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The Hahn-Banach Lemma

The Hahn-Banach Lemma

The Hahn-Banach Lemma. Let p be a positively homogeneous,
subadditive functional on the linear space X and Y a subspace of X on
which there is defined a linear functional ψ for which ψ ≤ p on Y . Let z
belong to X \ Y . Then ψ can be extended to a linear functional ψ on
span[Y + z ] for which ψ ≤ p on span[Y + z ].

Proof. Since x 6∈ X \ Y , then every vector in span[Y + z ] can be written
uniquely as y + λz for y ∈ Y and λ ∈ R (if y1 + λ1z = y2 + λ2z then
(λ1 − λ2)z ∈ Y , but z 6∈ Y and Y a linear space implies that λ1 − λ2 = 0
and λ1 = λ2; it follows that y1 = y2). We extend ψ from Y to
span[Y + z ] by defining ψ(y + λz) = ψ(y) + λψ(z) where the value of
ψ(z) is given below.

So to show ψ ≤ p on span[Y + z ], it is sufficient to
show that for all y ∈ Y and all λ ∈ R we have

ψ(y + λz) = ψ(y) + λψ(z) ≤ p(y + λz). (9)
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The Hahn-Banach Lemma

The Hahn-Banach Lemma (continued 1)

Proof (continued). We now choose a value for ψ(z). For any vectors
y1, y2 ∈ Y , since ψ is linear, ψ ≤ p on Y and p is subadditive, then

ψ(y1) + ψ(y2) = ψ(y1 + y2) ≤ p(y1 + y2)

= p((y1 − z) + (y2 + z)) ≤ p(y1 − z) + p(y2 + z).

Since this holds for all y1 and y2 and there are only y1’s on the left and
only y2’s on the right, then
sup{ψ(y) = p(y − z)} ≤ inf{−ψ(y) + p(y + z)} (notice that both of
these are finite).

Define ψ(z) = sup{ψ(y)− p(y − z) | y ∈ Y }. Then for
any y ∈ Y , ψ(y)− p(y − z) ≤ ψ(z) ≤ −ψ(y) + p(y + z) (we could in fact
define ψ(z) to be any value between sup{ψ(y)− p(y − z)} and
inf{−ψ(y) + p(y + z)}).
Let y ∈ Y . For λ > 0, in the inequality ψ(z) ≤ −ψ(y) + p(y + z), replace
y with y/λ to get ψ(z) ≤ −ψ(y/λ) + p(y/λ+ z) or
λψ(z) ≤ −λψ(y/λ) + λp(y/λ+ z) or λψ(z) ≤ −ψ(y) + p(y + λz) or
ψ(y) + λψ(z) ≤ p(y + λz), which is (9) and the result holds for λ > 0.
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The Hahn-Banach Lemma

The Hahn-Banach Lemma (continued 2)

The Hahn-Banach Lemma. Let p be a positively homogeneous,
subadditive functional on the linear space X and Y a subspace of X on
which there is defined a linear functional ψ for which ψ ≤ p on Y . Let z
belong to X \ Y . Then ψ can be extended to a linear functional ψ on
span[Y + z ] for which ψ ≤ p on span[Y + z ].

Proof (continued). For λ < 0 in the inequality
ψ(−y/λ)− p(−y/λ− z) ≤ ψ(z) or

λψ(−y/λ) + λp(−y/λ− z) ≤ −λψ(z) or ψ(y)− p(y + λz) ≤ −λψ(z) or
ψ(y) + λψ(z) ≤ p(y + λz) which is (0) and the result holds for λ < 0. Of
course, (9) holds trivially for λ = 0. Hence, ψ defined as
ψ(y) + λψ(z) = ψ(y + λz) ≤ p(y + λz) on span[Y + z ] as claimed.
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The Hahn-Banach Theorem

The Hahn-Banach Theorem

The Hahn-Banach Theorem. Let p be a positively homogeneous,
subadditive functional on a linear space X and Y a subspace of X on
which there is defined a linear functional ψ for which ψ ≤ p on Y . Then ψ
may be extended to a linear functional ψ on all of X for which ψ ≤ p on
all of X .

Proof. Consider the family F of all linear functionals η defined on a
subspace Yη of X for which Y ⊂ Yη, η = ψ on Y , and η ≤ p on Yn.
Notice that ψ ∈ F where Yψ = Y and so F is nonempty. Partially order
F by defining η ≺ η2 if Yη1 ⊂ Tη2 and η1 = η2 on Yη1 .

