each $\eta \leq p$. Also, $Y \subset Z$ and nestedness of the domains, η^* is well defined and since each η is linear on $\eta \in \mathcal{F}_0$ such that $z \in Y_\eta$, and then define $\eta^*(z) = \eta(z)$. By the there is some domain containing all of them and since domains are linear increasing sequence of sets), then for any finite collection of vectors of Z**Proof (continued).** Since the domains in \mathcal{F}_0 are nested (they form an Y_{η} then (similar to the above argument showing Z is a subspace of $X)~\eta^*$ are again in Z and therefore Z is a subspace of X. For $z \in Y$, choose

To apply Zorn's Lemma, we need to show that every totally ordered

The Hahn-Banach Theorem (continued 2)

may be extended to a linear functional ψ on all of X for which $\psi \leq p$ on which there is defined a linear functional ψ for which $\psi \leq p$ on Y. Then ψ subadditive functional on a linear space X and Y a subspace of X on **The Hahn-Banach Theorem.** Let p be a positively homogeneous

Proof (continued).

fact Z = X. $\eta^* \prec \eta'$, contradicting the maximality of η^* . So there is no such z and in functional η' defined on span[Z+z] such that $\eta'=\eta^*$ on Z. But then $z \in X \setminus Z$, then the Hahn-Banach Lemma implies there is a linear of ψ_0 by Y_0 . By definition, $Y \subset Y_0$ and $\psi_0 \leq p$ on Y_0 . If there is some Zorn's lemma implies that ${\mathcal F}$ has a maximal member ψ_0 . Let the domain

I heorem 14.7

 $\psi(x) = ||x|| \text{ and } ||\psi|| = 1.$ particular, for each $x \in X$ with $x \neq 0$ there is $\psi \in X^*$ for which bounded linear functional on all of X that has the same norm as $\psi.$ In Then each bounded linear functional ψ on X_0 has an extension to a **Theorem 14.7.** Let X_0 be a linear subspace of a normed linear space X.

 $x \in X$. Replacing x with -x gives $\psi(-x) \le \rho(-x) = M||-x||$ or is positively homogeneous and subadditive. Since $M=\|\psi\|$ then $\psi \leq p$ on all $\lambda > 0$ and $\rho(x + y) = M||x + y|| \le M||x|| + M||y|| = \rho(x) + \rho(y)$, so ρ p(x) = M||x|| for all $x \in X$. Then $p(\lambda x) = M||\lambda x|| = M\lambda ||x|| = \lambda p(x)$ for **Proof.** Let $\psi: X_0 \to \mathbb{R}$ be linear and bounded. Define $M = \|\psi\| = \sup\{|\psi(x)| \mid x \in X_0, \|x\| \le 1\}$. Define $\rho: X \to \mathbb{R}$ by $\|\psi(x)\| \le \rho(x) = M\|x\|$ for all $x \in X$. linear functional ψ defined on all of X and $\psi(x) \leq
ho(x) = M\|x\|$ for all $\mathsf{X}_{\mathsf{0}}.$ By the Hahn-Banach Theorem, ψ can be extended to a continuous $-\psi(x) \leq ho(x) = M\|x\|$ or $-M\|x\| =
ho(x) \leq \psi(x)$ and hence

Real Analysis

May 1, 2017 9 / 18

Real Analysis

 $\psi(x) = ||x|| \text{ and } ||\psi|| = 1.$ particular, for each $x \in X$ with $x \neq 0$ there is $\psi \in X^*$ for which bounded linear functional on all of X that has the same norm as ψ . In Then each bounded linear functional ψ on X_0 has an extension to a **Theorem 14.7.** Let X_0 be a linear subspace of a normed linear space X.

extension equals $\|\psi\| = M$. extension is $\sup\{|\psi(x)|\mid x\in X, \|x\|\leq 1\}\geq M$. Therefore the norm of the but since $M=\sup\{|\psi(x)|\mid x\in X_0, \|x\|\leq 1\}$ then the norm of the the Hahn-Banach Theorem. So the norm of the extension is at most M, **Proof** (continued). So the extension of ψ has the same bound on X by

 $\eta(\lambda x) = \lambda \|x\|$. Then $\|\eta\| = 1$. By the first part of the proof, functional η has an extension to a bounded linear functional on all of X that also has a For the "in particular" part, let $x \in X$, $x \neq 0$. Define $\eta : \text{span}[x] \to \mathbb{R}$ by

