Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces 16.1. The Inner Product and Orthogonality—Proofs of Theorems

Real Analysis

Table of contents

1 Theorem. The Cauchy-Schwarz Inequality

- 2 Proposition 16.1
- 3 The Parallelogram Identity
- Proposition 16.2
- 5 Proposition 16.3
- 6 Proposition 16.5

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.

For any two vectors u and v in an inner product space H, $|\langle u, v \rangle| \le ||u|| ||v||$ where $||u|| = \sqrt{\langle u, u \rangle}$.

Proof. For any $t \in \mathbb{R}$ we have

$$0 \le ||u + tv||^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle$$
$$= ||u||^2 + 2t \langle u, v \rangle + t^2 ||v||^2.$$

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.

For any two vectors u and v in an inner product space H, $|\langle u, v \rangle| \le ||u|| ||v||$ where $||u|| = \sqrt{\langle u, u \rangle}$.

Proof. For any $t \in \mathbb{R}$ we have

$$\begin{split} 0 &\leq \|u + tv\|^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle \\ &= \|u\|^2 + 2t \langle u, v \rangle + t^2 \|v\|^2. \end{split}$$

Treating the right hand side as a quadratic in t and noticing that it cannot have distinct real roots (because if is nonnegative), we wee that the discriminant (i.e., the quantity " $b^2 - 4ac$ ") is not positive. That is, $(2\langle u, y \rangle)^2 - 4(||v||^2)(||u||^2) \leq 0$ or $\langle u, v \rangle^2 \leq ||v||^2 ||u||^2$ or $|\langle u, v \rangle| \leq ||u|| ||v||$.

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.

For any two vectors u and v in an inner product space H, $|\langle u, v \rangle| \le ||u|| ||v||$ where $||u|| = \sqrt{\langle u, u \rangle}$.

Proof. For any $t \in \mathbb{R}$ we have

$$\begin{split} 0 &\leq \|u + tv\|^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle \\ &= \|u\|^2 + 2t \langle u, v \rangle + t^2 \|v\|^2. \end{split}$$

Treating the right hand side as a quadratic in t and noticing that it cannot have distinct real roots (because if is nonnegative), we wee that the discriminant (i.e., the quantity " $b^2 - 4ac$ ") is not positive. That is, $(2\langle u, y \rangle)^2 - 4(||v||^2)(||u||^2) \leq 0$ or $\langle u, v \rangle^2 \leq ||v||^2 ||u||^2$ or $|\langle u, v \rangle| \leq ||u|| ||v||$.

Proposition 16.1. For a vector *h* in an inner product space *H*, define $||h|| = \sqrt{\langle h, h \rangle}$. Then $|| \cdot ||$ is a norm on *H* called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$.

Proof. First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds.

Proposition 16.1. For a vector *h* in an inner product space *H*, define $||h|| = \sqrt{\langle h, h \rangle}$. Then $|| \cdot ||$ is a norm on *H* called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$. **Proof.** First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $||\alpha h|| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| ||h||$ so positive homogeneity holds. Next, $||h|| = \sqrt{\langle h, h \rangle} \ge 0$ for all $h \in H$ and by definition $||h|| = \sqrt{\langle h, h \rangle} \ge 0$ for $h \neq 0$. If h = 0, then be positive homogeneity 2 $||h|| = ||2h|| = 2 \cdot 0|| = ||0|| = ||h||$ and so ||h|| = 0 and nonnegativity holds.

Proposition 16.1. For a vector *h* in an inner product space *H*, define $\|h\| = \sqrt{\langle h, h \rangle}$. Then $\|\cdot\|$ is a norm on H called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$. **Proof.** First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds. Next, $||h|| = \sqrt{\langle h, h \rangle} \ge 0$ for all $h \in H$ and by definition $||h|| = \sqrt{\langle h, h \rangle} > 0$ for $h \neq 0$. If h = 0, then be positive homogeneity $2\|h\| = \|2h\| = 2 \cdot 0\| = \|0\| = \|h\|$ and so $\|h\| = 0$ and nonnegativity holds. Finally, for $u, v \in H$ we have

$$\begin{split} \|u+v\|^2 &= \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle \\ &= \|u\|^2 + 2\langle u, v \rangle + \|v\|^2 \\ &\leq \|u\|^2 + 2\|u\| \|v\| + \|v\|^2 \text{ by the Cauchy-Schwarz Inequality} \\ &= (\|u\| + \|v\|)^2, \end{split}$$

so $||u + v|| \le ||u|| + ||v||$ and the triangle inequality holds. Therefore $||\cdot||$ is a norm on H. Real Analysis

