Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces

The Inner Product and Orthogonality—Proofs of Theorems

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality

 $|\langle u, v \rangle| \le ||u|| ||v||$ where $||u|| = \sqrt{\langle u, u \rangle}$ For any two vectors u and v in an inner product space H,

Proof. For any $t \in \mathbb{R}$ we have

$$0 \le ||u + tv||^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t\langle u, v \rangle + t^2\langle v, v \rangle$$
$$= ||u||^2 + 2t\langle u, v \rangle + t^2||v||^2.$$

have distinct real roots (because if is nonnegative), we wee that the discriminant (i.e., the quantity " $b^2 - 4ac$ ") is not positive. That is, Treating the right hand side as a quadratic in t and noticing that it cannot $(2\langle u,y \rangle)^2 - 4(\|v\|^2)(\|u\|^2) \le 0$ or $\langle u,v \rangle^2 \le \|v\|^2 \|u\|^2$ or $|\langle u, v \rangle| \leq ||u|| ||v||$

Proposition 16.1

Proposition 16.1. For a vector h in an inner product space H, define inner product $\langle \cdot, \cdot \rangle$. $\|h\|=\sqrt{\langle h,h
angle}$. Then $\|\cdot\|$ is a norm on H called the *norm induced* by the

Proof. First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have

Next, $\|h\| = \sqrt{\langle h, h \rangle} \geq 0$ for all $h \in H$ and by definition $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds

 $2\|h\| = \|2h\| = 2 \cdot 0\| = \|0\| = \|h\|$ and so $\|h\| = 0$ and nonnegativity holds. Finally, for $u, v \in H$ we have $\|h\|=\sqrt{\langle h,h
angle}>0$ for h
eq0. If h=0, then be positive homogeneity

$$||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle$$

$$= ||u||^2 + 2\langle u, v \rangle + ||v||^2$$

$$\leq ||u||^2 + 2||u||||v|| + ||v||^2 \text{ by the Cauchy-Schwarz Inequality}$$

$$= (||u|| + ||v||)^2,$$

is a norm on H. so $||u+v|| \le ||u|| + ||v||$ and the triangle inequality holds. Therefore $||\cdot||$

The Parallelogram Identity.

The Parallelogram Identity

For any two vectors u, v in an inner product space H we have $||u - v||^2 + ||u + v||^2 = 2||u||^2 + 2||v||^2$.

Proof. We have

$$||u+v||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2$$

and

$$||u-v||^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = ||u||^2 - 2\langle u, v \rangle + ||v||^2.$$

Adding the corresponding left and right sides of these equations yields the

Real Analysis

Real Analysis

Proposition 16.2 (continued)

Proposition 16.2

closest to h_0 in the sense that $||h_0 - h_*|| = \operatorname{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||$. space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is **Proposition 16.2.** Let K be a nonempty closed convex subset of a Hilbert

Proof. We prove the claim for $h_0=0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n o\infty}\|h_n\|=\inf_{h\in\mathcal{K}}\|h\|$. Then for any $m,n\in\mathbb{N}$ we have

$$\|h_n\|^2 + \|h_m\|^2 = 2\left\|\frac{h_n + h_m}{2}\right\|^2 + 2\left\|\frac{h_n - h_m}{2}\right\|^2$$
 by The Parallelogram ldentity with $u = (h_n + h_m)/2$ and $v = (h_n - h_m)/2$ $2 \inf_{h \in K} \|h\|^2 + 2\left\|\frac{h_n - h_m}{2}\right\|$ since $(h_n + h_m)/2 \in K$

|V|

So $||h_n||^2 - \inf_{h \in K} ||h||^2 + ||h_m||^2 - \inf_{h \in K} ||h|| \ge ||h_n - h_m||^2$ and since

closest element to $h_0 = 0$ is unique. and since $\|h^*\| = \|h_*\| = \inf_{h \in \mathcal{K}} \|h\|$, we must have $h_* = h^*$ and so the

$\{h_n\} o \inf_{h \in \mathcal{K}} \|h\|$ then $\{h_n\}$ is a Cauchy sequence.

because K is convex.