To apply Zorn’s Lemma, we need to show that every totally ordered
subfamily of F has an upper bound. Let F0 be a totally ordered subfamily
of F . Define Z to be the union of the domains of the functionals in F0

(that is, the union of the Yη’s for η ∈ F0).
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The Hahn-Banach Theorem

The Hahn-Banach Theorem (continued 1)

Proof (continued). Since the domains in F0 are nested (they form an
increasing sequence of sets), then for any finite collection of vectors of Z ,
there is some domain containing all of them and since domains are linear
spaces then this domain contains every linear combination of elements of
Z are again in Z and therefore Z is a subspace of X . For z ∈ Y , choose
η ∈ F0 such that z ∈ Yη, and then define η∗(z) = η(z). By the
nestedness of the domains, η∗ is well defined and since each η is linear on
Yη then (similar to the above argument showing Z is a subspace of X ) η∗

is linear in Z . Now η∗ ≤ p on Z since each η ≤ p. Also, Y ⊂ Z and
η∗ = Z and η = η∗ on Yη for all η ∈ F0, then η ≺ η∗ for all η ∈ F0. So
arbitrary totally ordered subfamily F0 of F has an upper bound, then
Zorn’s Lemma applies to F .
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The Hahn-Banach Theorem

The Hahn-Banach Theorem (continued 2)

The Hahn-Banach Theorem. Let p be a positively homogeneous,
subadditive functional on a linear space X and Y a subspace of X on
which there is defined a linear functional ψ for which ψ ≤ p on Y . Then ψ
may be extended to a linear functional ψ on all of X for which ψ ≤ p on
all of X .

Proof (continued).
Zorn’s lemma implies that F has a maximal member ψ0. Let the domain
of ψ0 by Y0. By definition, Y ⊂ Y0 and ψ0 ≤ p on Y0. If there is some
z ∈ X \ Z , then the Hahn-Banach Lemma implies there is a linear
functional η′ defined on span[Z + z ] such that η′ = η∗ on Z . But then
η∗ ≺ η′, contradicting the maximality of η∗. So there is no such z and in
fact Z = X .
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Theorem 14.7

Theorem 14.7

Theorem 14.7. Let X0 be a linear subspace of a normed linear space X .
Then each bounded linear functional ψ on X0 has an extension to a
bounded linear functional on all of X that has the same norm as ψ. In
particular, for each x ∈ X with x 6= 0 there is ψ ∈ X ∗ for which
ψ(x) = ‖x‖ and ‖ψ‖ = 1.

Proof. Let ψ : X0 → R be linear and bounded. Define
M = ‖ψ‖ = sup{|ψ(x)| | x ∈ X0, ‖x‖ ≤ 1}. Define p : X → R by
p(x) = M‖x‖ for all x ∈ X .

Then p(λx) = M‖λx‖ = Mλ‖x‖ = λp(x) for
all λ > 0 and p(x + y) = M‖x + y‖ ≤ M‖x‖+ M‖y‖ = p(x) + p(y), so p
is positively homogeneous and subadditive. Since M = ‖ψ‖ then ψ ≤ p on
X0. By the Hahn-Banach Theorem, ψ can be extended to a continuous
linear functional ψ defined on all of X and ψ(x) ≤ p(x) = M‖x‖ for all
x ∈ X . Replacing x with −x gives ψ(−x) ≤ p(−x) = M‖ − x‖ or
−ψ(x) ≤ −p(x) = M‖x‖ or −M‖x‖ = p(x) ≤ ψ(x) and hence
‖ψ(x)‖ ≤ p(x) = M‖x‖ for all x ∈ X .
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Theorem 14.7

Theorem 14.7 (continued)

Theorem 14.7. Let X0 be a linear subspace of a normed linear space X .
Then each bounded linear functional ψ on X0 has an extension to a
bounded linear functional on all of X that has the same norm as ψ. In
particular, for each x ∈ X with x 6= 0 there is ψ ∈ X ∗ for which
ψ(x) = ‖x‖ and ‖ψ‖ = 1.

Proof (continued). So the extension of ψ has the same bound on X by
the Hahn-Banach Theorem. So the norm of the extension is at most M,
but since M = sup{|ψ(x)| | x ∈ X0, ‖x‖ ≤ 1} then the norm of the
extension is sup{|ψ(x)| | x ∈ X , ‖x‖ ≤ 1} ≥ M. Therefore the norm of the
extension equals ‖ψ‖ = M.