> for which $X=X_0\oplus X_1$. That is, X_0 has a closed linear complement in Xdimensional subspace of X, then there is a closed linear subspace X_1 of X**Corollary 14.8.** Let X be a normed linear space. If X_0 is a finite

and ${\mathbb R}$ is finite dimensional then by Exercise 13.2b, ${\sf Ker}(\psi_k')$ is closed in X**Proof.** Let e_1, e_2, \ldots, e_n be a basis for X_0 . For $a \le k \le n$, define $\psi_k : X_0 \to \mathbb{R}$ by $\psi_k \left(\sum_{i=1}^n \lambda_i e_i\right) = \lambda_k$. Since X_0 is finite dimensional and for each $1 \leq k \leq n$. So subspace $X_1 = \bigcap_{k=1}^n \operatorname{Ker}(\psi_k')$ is closed in X. continuous then it is bounded by Theorem 13.1. ψ_k' is bounded as given by each ψ_k is clearly linear then each ψ_k is continuous by Exercise 13.26. By Theorem 14.7, so ψ_k' is continuous by Theorem 13.1. Since $\psi_k':X o\mathbb{R}$ Theorem 14.7 each ψ_k has an extension ψ_k' to all of X . Since ψ_k is

where $\sum_{k=1}^{n} \psi_k'(x)e_k \in X_0$ and for each kproof of Lemma 14.1.A): $x = (\sum_{k=1}^{n} \psi'_{k}(x)e_{k}) + (x - \sum_{k=1}^{n} \psi'_{k}(x)e_{k})$ The only element of X_0 in X_1 is 0. Also for $x \in X$ we have (similar to the

Corollary 14.8 (continued)

Corollary 14.9

dimensional subspace of X, then there is a closed linear subspace X_1 of X**Corollary 14.8.** Let X be a normed linear space. If X_0 is a finite

for which $X = X_0 \oplus X_1$. That is, X_0 has a closed linear complement in X.

Proof (continued)

$$\psi'_k\left(x - \sum_{i=1}^n \psi'_i(x)e_i\right) = \psi'_k(x) - \sum_{i=1}^n \psi'_i(x)\psi'_k(e_i) = \psi'_k(x) - \psi'_k(x)(1) = 0,$$

so
$$x-\sum_{k=1}^n \psi_k'(x)e_k\in \cap_{k=1}^n \mathrm{Ker}(\psi_k')$$
. Therefore, $X=X_0\oplus X_1$.

embedding $J: X \to X^{**}$ is an isometry **Corollary 14.9.** Let X be a normed linear space. Then the natural

Therefore ||J(x)|| = ||x|| and so J is an isometry. and $\|\psi\| = 1$. So for this ψ , $J(x)[\psi] = \psi(x) = \|x\|$. So $\|x\| \le \|J(x)\|$. particular" part of Theorem 14.7, there is $\psi \in X^*$ for which $\psi(x) = ||x||$ all $\psi \in X^*$. Therefore J(x) is bounded and $\|J(x)\| \leq \|x\|$. By the "in **Proof.** Recall that by definition $J(x)[\psi] = \psi(x)$ for all $x \in X$ and $\psi \in X^*$ Let $x \in X$. Recall that by the definition of the operator norm we have $|\psi(x)| \le ||\psi|| ||x||$ for all $\psi \in X^*$. Thus $|J(x)[\psi]| = |\psi(x)| \le ||x|| ||\psi||$ for

Real Analysis

Real Analysis

May 1, 2017 13 / 18

Theorem 14.10

I heorem 14.10 (continued)

functional $\psi \in X^*$ vanishes on X_0 , it also vanishes at x. Then a point $x \in X$ belongs to the closure of X_0 if and only if whenever a **Theorem 14.10.** Let X_0 be a subspace of the normed linear space X.

continuous (Theorem 14.1) and so $\lim_{n\to\infty} \psi(x_n) = \psi(x)$, or $\psi(x) = 0$. such that $\{x_n\} \to x$ by Proposition 9.6. Since ψ is bounded then it is **Proof.** Let x be in the closure of X_0 . Then there is a sequence $\{x_n\} \subset X_0$

for all $u \in X_0$ (negating the definition of "point of closure" in a metric by $\psi(z + \lambda x_0) = \lambda$ for all $x \in X_0$ and $\lambda \in \mathbb{R}$. Notice that $\psi(x_0) = 1$. We that vanishes on X_0 but $\psi(x_0) \neq 0$. Define $X = \overline{X}_0 \oplus [x_0]$ and $\psi: Z \to \mathbb{R}$ \overline{X}_0 is closed then $X\setminus \overline{X}_0$ is open. So there is r>0 for which $\|u-x_0\|\geq r$ need to show ψ is bounded and then we can apply Theorem 14.7. Since For the converse, let $x_0 \in X \setminus \overline{X_0}$. We need to show that there is $\psi \in X^*$

> functional $\psi \in X^*$ vanishes on X_0 , it also vanishes at x. **Theorem 14.10.** Let X_0 be a subspace of the normed linear space X. Then a point $x \in X$ belongs to the closure of X_0 if and only if whenever a