Proposition 16.1. For a vector *h* in an inner product space *H*, define $||h|| = \sqrt{\langle h, h \rangle}$. Then $|| \cdot ||$ is a norm on *H* called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$. **Proof.** First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $||\alpha h|| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| ||h||$ so positive homogeneity holds. Next, $||h|| = \sqrt{\langle h, h \rangle} \ge 0$ for all $h \in H$ and by definition $||h|| = \sqrt{\langle h, h \rangle} \ge 0$ for $h \neq 0$. If h = 0, then be positive homogeneity $2||h|| = ||2h|| = 2 \cdot 0|| = ||0|| = ||h||$ and so ||h|| = 0 and nonnegativity holds. Finally, for $u, v \in H$ we have

$$\begin{aligned} \|u + v\|^2 &= \langle u + v, u + v \rangle = \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle \\ &= \|u\|^2 + 2 \langle u, v \rangle + \|v\|^2 \\ &\leq \|u\|^2 + 2 \|u\| \|v\| + \|v\|^2 \text{ by the Cauchy-Schwarz Inequality} \\ &= (\|u\| + \|v\|)^2, \end{aligned}$$

so $||u + v|| \le ||u|| + ||v||$ and the triangle inequality holds. Therefore $|| \cdot ||$ is a norm on H.

The Parallelogram Identity

The Parallelogram Identity.

For any two vectors u, v in an inner product space H we have $||u - v||^2 + ||u + v||^2 = 2||u||^2 + 2||v||^2$.

Proof. We have

$$\|u+v\|^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = \|u\|^2 + 2\langle u, v \rangle + \|v\|^2$$
 and

$$\|u-v\|^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = \|u\|^2 - 2\langle u, v \rangle + \|v\|^2.$$

Adding the corresponding left and right sides of these equations yields the result. $\hfill \square$

The Parallelogram Identity

The Parallelogram Identity.

For any two vectors u, v in an inner product space H we have $||u - v||^2 + ||u + v||^2 = 2||u||^2 + 2||v||^2$.

Proof. We have

$$\|u+v\|^{2} = \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = \|u\|^{2} + 2\langle u, v \rangle + \|v\|^{2}$$

and

$$\|u-v\|^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = \|u\|^2 - 2\langle u, v \rangle + \|v\|^2.$$

Adding the corresponding left and right sides of these equations yields the result. $\hfill \Box$

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||$.

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} ||h_n|| = \inf_{h\in K} ||h||$.

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||$.

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} \|h_n\| = \inf_{h\in K} \|h\|$. Then for any $m, n \in \mathbb{N}$ we have

$$\|h_n\|^2 + \|h_m\|^2 = 2 \left\|\frac{h_n + h_m}{2}\right\|^2 + 2 \left\|\frac{h_n - h_m}{2}\right\|^2 \text{ by The Parallelogram}$$

Identity with $u = (h_n + h_m)/2$ and $v = (h_n - h_m)/2$

$$\geq 2 \inf_{h \in K} \|h\|^2 + 2 \left\|\frac{h_n - h_m}{2}\right\| \text{ since } (h_n + h_m)/2 \in K$$

because K is convex. (2)

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||$.

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} ||h_n|| = \inf_{h\in K} ||h||$. Then for any $m, n \in \mathbb{N}$ we have

$$\|h_n\|^2 + \|h_m\|^2 = 2 \left\| \frac{h_n + h_m}{2} \right\|^2 + 2 \left\| \frac{h_n - h_m}{2} \right\|^2 \text{ by The Parallelogram}$$

Identity with $u = (h_n + h_m)/2$ and $v = (h_n - h_m)/2$

$$\geq 2 \inf_{h \in K} \|h\|^2 + 2 \left\| \frac{h_n - h_m}{2} \right\| \text{ since } (h_n + h_m)/2 \in K$$

because K is convex. (2)

So $||h_n||^2 - \inf_{h \in K} ||h||^2 + ||h_m||^2 - \inf_{h \in K} ||h|| \ge ||h_n - h_m||^2$ and since $\{h_n\} \to \inf_{h \in K} ||h||$ then $\{h_n\}$ is a Cauchy sequence.

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||$.

