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Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.
For any two vectors u and v in an inner product space H,

[{u, V)] < [ullllv]] where [[u]| = \/{u, u).
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Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.
For any two vectors u and v in an inner product space H,

[{u, V)] < [ullllv]] where [[u]| = \/{u, u).

Proof. For any t € R we have

0<|lu+tv]?=(u+tv,u+tv) = (uu)+2t{u,v) + t>(v, v)

2 21,12
= [lull® + 2t (u, v) + =[|v]]*.
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Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.
For any two vectors u and v in an inner product space H,

[{u, V)] < [ullllv]] where [[u]| = \/{u, u).

Proof. For any t € R we have
0<|lu+tv]?=(u+tv,u+tv) = (uu)+2t{u,v) + t>(v, v)

2 201112
= [Jull” + 2t(u, v) + || v]]*.
Treating the right hand side as a quadratic in t and noticing that it cannot
have distinct real roots (because if is nonnegative), we wee that the
discriminant (i.e., the quantity “b?> — 4ac") is not positive. That is,
(2(u,y))? = A(IvIP)(l[ul?) < 0 or (u,v)? < [Iv]?]ull? or
[{u, V) < lullfiv]. O
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Proposition 16.1

Proposition 16.1. For a vector h in an inner product space H, define
|lh|| = +/(h, h). Then || - || is a norm on H called the norm induced by the
inner product (-, -).
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Proposition 16.1

Proposition 16.1

Proposition 16.1. For a vector h in an inner product space H, define

|lh|| = +/(h, h). Then || - || is a norm on H called the norm induced by the
inner product (-, -).

Proof. First, for h € H and o € R, we have
|ah|| = /{ah, ah) = \/a?(h, h)

= |a|||h|| so positive homogeneity holds.
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Proposition 16.1

Proposition 16.1. For a vector h in an inner product space H, define
Al = \/(h, h). Then || - || is a norm on H called the norm induced by the
inner product (-, -).

Proof. First, for h € H and a € R, we have

lah|| = \/{ah, ah) = \/a2(h, h) = |a|||h|| so positive homogeneity holds.
Next, ||h|| = +/(h, h> > 0 for all h € H and by definition

llhl| = +/(h,h) >0 for h # 0. If h =0, then be positive homogeneity
2||h]| = ||2h]| =2 - 0] = ||0|| = ||h|| and so ||h|| = 0 and nonnegativity
holds.
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Proposition 16.1

Proposition 16.1. For a vector h in an inner product space H, define
Al = \/(h, h). Then || - || is a norm on H called the norm induced by the
inner product (-, -).

Proof. First, for h € H and a € R, we have

lah|| = \/{ah, ah) = \/a2(h, h) = |a|||h|| so positive homogeneity holds.
Next, ||h|| = +/(h, h} > 0 for all h € H and by definition

llhl| = +/(h,h) >0 for h # 0. If h =0, then be positive homogeneity
2||h]| = ||2h]| =2 - 0] = ||0|| = ||h|| and so ||h|| = 0 and nonnegativity
holds. Finally, for u, v € H we have

Jlu+v|? = (u+v,u+v)=(uu)+2(uv)+(v,v)
| ull® + 2(u, v) + ||v|?

< HuH2 + 2||ull||v] + HVH2 by the Cauchy-Schwarz Inequality
= (ull+ lIvI})?,
so ||u+ v|| < |lu|| + |lv| and the triangle inequality holds. Therefore || - ||
is a norm on H. OJ
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The Parallelogram Identity

The Parallelogram Identity.
For any two vectors u, v in an inner product space H we have
lu = v +[Ju+ v|[> = 2[|ul]* + 2||v|]>.
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The Parallelogram Identity

The Parallelogram Identity.
For any two vectors u, v in an inner product space H we have
lu = v +[Ju+ v|[> = 2[|ul]* + 2||v|]>.

Proof. We have

lu+v|? = (u+v,utv) = (u, u)+2(u, v) + (v, v) = ||u]>+2(u, v) +||v|?
and

lu=vI[? = {u=v,u=v) = {u,u)=2(u, v) + (v, v) = [[u]> =2{u,v) + || v|*.