Proof (continued). So for $x \in X_0$ and $\lambda \in \mathbb{R}$,

 $\psi(x_0)=1\neq 0.$ a bounded extension to all of X. The extension if in X^* , vanishes on X_0 (since ψ vanishes on X_0) and has a nonzero value at x_0 since $||x + \lambda x_0|| = |\lambda| ||(-1/\lambda)x - x_0|| \ge |\lambda|r$, or $|\lambda| \le ||x + \lambda x_0||/r$. Sc $|\psi(x+\lambda x_0)|=|\lambda|\leq (1/r)\|x+\lambda x_0\|$ and hence $\|\psi\|\leq 1/r$, so that ψ has

Corollary 14.11

on S, then $\psi = 0$. the linear span of ${\mathcal S}$ is dense in X if and only if whenever $\psi \in X^*$ vanishes **Corollary 14.11.** Let S be a subset of the normed linear space X. Then

of X is a limit point of span[S]. If $\psi \in X^*$ vanishes on span[S] then ψ vanishes on X by Theorem 14.10 and $\psi=0$. **Proof.** Let span[S] be dense in X. Then $\overline{\text{span}}[S] = X$ and so every point

a CONTRADICTION. So the assumption that span[S] is not dense in X is span[S] is not dense in X. Then there is some $x_0 \in X \setminus \overline{span}[S]$. By false and there span[S] is dense in X. Suppose whenever $\psi \in X^*$ vanishes on span[S] then $\psi = 0$. ASSUME Theorem 14.10 there is some $\psi \in X^*$ vanishing on span[S] but $\psi(x_0) \neq 0$,

Theorem 14.12

convergent sequence in X is bounded. moreover, if $\{x_n\} \rightarrow x$ in X, then **Theorem 14.12.** Let X be a normed linear space. Then every weakly $||x|| \leq \liminf ||x_n||$.

that this sequence of functionals converges to J(x): the sequence $\{J(x_n)\}$ of functionals mapping $X^* o \mathbb{R}$ and we then have defined $J(x):X^*\to\mathbb{R}$ as $J(x)[\psi]=\psi(x)$ for all $\psi\in X^*$. So we define $\lim_{n\to\infty}\psi(x_n)=\psi(x)$ for all $\psi\in X^*$. Recall that in Section 14.1 we **Proof.** Let $\{x_n\} \rightarrow x$ in X. Then, by the definition of weak convergence

$$\lim_{n\to\infty}J(x_n)[\psi]=\lim_{n\to\infty}\psi(x_n)=\psi(x)=J(x)[\psi] \text{ for all } \psi\in X^*.$$

convergence is in \mathbb{R}). Every convergent sequence of real numbers is $J(x_n) \in \mathcal{F}$ bounded in the sense that for any given $\psi \in X^*$, $|J(x_n)[\psi] \leq M_{\psi}$ for all $n \in \mathbb{N}$. So the family $\mathcal{F} = \{J(x_n) \mid n \in \mathbb{N}\} \subset \mathcal{L}(X^*, \mathbb{R})$ is pointwise bounded, so there is some $M_{\psi} \geq 0$ such that $|J(x_n)[\psi]| \leq M_{\psi}$ for all So for given ψ , $\{J(x_n)[\psi]\} \to J(x)[\psi]$ (since $J(x): X^* \to \mathbb{R}$ the

Real Analysis

Theorem 14.1

Theorem 14.12 (continued)

Theorem 14.12. Let X be a normed linear space. Then every weakly convergent sequence in X is bounded. moreover, if $\{x_n\} \to x$ in X, then $\|x\| \le \liminf \|x_n\|$.

Proof (continued). Since $\mathbb R$ is a Banach space, by Theorem 13.3 we have that $\mathcal L(X,\mathbb R)=X^*$ is a Banach space. So by the Uniform Boundedness Principle, there is a constant $M\geq 0$ for which $\|J(x_n)\|\leq M$ for all $n\in\mathbb N$. Since J is an isometry by Corollary 14.9, then the sequence $\{x_n\}$ is also bounded by M, as claimed.

For the "moreover" part, we know by Theorem 14.7 that there is a functional $\psi \in X^*$ for which $\|\psi\| = 1$ and $\psi(x) = \|x\|$. Then $|\psi(x_n)| \leq \|\psi\| \|x_n\| = \|x_n\|$ for all $n \in \mathbb{N}$. Since $x_n \to x$ then $\psi(x_n) \to \psi(x)$; also $|\psi(x_n)| \to |\psi(x)| = \|x\|$. Therefore

 $||x|| = \lim_{n \to \infty} |\psi(x_n)| \le \liminf ||x_n|| \text{ since } |\psi(x_n)| \le ||x_n|| \text{ for all } n \in \mathbb{N}. \quad \Box$

18 / 18