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} ||h_n|| = \inf_{h\in K} ||h||$. Then for any $m, n \in \mathbb{N}$ we have

$$\|h_{n}\|^{2} + \|h_{m}\|^{2} = 2 \left\| \frac{h_{n} + h_{m}}{2} \right\|^{2} + 2 \left\| \frac{h_{n} - h_{m}}{2} \right\|^{2} \text{ by The Parallelogram}$$

$$\text{Identity with } u = (h_{n} + h_{m})/2 \text{ and } v = (h_{n} - h_{m})/2$$

$$\geq 2 \inf_{h \in K} \|h\|^{2} + 2 \left\| \frac{h_{n} - h_{m}}{2} \right\| \text{ since } (h_{n} + h_{m})/2 \in K$$

$$\text{ because } K \text{ is convex.} \qquad (2)$$

$$\text{So } \|h_{n}\|^{2} - \inf_{h \in K} \|h\|^{2} + \|h_{m}\|^{2} - \inf_{h \in K} \|h\| \geq \|h_{n} - h_{m}\|^{2} \text{ and since}$$

 $\{h_n\} \rightarrow \inf_{h \in K} \|h\|$ then $\{h_n\}$ is a Cauchy sequence.

Proposition 16.2 (continued)

Proof (continued). Since *H* is complete then there is $h^* \in H$ such that $\{h_n\} \to h^*$. Since *K* is closed then it contains its limit points and so $h^* \in K$. By continuity of the norm (which follows from continuity of the induced metric; continuity of the metric follows from Exercise 9.14), $\|h^*\| = \inf_{h \in K} \|h\|$. This is a point in *K* closest to h_0 . Suppose h^* is another vector in *K* that is closest to $h_0 = 0$.

Proposition 16.2 (continued)

Proof (continued). Since *H* is complete then there is $h^* \in H$ such that $\{h_n\} \to h^*$. Since *K* is closed then it contains its limit points and so $h^* \in K$. By continuity of the norm (which follows from continuity of the induced metric; continuity of the metric follows from Exercise 9.14), $\|h^*\| = \inf_{h \in K} \|h\|$. This is a point in *K* closest to h_0 . Suppose h^* is another vector in *K* that is closest to $h_0 = 0$. Then the sequence $\{h_n\}$ where $h_n = h_*$ or $h_n = h^*$ for all $n \in \mathbb{N}$ satisfies $\|h_n\| \to \inf_{h \in K} \|h\|$ (trivially) and so by equation (2) with $h_n = h^*$ and $m_m = h_*$ we have

$$0 \ge \|h^*\|^2 + \|h_*\|^2 - 2\inf_{h \in K} \|h\|^2 \ge 2\left\|\frac{h^* - h_*}{2}\right\|^2$$

and since $||h^*|| = ||h_*|| = \inf_{h \in K} ||h||$, we must have $h_* = h^*$ and so the closest element to $h_0 = 0$ is unique.

Proposition 16.2 (continued)

Proof (continued). Since *H* is complete then there is $h^* \in H$ such that $\{h_n\} \to h^*$. Since *K* is closed then it contains its limit points and so $h^* \in K$. By continuity of the norm (which follows from continuity of the induced metric; continuity of the metric follows from Exercise 9.14), $\|h^*\| = \inf_{h \in K} \|h\|$. This is a point in *K* closest to h_0 . Suppose h^* is another vector in *K* that is closest to $h_0 = 0$. Then the sequence $\{h_n\}$ where $h_n = h_*$ or $h_n = h^*$ for all $n \in \mathbb{N}$ satisfies $\|h_n\| \to \inf_{h \in K} \|h\|$ (trivially) and so by equation (2) with $h_n = h^*$ and $m_m = h_*$ we have

$$0 \ge \|h^*\|^2 + \|h_*\|^2 - 2\inf_{h \in K} \|h\|^2 \ge 2\left\|\frac{h^* - h_*}{2}\right\|^2$$

and since $||h^*|| = ||h_*|| = \inf_{h \in K} ||h||$, we must have $h_* = h^*$ and so the closest element to $h_0 = 0$ is unique.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 .

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 . Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then $h^* - th \in V$ and therefore

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 . Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then $h^* - th \in V$ and therefore

$$\begin{array}{lll} \langle h_0 - h^*, h_0 - h^* \rangle &= \|h_0 - h^*\|^2 \\ &\leq \|h_0 - (h^* - th)\|^2 \text{ since } h^* \text{ is closest to } h_0 \\ &= \langle h_0 - (h^* - th), h_0 - (h^* - th) \rangle \\ &= \langle h_0 - h^*, h_0 - h^* \rangle + 2t \langle h_0 - h^*, h \rangle + t^2 \langle h, h \rangle. \end{array}$$

Hence $0 \leq 2t\langle h_0 - h^*, h \rangle + t^2 ||h||^2$ for all $t \in \mathbb{R}$, or $(t||h||^2 + 2\langle h_0 - h^*, h \rangle)t \geq 0$. As a function of t, this is an opening upward parabola with intercepts at t = 0 and $t = -2\langle h_0 - h^*, h \rangle / ||h||^2$ if $h \neq 0$. Such a parabola cannot have two intercepts since its graph is nonnegative.