 $\overline{2}$

Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space HThen H has the orthogonal direct sum decomposition $H=V\oplus V^\perp$

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that $h^* - th \in V$ and therefore is closest to h_0 . Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then

$$\langle h_0 - h^*, h_0 - h^* \rangle = \|h_0 - h^*\|^2$$

$$\leq \|h_0 - (h^* - th)\|^2 \text{ since } h^* \text{ is closest to } h_0$$

$$= \langle h_0 - (h^* - th), h_0 - (h^* - th) \rangle$$

$$= \langle h_0 - h^*, h_0 - h^* \rangle + 2t\langle h_0 - h^*, h \rangle + t^2\langle h, h \rangle.$$

Such a parabola cannot have two intercepts since its graph is nonnegative parabola with intercepts at t=0 and $t=-2\langle h_0-h^*,h\rangle/\|h\|^2$ if $h\neq 0$. $(t\|h\|^2+2\langle h_0-h^*,h
angle)t\geq 0.$ As a function of t, this is an opening upward

> (trivially) and so by equation (2) with $h_n = h^*$ and $m_m = h_*$ we have where $h_n=h_*$ or $h_n=h^*$ for all $n\in\mathbb{N}$ satisfies $\|h_n\|\to\inf_{h\in K}\|h\|$ another vector in K that is closest to $h_0=0$. Then the sequence $\{h_n\}$ induced metric; continuity of the metric follows from Exercise 9.14), $h^* \in \mathcal{K}$. By continuity of the norm (which follows from continuity of the **Proof** (continued). Since H is complete then there is $h^* \in H$ such that $||h^*|| = \inf_{h \in K} ||h||$. This is a point in K closest to h_0 . Suppose h^* is $\{h_n\} \to h^*$. Since K is closed then it contains its limit points and so

$$0 \ge \|h^*\|^2 + \|h_*\|^2 - 2\inf_{h \in K} \|h\|^2 \ge 2\left\|\frac{h^* - h_*}{2}\right\|^2$$

Proposition 16.3

Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$. **Proposition 16.3.** Let V be a closed subspace of a Hilbert space H.

only vector orthogonal to itself is 0). Therefore $H=V\oplus V^\perp$. only element of V orthogonal to all elements of V is 0; in particular, the element of V^{\perp} (namely, 0). So $H = V + V^{\perp}$. Now $V \cap B^{\perp} = \{0\}$ (the vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an (namely, h^*) and an element of V^{\perp} (namely, $h_0 - h^*$). Of course any is an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V. Next **Proof.** So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $h_0=h^*+(h_0-h^*).$ So arbitrary $h_0\in H\setminus V$ is a sum of an element of V $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since $|h_0 - h^*, h\rangle = 0$ (notice that if h = 0 then we still have

Hence $0 \le 2t\langle h_0 - h^*, h \rangle + t^2 ||h||^2$ for all $t \in \mathbb{R}$, or

February 19, 2017 9 / 11

Proposition 16.5 (continued)

Proposition 16.5

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then $\|P\|=1$ and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$||u||^{2} = \langle u, u \rangle = \langle P(u) + (\operatorname{Id} - P)(u), P(u) + (\operatorname{Id} - P)(u) \rangle$$

$$= ||P(u)||^{2} + 2\langle P(u), (\operatorname{Id} - P)(u) \rangle + ||(\operatorname{Id} - P)(u)||^{2}$$

$$= ||P(u)||^{2} + ||(\operatorname{Id} - P)(u)||^{2} \text{ since } P(u) \in V \text{ and}$$

 $u-P(u)\in V^\perp$ (by Theorem 16.3) so that

$$\langle P(u), (\operatorname{Id} - P)(u) \rangle = 0$$

 $\geq \|P(u)\|^2,$

and hence $\|P(u)\| \leq \|u\|$. Therefore $\|P\| = \inf_{u \in H, n \neq 0} \frac{\|P(u)\|}{\|u\|} \leq 1$. Since P(v) = v for all nonzero $v \in V$ (such v exists since V is nontrivial) and $\frac{\|P(v)\|}{\|v\|} = \frac{\|v\|}{\|v\|} = 1$, then $\|P\| = 1$.

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then ||P||=1 and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof (continued). Now for $u, v \in H$ we have $\langle P(u), (\operatorname{Id} - P)(v) \rangle = 0$ since $P(u) \in V$ and $(\operatorname{Id} - P)(v) \in V^{\perp}$ and so $\langle P(u), v \rangle = \langle P(u), P(v) \rangle$. Also $\langle (\operatorname{Id} - P)(u), P(v) \rangle = 0$ since $P(v) \in V$ and $(\operatorname{Id} - P)(u) \in V^{\perp}$ and so $\langle u, P(v) \rangle = \langle P(u), P(v) \rangle$. Therefore $\langle P(u), P(v) \rangle = \langle P(u), v \rangle = \langle u, P(v) \rangle$, as claimed.