Adding the corresponding left and right sides of these equations yields the
result. Ol
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Proposition 16.2
Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert

space H and let j € H\ K. Then there is exactly one vector h, € K that is
closest to hg in the sense that ||hg — h.|| = dist(hg, K) = infpek ||ho — hl|.
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Proposition 16.2

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert
space H and let j € H\ K. Then there is exactly one vector h, € K that is
closest to hg in the sense that ||hg — h.|| = dist(hg, K) = infpek ||ho — hl|.

Proof. We prove the claim for hyg = 0 (the general result then following be

replacing K with K — hg). Let {h,} be a sequence in K for which
limp—oo ||Anll = infpek || A]|-
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Proposition 16.2
Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert

space H and let j € H\ K. Then there is exactly one vector h, € K that is
closest to hg in the sense that ||hg — h.|| = dist(hg, K) = infpek ||ho — hl|.

Proof. We prove the claim for hyg = 0 (the general result then following be
replacing K with K — hg). Let {h,} be a sequence in K for which

limp— oo ||An|| = infrek ||h]|. Then for any m,n € N we have
o+ b |[* | e = b ||P
ball2 + [|am|?> = 2 Z il | 2’ =TI by The Parallelogram
Identity with u = (hp, + hm)/2 and v = (h, — hpm)/2
hp—h
> 2lim:<\|h\|2 + 2| 2—"|| since (hy + hm)/2 € K
€
because K is convex. (2)
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Proposition 16.2
Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert

space H and let j € H\ K. Then there is exactly one vector h, € K that is
closest to hg in the sense that ||hg — h.|| = dist(hg, K) = infpek ||ho — hl|.

Proof. We prove the claim for hyg = 0 (the general result then following be
replacing K with K — hg). Let {h,} be a sequence in K for which

limp— oo ||An|| = infrek ||h]|. Then for any m,n € N we have
o+ b |[* | e = b ||P
ball2 + [|am|?> = 2 Z il | 2’ =TI by The Parallelogram
Identity with u = (hp, + hm)/2 and v = (h, — hpm)/2
hp—h
> 2lim:<\|h\|2 + 2| 2—"|| since (hy + hm)/2 € K
€
because K is convex. (2)

So ||ha||?> — infrex ||Al|2 + |Aml|?> — infrek ||All > ||hn — hm||?> and since
{hn} — infpek ||h]| then {h,} is a Cauchy sequence.
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Proposition 16.2

Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is h* € H such that

{hn} — h*. Since K is closed then it contains its limit points and so
h* € K.
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Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is h* € H such that
{hn} — h*. Since K is closed then it contains its limit points and so

h* € K. By continuity of the norm (which follows from continuity of the
induced metric; continuity of the metric follows from Exercise 9.14),
I|h*|| = infrek || h||. This is a point in K closest to hg. Suppose h* is
another vector in K that is closest to hg = 0.
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Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is h* € H such that
{hn} — h*. Since K is closed then it contains its limit points and so

h* € K. By continuity of the norm (which follows from continuity of the
induced metric; continuity of the metric follows from Exercise 9.14),
I|h*|| = infrek || h||. This is a point in K closest to hg. Suppose h* is
another vector in K that is closest to hg = 0. Then the sequence {h,}
where h, = h, or h, = h* for all n € N satisfies || h,|| — infrek || h]|
(trivially) and so by equation (2) with h, = h* and m,, = h, we have

h* — h,||?

2

0> |A*2 + ]2 = 2 inf [IA] > 2'
heK

and since ||h*|| = || h«|| = infpek ||h]|, we must have h, = h* and so the
closest element to hg = 0 is unique. O
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Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.
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Proposition 16.3
Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.

Proof. Let hyp € H\ V. By Proposition 16.1 there is a unique h* € V that
is closest to hg.
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Proposition 16.3
Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.

Proof. Let hyp € H\ V. By Proposition 16.1 there is a unique h* € V that
is closest to hy. Let h€ V. For t € R, since V is a linear space then
h* — th € V and therefore

tho— " ho— ") = by — b
< |lho — (h* — th)||? since h* is closest to hg
= {hy— (W — th), ho — (" — th))
= (ho— h*, hg — h*) + 2t(hg — h*, h) + t*(h, h).
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Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.

Proof. Let hyp € H\ V. By Proposition 16.1 there is a unique h* € V that
is closest to hy. Let h€ V. For t € R, since V is a linear space then
h* — th € V and therefore

tho— " ho— ") = by — b
< |lho — (h* — th)||? since h* is closest to hg
= {hy— (W — th), ho — (" — th))
= (ho— h*, hg — h*) + 2t(hg — h*, h) + t*(h, h).