()

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 . Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then $h^* - th \in V$ and therefore

$$\begin{array}{lll} \langle h_0 - h^*, h_0 - h^* \rangle &= \|h_0 - h^*\|^2 \\ &\leq \|h_0 - (h^* - th)\|^2 \text{ since } h^* \text{ is closest to } h_0 \\ &= \langle h_0 - (h^* - th), h_0 - (h^* - th) \rangle \\ &= \langle h_0 - h^*, h_0 - h^* \rangle + 2t \langle h_0 - h^*, h \rangle + t^2 \langle h, h \rangle. \end{array}$$

Hence $0 \le 2t\langle h_0 - h^*, h \rangle + t^2 ||h||^2$ for all $t \in \mathbb{R}$, or $(t||h||^2 + 2\langle h_0 - h^*, h \rangle)t \ge 0$. As a function of t, this is an opening upward parabola with intercepts at t = 0 and $t = -2\langle h_0 - h^*, h \rangle / ||h||^2$ if $h \ne 0$. Such a parabola cannot have two intercepts since its graph is nonnegative.

()

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $\langle h_0 - h^*, h \rangle = 0$ (notice that if h = 0 then we still have $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since his an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V. Next, $h_0 = h^* + (h_0 - h^*)$. So arbitrary $h_0 \in H \setminus V$ is a sum of an element of V(namely, h^*) and an element of V^{\perp} (namely, $h_0 - h^*$). Of course any vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an element of V^{\perp} (namely, 0). So $H = V + V^{\perp}$.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $\langle h_0 - h^*, h \rangle = 0$ (notice that if h = 0 then we still have $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since his an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V. Next, $h_0 = h^* + (h_0 - h^*)$. So arbitrary $h_0 \in H \setminus V$ is a sum of an element of V(namely, h^*) and an element of V^{\perp} (namely, $h_0 - h^*$). Of course any vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an element of V^{\perp} (namely, 0). So $H = V + V^{\perp}$. Now $V \cap B^{\perp} = \{0\}$ (the only element of V orthogonal to all elements of V is 0; in particular, the only vector orthogonal to itself is 0). Therefore $H = V \oplus V^{\perp}$.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H. Then H has the orthogonal direct sum decomposition $H = V \oplus V^{\perp}$.

Proof. So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $\langle h_0 - h^*, h \rangle = 0$ (notice that if h = 0 then we still have $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since his an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V. Next, $h_0 = h^* + (h_0 - h^*)$. So arbitrary $h_0 \in H \setminus V$ is a sum of an element of V(namely, h^*) and an element of V^{\perp} (namely, $h_0 - h^*$). Of course any vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an element of V^{\perp} (namely, 0). So $H = V + V^{\perp}$. Now $V \cap B^{\perp} = \{0\}$ (the only element of V orthogonal to all elements of V is 0; in particular, the only vector orthogonal to itself is 0). Therefore $H = V \oplus V^{\perp}$.

Proposition 16.5. Let *P* be the orthogonal projection of a Hilbert space *H* onto a nontrivial closed subspace *V* of *H*. Then ||P|| = 1 and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$\begin{aligned} \|u\|^2 &= \langle u, u \rangle = \langle P(u) + (\mathrm{Id} - P)(u), P(u) + (\mathrm{Id} - P)(u) \rangle \\ &= \|P(u)\|^2 + 2\langle P(u), (\mathrm{Id} - P)(u) \rangle + \|(\mathrm{Id} - P)(u)\|^2 \\ &= \|P(u)\|^2 + \|(\mathrm{Id} - P)(u)\|^2 \text{ since } P(u) \in V \text{ and } \\ u - P(u) \in V^{\perp} \text{ (by Theorem 16.3) so that } \\ \langle P(u), (\mathrm{Id} - P)(u) \rangle = 0 \\ &\geq \|P(u)\|^2, \end{aligned}$$

and hence $||P(u)|| \le ||u||$.