For the “in particular” part, let x ∈ X , x 6= 0. Define η : span[x ] → R by
η(λx) = λ‖x‖. Then ‖η‖ = 1. By the first part of the proof, functional η
has an extension to a bounded linear functional on all of X that also has a
norm of 1.

() Real Analysis May 1, 2017 10 / 18



Theorem 14.7
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Corollary 14.8

Corollary 14.8

Corollary 14.8. Let X be a normed linear space. If X0 is a finite
dimensional subspace of X , then there is a closed linear subspace X1 of X
for which X = X0 ⊕ X1. That is, X0 has a closed linear complement in X .

Proof. Let e1, e2, . . . , en be a basis for X0. For a ≤ k ≤ n, define
ψk : X0 → R by ψk (

∑n
i=1 λiei ) = λk . Since X0 is finite dimensional and

each ψk is clearly linear then each ψk is continuous by Exercise 13.26.

By
Theorem 14.7 each ψk has an extension ψ′k to all of X . Since ψk is
continuous then it is bounded by Theorem 13.1. ψ′k is bounded as given by
Theorem 14.7, so ψ′k is continuous by Theorem 13.1. Since ψ′k : X → R
and R is finite dimensional then by Exercise 13.2b, Ker(ψ′k) is closed in X
for each 1 ≤ k ≤ n. So subspace X1 = ∩n

k=1Ker(ψ′k) is closed in X .

The only element of X0 in X1 is 0. Also for x ∈ X we have (similar to the
proof of Lemma 14.1.A): x = (

∑n
k=1 ψ

′
k(x)ek) + (x −

∑n
k=1 ψ

′
k(x)ek)

where
∑n

k=1 ψ
′
k(x)ek ∈ X0 and for each k
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Corollary 14.8

Corollary 14.8 (continued)

Corollary 14.8. Let X be a normed linear space. If X0 is a finite
dimensional subspace of X , then there is a closed linear subspace X1 of X
for which X = X0 ⊕ X1. That is, X0 has a closed linear complement in X .

Proof (continued).

ψ′k

(
x −

n∑
i=1

ψ′i (x)ei

)
= ψ′k(x)−

n∑
i=1

ψ′i (x)ψ′k(ei ) = ψ′k(x)−ψ′k(x)(1) = 0,

so x −
∑n

k=1 ψ
′
k(x)ek ∈ ∩n

k=1Ker(ψ′k). Therefore, X = X0 ⊕ X1.
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Corollary 14.9

Corollary 14.9

Corollary 14.9. Let X be a normed linear space. Then the natural
embedding J : X → X ∗∗ is an isometry.

Proof. Recall that by definition J(x)[ψ] = ψ(x) for all x ∈ X and ψ ∈ X ∗.
Let x ∈ X . Recall that by the definition of the operator norm we have
|ψ(x)| ≤ ‖ψ‖‖x‖ for all ψ ∈ X ∗.

Thus |J(x)[ψ]| = |ψ(x)| ≤ ‖x‖‖ψ‖ for
all ψ ∈ X ∗. Therefore J(x) is bounded and ‖J(x)‖ ≤ ‖x‖. By the “in
particular” part of Theorem 14.7, there is ψ ∈ X ∗ for which ψ(x) = ‖x‖
and ‖ψ‖ = 1. So for this ψ, J(x)[ψ] = ψ(x) = ‖x‖. So ‖x‖ ≤ ‖J(x)‖.
Therefore ‖J(x)‖ = ‖x‖ and so J is an isometry.
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Theorem 14.10

Theorem 14.10

Theorem 14.10. Let X0 be a subspace of the normed linear space X .
Then a point x ∈ X belongs to the closure of X0 if and only if whenever a
functional ψ ∈ X ∗ vanishes on X0, it also vanishes at x .

Proof. Let x be in the closure of X0. Then there is a sequence {xn} ⊂ X0

such that {xn} → x by Proposition 9.6. Since ψ is bounded then it is
continuous (Theorem 14.1) and so limn→∞ ψ(xn) = ψ(x), or ψ(x) = 0.