Hence 0 < 2t(hg — h*, h) + t2| h||? for all t € R, or

(t||h||? +2(ho — h*, h))t > 0. As a function of t, this is an opening upward
parabola with intercepts at t = 0 and t = —2(hg — h*, h)/||h||? if h # 0.
Such a parabola cannot have two intercepts since its graph is nonnegative.
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Proposition 16.3

Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.

Proof. So it must be that t = —2(hy — h*, h)/||h||*> = 0 also; that is,

(hg — h*, h) = 0 (notice that if h = 0 then we still have

(hg — h*, h) = (ho — h*,0) = 0). So hg — h* is orthogonal to h and since h
is an arbitrary vector in V then hg — h* is orthogonal to V.
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Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.

Proof. So it must be that t = —2(hy — h*, h)/||h||*> = 0 also; that is,

(hg — h*, h) = 0 (notice that if h = 0 then we still have

(hg — h*, h) = (ho — h*,0) = 0). So hg — h* is orthogonal to h and since h
is an arbitrary vector in V' then hg — h* is orthogonal to V. Next,

ho = h* + (ho — h*). So arbitrary hg € H'\ V is a sum of an element of V
(namely, h*) and an element of V+ (namely, hy — h*). Of course any
vector hy in V is the sum of an element of V' (namely, h; itself) and an
element of V* (namely, 0). So H =V + V+,
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Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V @ V.

Proof. So it must be that t = —2(hy — h*, h)/||h||*> = 0 also; that is,

(hg — h*, h) = 0 (notice that if h = 0 then we still have

(hg — h*, h) = (ho — h*,0) = 0). So hg — h* is orthogonal to h and since h
is an arbitrary vector in V' then hg — h* is orthogonal to V. Next,

ho = h* + (ho — h*). So arbitrary hg € H'\ V is a sum of an element of V
(namely, h*) and an element of V+ (namely, hy — h*). Of course any
vector hy in V is the sum of an element of V' (namely, h; itself) and an
element of V* (namely, 0). So H =V + V+. Now V N B+ = {0} (the
only element of V orthogonal to all elements of V is 0; in particular, the
only vector orthogonal to itself is 0). Therefore H = V & V*. O
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Proposition 16.5

Proposition 16.5

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.
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Proposition 16.5

Proposition 16.5

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.

Proof. Let h € H. With the identity on H denoted as “Id" we have

lull> = (u,u) = (P(u) + (Id = P)(u), P(u) + (Id = P)(u))

IP(u)[|? + 2(P(u), (Id = P)(u)) + [|(1d = P)(u)|[?

= ||P(u)|> + ||(1d — P)(u)||? since P(u) € V and
u—P(u) € vt (by Theorem 16.3) so that
(P(u),(ld = P)(u)) =0

> |IP(u)]?,

and hence ||P(u)]| < ||ul|.
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Proposition 16.5

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.

Proof. Let h € H. With the identity on H denoted as “Id" we have

lull> = {u,u) = (P(u) + (1d = P)(u), P(u) + (Id — P)(u))
= [[P()[? +2(P(u), (Id = P)(u)) + [|(1d = P)(u)|>
= ||P(u)|> + ||(1d — P)(u)||? since P(u) € V and
u— P(u) € V* (by Theorem 16.3) so that
(P(u),(id = P)(u)) =0
IP(u)|%,
and hence ||P(u)|| < ||u|. Therefore || P|| = infcp a0 1101 < 1. Since

P(v) = v for all nonzero v € V (such v exists since V is nontrivial) and

IPCAL = b — 1, then ||P|| = 1.
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Proposition 16.5

Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.

Proof (continued). Now for u,v € H we have (P(u),(ld — P)(v)) =0
since P(u) € V and (Id — P)(v) € V* and so (P(u),v) = (P(u), P(v)).
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Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ||P|| =1 and
(P(u),v) = (u, P(v)) for all u,v € H.

Proof (continued). Now for u,v € H we have (P(u),(ld — P)(v)) =0

since P(u) € V and (Id — P)(v) € V* and so (P(u),v) = (P(u), P(v)).

Also {(Id — P)(u), P(v)) = 0 since P(v) € V and (Id — P)(u) € V* and
so (u, P(v)) = (P(u), P(v)). Therefore

(P(u)7 P(v)) = (P(u),v) = (u, P(v)), as claimed. O
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