Proposition 16.5. Let *P* be the orthogonal projection of a Hilbert space *H* onto a nontrivial closed subspace *V* of *H*. Then ||P|| = 1 and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$\begin{aligned} \|u\|^2 &= \langle u, u \rangle = \langle P(u) + (\mathrm{Id} - P)(u), P(u) + (\mathrm{Id} - P)(u) \rangle \\ &= \|P(u)\|^2 + 2\langle P(u), (\mathrm{Id} - P)(u) \rangle + \|(\mathrm{Id} - P)(u)\|^2 \\ &= \|P(u)\|^2 + \|(\mathrm{Id} - P)(u)\|^2 \text{ since } P(u) \in V \text{ and} \\ u - P(u) \in V^{\perp} \text{ (by Theorem 16.3) so that} \\ \langle P(u), (\mathrm{Id} - P)(u) \rangle = 0 \\ &\geq \|P(u)\|^2, \end{aligned}$$

and hence $||P(u)|| \le ||u||$. Therefore $||P|| = \inf_{u \in H, n \ne 0} \frac{||P(u)||}{||u||} \le 1$. Since P(v) = v for all nonzero $v \in V$ (such v exists since V is nontrivial) and $\frac{||P(v)||}{||v||} = \frac{||v||}{||v||} = 1$, then ||P|| = 1.

Proposition 16.5. Let *P* be the orthogonal projection of a Hilbert space *H* onto a nontrivial closed subspace *V* of *H*. Then ||P|| = 1 and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$\begin{aligned} \|u\|^2 &= \langle u, u \rangle = \langle P(u) + (\mathrm{Id} - P)(u), P(u) + (\mathrm{Id} - P)(u) \rangle \\ &= \|P(u)\|^2 + 2\langle P(u), (\mathrm{Id} - P)(u) \rangle + \|(\mathrm{Id} - P)(u)\|^2 \\ &= \|P(u)\|^2 + \|(\mathrm{Id} - P)(u)\|^2 \text{ since } P(u) \in V \text{ and} \\ u - P(u) \in V^{\perp} \text{ (by Theorem 16.3) so that} \\ \langle P(u), (\mathrm{Id} - P)(u) \rangle = 0 \\ &\geq \|P(u)\|^2, \end{aligned}$$

and hence $||P(u)|| \le ||u||$. Therefore $||P|| = \inf_{u \in H, n \ne 0} \frac{||P(u)||}{||u||} \le 1$. Since P(v) = v for all nonzero $v \in V$ (such v exists since V is nontrivial) and $\frac{||P(v)||}{||v||} = \frac{||v||}{||v||} = 1$, then ||P|| = 1.

Proposition 16.5 (continued)

Proposition 16.5. Let *P* be the orthogonal projection of a Hilbert space *H* onto a nontrivial closed subspace *V* of *H*. Then ||P|| = 1 and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof (continued). Now for $u, v \in H$ we have $\langle P(u), (\mathrm{Id} - P)(v) \rangle = 0$ since $P(u) \in V$ and $(\mathrm{Id} - P)(v) \in V^{\perp}$ and so $\langle P(u), v \rangle = \langle P(u), P(v) \rangle$. Also $\langle (\mathrm{Id} - P)(u), P(v) \rangle = 0$ since $P(v) \in V$ and $(\mathrm{Id} - P)(u) \in V^{\perp}$ and so $\langle u, P(v) \rangle = \langle P(u), P(v) \rangle$. Therefore $\langle P(u), P(v) \rangle = \langle P(u), v \rangle = \langle u, P(v) \rangle$, as claimed.

Proposition 16.5 (continued)

Proposition 16.5. Let *P* be the orthogonal projection of a Hilbert space *H* onto a nontrivial closed subspace *V* of *H*. Then ||P|| = 1 and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof (continued). Now for $u, v \in H$ we have $\langle P(u), (\mathrm{Id} - P)(v) \rangle = 0$ since $P(u) \in V$ and $(\mathrm{Id} - P)(v) \in V^{\perp}$ and so $\langle P(u), v \rangle = \langle P(u), P(v) \rangle$. Also $\langle (\mathrm{Id} - P)(u), P(v) \rangle = 0$ since $P(v) \in V$ and $(\mathrm{Id} - P)(u) \in V^{\perp}$ and so $\langle u, P(v) \rangle = \langle P(u), P(v) \rangle$. Therefore $\langle P(u), P(v) \rangle = \langle P(u), v \rangle = \langle u, P(v) \rangle$, as claimed.