For the converse, let x0 ∈ X \ X0. We need to show that there is ψ ∈ X ∗

that vanishes on X0 but ψ(x0) 6= 0. Define X = X 0 ⊕ [x0] and ψ : Z → R
by ψ(z + λx0) = λ for all x ∈ X 0 and λ ∈ R. Notice that ψ(x0) = 1. We
need to show ψ is bounded and then we can apply Theorem 14.7. Since
X 0 is closed then X \X 0 is open. So there is r > 0 for which ‖u− x0‖ ≥ r
for all u ∈ X 0 (negating the definition of “point of closure” in a metric
space).
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Theorem 14.10

Theorem 14.10 (continued)

Theorem 14.10. Let X0 be a subspace of the normed linear space X .
Then a point x ∈ X belongs to the closure of X0 if and only if whenever a
functional ψ ∈ X ∗ vanishes on X0, it also vanishes at x .

Proof (continued). So for x ∈ X 0 and λ ∈ R,
‖x + λx0‖ = |λ|‖(−1/λ)x − x0‖ ≥ |λ|r , or |λ| ≤ ‖x + λx0‖/r . So
|ψ(x + λx0)| = |λ| ≤ (1/r)‖x + λx0‖ and hence ‖ψ‖ ≤ 1/r , so that ψ has
a bounded extension to all of X .

The extension if in X ∗, vanishes on X0

(since ψ vanishes on X0) and has a nonzero value at x0 since
ψ(x0) = 1 6= 0.
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Corollary 14.11

Corollary 14.11

Corollary 14.11. Let S be a subset of the normed linear space X . Then
the linear span of S is dense in X if and only if whenever ψ ∈ X ∗ vanishes
on S, then ψ = 0.

Proof. Let span[S] be dense in X . Then span[S] = X and so every point
of X is a limit point of span[S]. If ψ ∈ X ∗ vanishes on span[S] then ψ
vanishes on X by Theorem 14.10 and ψ = 0.

Suppose whenever ψ ∈ X ∗ vanishes on span[S] then ψ = 0. ASSUME
span[S] is not dense in X . Then there is some x0 ∈ X \ span[S]. By
Theorem 14.10 there is some ψ ∈ X ∗ vanishing on span[S] but ψ(x0) 6= 0,
a CONTRADICTION. So the assumption that span[S] is not dense in X is
false and there span[S] is dense in X .

() Real Analysis May 1, 2017 16 / 18



Corollary 14.11

Corollary 14.11

Corollary 14.11. Let S be a subset of the normed linear space X . Then
the linear span of S is dense in X if and only if whenever ψ ∈ X ∗ vanishes
on S, then ψ = 0.

Proof. Let span[S] be dense in X . Then span[S] = X and so every point
of X is a limit point of span[S]. If ψ ∈ X ∗ vanishes on span[S] then ψ
vanishes on X by Theorem 14.10 and ψ = 0.

Suppose whenever ψ ∈ X ∗ vanishes on span[S] then ψ = 0. ASSUME
span[S] is not dense in X . Then there is some x0 ∈ X \ span[S].

By
Theorem 14.10 there is some ψ ∈ X ∗ vanishing on span[S] but ψ(x0) 6= 0,
a CONTRADICTION. So the assumption that span[S] is not dense in X is
false and there span[S] is dense in X .

() Real Analysis May 1, 2017 16 / 18



Corollary 14.11

Corollary 14.11

Corollary 14.11. Let S be a subset of the normed linear space X . Then
the linear span of S is dense in X if and only if whenever ψ ∈ X ∗ vanishes
on S, then ψ = 0.

Proof. Let span[S] be dense in X . Then span[S] = X and so every point
of X is a limit point of span[S]. If ψ ∈ X ∗ vanishes on span[S] then ψ
vanishes on X by Theorem 14.10 and ψ = 0.

Suppose whenever ψ ∈ X ∗ vanishes on span[S] then ψ = 0. ASSUME
span[S] is not dense in X . Then there is some x0 ∈ X \ span[S]. By
Theorem 14.10 there is some ψ ∈ X ∗ vanishing on span[S] but ψ(x0) 6= 0,
a CONTRADICTION. So the assumption that span[S] is not dense in X is
false and there span[S] is dense in X .

() Real Analysis May 1, 2017 16 / 18



Corollary 14.11

Corollary 14.11

Corollary 14.11. Let S be a subset of the normed linear space X . Then
the linear span of S is dense in X if and only if whenever ψ ∈ X ∗ vanishes
on S, then ψ = 0.

