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For any two vectors u and v in an inner product space H,
Chapter 16. Continuous Linear Operators on Hilbert Spaces {u, )| < ||ull[|v]] where [|u]| = v/{u, u).

16.1. The Inner Product and Orthogonality—Proofs of Theorems

Proof. For any t € R we have

0<|lu+tv]|?>=(u+tv,u+tv) = (u,u) +2t{u,v) + t3(v,v)

REAL N o
ANALYSIS = [Jull® + 2t{u, v) + t7||v]]*.

Treating the right hand side as a quadratic in t and noticing that it cannot
have distinct real roots (because if is nonnegative), we wee that the
discriminant (i.e., the quantity “b? — 4ac”) is not positive. That is,

(2(u, y))? = 4(IvIP)lul?) < 0 or {u,v)* < [v]?||ull? or

[(u, )] < [[ull[[v]] O
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Proposition 16.1. For a vector h in an inner product space H, define

||h|| = /(h, h). Then | - || is a norm on H called the norm induced by the
inner product (-,-).

Proof. First, for h € H and o € R, we have

|ah|| = \/(ah,ah) = \/a2(h, h) = |a|||h|| so positive homogeneity holds.

The Parallelogram ldentity.
For any two vectors u, v in an inner product space H we have
lu = v+ flu+ v]* = 2] +2||v]]>.

Next, ||h|| = v/(h, h) > 0 for all h € H and by definition Proof. We have
||h|| = +/(h, h) > 0 for h # 0. If h =0, then be positive homogeneity ) ) )
2||h|| = ||2h]| =2-0|| = [|0]| = ||A|| and so ||h| = 0 and nonnegativity lutvl[® = (utv,utv) = (U, u)+2(u, v) +{v,v) = [[ul|*+2(u, v)+lv]
holds. Finally, for u,v € H we have q
an

lu+v|> = (w+v,u+v)=(uu)+2(uv)+(v,v)

= Jull? +2(u,v) + [[v]? lu=vI2 = (u=v,u—v) = (u, u)=2(u, v)+ (v, v) = [ulP=2(u, v)+ | v]>.

2 2 .

< [lull”+ m__:__m___\__ +[[v[[* by the Cauchy-Schwarz Inequality Adding the corresponding left and right sides of these equations yields the

= (llull + lIvI})7, result. O
so ||u+ v| < |lu|| + ||v]| and the triangle inequality holds. Therefore || - ||
is a norm on H. O
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Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert

space H and let j € H\ K. Then there is exactly one vector h, € K that is Proof (continued). Since H is complete then there is h* € H such that
closest to hg in the sense that ||hg — h.|| = dist(ho, K) = infrek || ho — h]|. {hn} — h*. Since K is closed then it contains its limit points and so

h* € K. By continuity of the norm (which follows from continuity of the
induced metric; continuity of the metric follows from Exercise 9.14),
||h*|| = infrek || h||. This is a point in K closest to hy. Suppose h* is
another vector in K that is closest to hp = 0. Then the sequence {h,}

h, + b ||? h, — hp || where h, = h, or h, = h* for all n € N satisfies | hp|| — infrex || Al

Proof. We prove the claim for hg = 0 (the general result then following be
replacing K with K — hg). Let {h,} be a sequence in K for which
limp—oo ||An|| = infrek || h||. Then for any m, n € N we have

2 2 n m m
lnll™ + [ Am|” =2 2 +2 2 by The Parallelogram (trivially) and so by equation (2) with h, = h* and m,, = h. we have
Identity with v = (h, + hp)/2 and v = (h, — hy)/2 b P2
hn — h 0> [|A*[2+ [|hu]® = 2 inf ||h]? = 2||—5—
> m\“:ﬁ [h[]2 42 || > T since (hp + hm)/2 € K L L_max__ | 2
€
because K is convex. (2) and since ||h*| , we must have h, = h* and so the

) ) . closest element to hg = 0 is unique. O]
So ||hnl1? = infaek [|h]|> + [|Am]|* — infrek ||A]] > [|hn — hm||? and since 0 g

{hn} — infrek ||h]| then {h,} is a Cauchy sequence.
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Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
. ae _ I_l
Then H has the orthogonal direct sum decomposition H = V' & V. Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Proof. Let hyp € H\ V. By Proposition 16.1 there is a unique h* € V that Then H has the orthogonal direct sum decomposition H = V & V.
_m*n_Ommmﬁ to hg. Let he V. For t € R, since V is a linear space then Proof. So it must be that t = —2(hg — h*, h)/||A||2 = 0 also; that is,
h* —th € V and therefore (ho — h*, h) = 0 (notice that if h = 0 then we still have
(ho— B ho— K" = [[ho — h[? (hg — h*, h) = (ho — h*,0) = 0). So hg — h* is orthogonal to h and since h
0 70 N 0 8 5 .. is an arbitrary vector in V' then hg — h* is orthogonal to V. Next,
< |lho — (A" — th)]|" since h* is closest to ho ho = h* + (ho — h*). So arbitrary hg € H\ V is a sum of an element of V
= (hp — (h* — th), ho — (h* — th)) (namely, h*) and an element of V1 (namely, hy — h*). Of course any
= (hy — h*, hg — h*) + 2t(hg — h*, h) + t2(h, h). vector hy in V is the sum of an element of V' (namely, h; itself) and an
element of V- (namely, 0). So H = V + V. Now V N B+ = {0} (the
Hence 0 < 2t(hg — h*, h) + t?||h||? for all t € R, or only element of V orthogonal to all elements of V' is 0; in particular, the
(t||h||? +2(hg — h*, h))t > 0. As a function of t, this is an opening upward only vector orthogonal to itself is 0). Therefore H =V @& V. O

parabola with intercepts at t = 0 and t = —2(hg — h*, h)/||h||? if h # 0.
Such a parabola cannot have two intercepts since its graph is nonnegative.
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Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.

Proof. Let h € H. With the identity on H denoted as “Id” we have
lul® = (u,u) = (P(u) + (Id = P)(u), P(u) + (Id — P)(u))
= [[P(u)]* +2(P(u), (1d = P)(u)) +[|(1d — P)(u)||”
= ||P(u)|]? + ||(1d — P)(u)||? since P(u) € V and
u— P(u) € V* (by Theorem 16.3) so that
(P(u), (Id = P)(u)) =0
1P(u)|%,
and hence ||P(u)|| < ||u||. Therefore || P|| = inf et nzo LF < 1. Since

P(v) = v for all nonzero v € V (such v exists since V is nontrivial) and

PG — IV — 1, then ||P|| =1
v T .
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Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.

Proof (continued). Now for u,v € H we have (P(u),(ld — P)(v)) =0
since P(u) € V and (Id — P)(v) € V! and so (P(u),v) = (P(u), P(v)).
Also ((Id — P)(u), P(v)) = 0 since P(v) € V and (Id — P)(u) € V* and
so (u, P(v)) = (P(u), P(v)). Therefore

(P(u), P(v)) = (P(u),v) = (u, P(v)), as claimed. O
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