Proof. Let span[S] be dense in X . Then span[S] = X and so every point
of X is a limit point of span[S]. If ψ ∈ X ∗ vanishes on span[S] then ψ
vanishes on X by Theorem 14.10 and ψ = 0.

Suppose whenever ψ ∈ X ∗ vanishes on span[S] then ψ = 0. ASSUME
span[S] is not dense in X . Then there is some x0 ∈ X \ span[S]. By
Theorem 14.10 there is some ψ ∈ X ∗ vanishing on span[S] but ψ(x0) 6= 0,
a CONTRADICTION. So the assumption that span[S] is not dense in X is
false and there span[S] is dense in X .

() Real Analysis May 1, 2017 16 / 18



Theorem 14.12

Theorem 14.12

Theorem 14.12. Let X be a normed linear space. Then every weakly
convergent sequence in X is bounded. moreover, if {xn}⇀ x in X , then
‖x‖ ≤ lim inf ‖xn‖.
Proof. Let {xn}⇀ x in X . Then, by the definition of weak convergence,
limn→∞ ψ(xn) = ψ(x) for all ψ ∈ X ∗. Recall that in Section 14.1 we
defined J(x) : X ∗ → R as J(x)[ψ] = ψ(x) for all ψ ∈ X ∗.

So we define
the sequence {J(xn)} of functionals mapping X ∗ → R and we then have
that this sequence of functionals converges to J(x):

lim
n→∞

J(xn)[ψ] = lim
n→∞

ψ(xn) = ψ(x) = J(x)[ψ] for all ψ ∈ X ∗.

So for given ψ, {J(xn)[ψ]} → J(x)[ψ] (since J(x) : X ∗ → R the
convergence is in R). Every convergent sequence of real numbers is
bounded, so there is some Mψ ≥ 0 such that |J(xn)[ψ]| ≤ Mψ for all
n ∈ N. So the family F = {J(xn) | n ∈ N} ⊂ L(X ∗,R) is pointwise
bounded in the sense that for any given ψ ∈ X ∗, |J(xn)[ψ] ≤ Mψ for all
J(xn) ∈ F .
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limn→∞ ψ(xn) = ψ(x) for all ψ ∈ X ∗. Recall that in Section 14.1 we
defined J(x) : X ∗ → R as J(x)[ψ] = ψ(x) for all ψ ∈ X ∗. So we define
the sequence {J(xn)} of functionals mapping X ∗ → R and we then have
that this sequence of functionals converges to J(x):

lim
n→∞

J(xn)[ψ] = lim
n→∞

ψ(xn) = ψ(x) = J(x)[ψ] for all ψ ∈ X ∗.

So for given ψ, {J(xn)[ψ]} → J(x)[ψ] (since J(x) : X ∗ → R the
convergence is in R). Every convergent sequence of real numbers is
bounded, so there is some Mψ ≥ 0 such that |J(xn)[ψ]| ≤ Mψ for all
n ∈ N. So the family F = {J(xn) | n ∈ N} ⊂ L(X ∗,R) is pointwise
bounded in the sense that for any given ψ ∈ X ∗, |J(xn)[ψ] ≤ Mψ for all
J(xn) ∈ F .
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Theorem 14.12 (continued)

Theorem 14.12. Let X be a normed linear space. Then every weakly
convergent sequence in X is bounded. moreover, if {xn}⇀ x in X , then
‖x‖ ≤ lim inf ‖xn‖.

Proof (continued). Since R is a Banach space, by Theorem 13.3 we have
that L(X ,R) = X ∗ is a Banach space. So by the Uniform Boundedness
Principle, there is a constant M ≥ 0 for which ‖J(xn)‖ ≤ M for all n ∈ N.
Since J is an isometry by Corollary 14.9, then the sequence {xn} is also
bounded by M, as claimed.

For the “moreover” part, we know by Theorem 14.7 that there is a
functional ψ ∈ X ∗ for which ‖ψ‖ = 1 and ψ(x) = ‖x‖. Then
|ψ(xn)| ≤ ‖ψ‖‖xn‖ = ‖xn‖ for all n ∈ N.

Since xn ⇀ x then
ψ(xn) → ψ(x); also |ψ(xn)| → |ψ(x)| = ‖x‖. Therefore

‖x‖ = lim
n→∞

|ψ(xn)| ≤ lim inf ‖xn‖ since |ψ(xn)| ≤ ‖xn‖ for all n ∈ N.
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