Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces 16.1. The Inner Product and Orthogonality—Proofs of Theorems

- [Proposition 16.1](#page-5-0)
- [The Parallelogram Identity](#page-9-0)
- [Proposition 16.2](#page-11-0)
- [Proposition 16.3](#page-18-0)
- [Proposition 16.5](#page-25-0)

Theorem. The Cauchy-Schwarz Inequality.

For any two vectors u and v in an inner product space H , $|\langle u, v \rangle| \leq \|u\| \|v\|$ where $\|u\| = \sqrt{\langle u, u \rangle}.$

Proof. For any $t \in \mathbb{R}$ we have

$$
0 \le ||u + tv||^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle
$$

$$
= ||u||^2 + 2t \langle u, v \rangle + t^2 ||v||^2.
$$

Theorem. The Cauchy-Schwarz Inequality.

For any two vectors u and v in an inner product space H , $|\langle u, v \rangle| \leq \|u\| \|v\|$ where $\|u\| = \sqrt{\langle u, u \rangle}.$

Proof. For any $t \in \mathbb{R}$ we have

$$
0 \le ||u + tv||^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle
$$

$$
= ||u||^2 + 2t \langle u, v \rangle + t^2 ||v||^2.
$$

Treating the right hand side as a quadratic in t and noticing that it cannot have distinct real roots (because if is nonnegative), we wee that the discriminant (i.e., the quantity " $b^2 - 4ac$ ") is not positive. That is, $(2\langle u, y \rangle)^2 - 4(\|v\|^2)(\|u\|^2) \leq 0$ or $\langle u, v \rangle^2 \leq \|v\|^2 \|u\|^2$ or $|\langle u, v \rangle| \leq ||u|| ||v||.$

Theorem. The Cauchy-Schwarz Inequality.

For any two vectors u and v in an inner product space H , $|\langle u, v \rangle| \leq \|u\| \|v\|$ where $\|u\| = \sqrt{\langle u, u \rangle}.$

Proof. For any $t \in \mathbb{R}$ we have

$$
0 \le ||u + tv||^2 = \langle u + tv, u + tv \rangle = \langle u, u \rangle + 2t \langle u, v \rangle + t^2 \langle v, v \rangle
$$

= $||u||^2 + 2t \langle u, v \rangle + t^2 ||v||^2$.

Treating the right hand side as a quadratic in t and noticing that it cannot have distinct real roots (because if is nonnegative), we wee that the discriminant (i.e., the quantity " $b^2 - 4ac$ ") is not positive. That is, $(2\langle u,y\rangle)^2-4(\|v\|^2)(\|u\|^2)\leq 0$ or $\langle u,v\rangle^2\leq \|v\|^2\|u\|^2$ or $|\langle u, v \rangle| \leq ||u|| ||v||.$

Proposition 16.1. For a vector h in an inner product space H , define $\|h\| = \sqrt{\langle h, h\rangle}.$ Then $\|\cdot\|$ is a norm on H called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$.

Proof. First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds.

Proposition 16.1. For a vector h in an inner product space H , define $\|h\| = \sqrt{\langle h, h\rangle}.$ Then $\|\cdot\|$ is a norm on H called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$. **Proof.** First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds. Next, $||h|| = \sqrt{\langle h, h \rangle} \ge 0$ for all $h \in H$ and by definition $\|h\| = \sqrt{\langle h, h \rangle} > 0$ for $h \neq 0$. If $h = 0$, then be positive homogeneity $2||h|| = ||2h|| = 2 \cdot 0|| = ||0|| = ||h||$ and so $||h|| = 0$ and nonnegativity holds.

Proposition 16.1. For a vector h in an inner product space H , define $\|h\| = \sqrt{\langle h, h\rangle}.$ Then $\|\cdot\|$ is a norm on H called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$. **Proof.** First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds. Next, $\|h\| = \sqrt{\langle h,h\rangle} \geq 0$ for all $h\in H$ and by definition $\|h\| = \sqrt{\langle h,h\rangle} > 0$ for $h\neq 0$. If $h=0$, then be positive homogeneity $2\|h\| = \|2h\| = 2 \cdot 0\| = \|0\| = \|h\|$ and so $\|h\| = 0$ and nonnegativity **holds.** Finally, for $u, v \in H$ we have \mathbb{R}^2 + \mathbb{R}^2 +

$$
||u + v||2 = \langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle
$$

= $||u||2 + 2\langle u, v \rangle + ||v||2$
 $\leq ||u||2 + 2||u||||v|| + ||v||2$ by the Cauchy-Schwarz Inequality
= $(||u|| + ||v||)2$,

so $||u + v|| \le ||u|| + ||v||$ and the triangle inequality holds. Therefore $|| \cdot ||$ is a norm on H.

Proposition 16.1. For a vector h in an inner product space H , define $\|h\| = \sqrt{\langle h, h\rangle}.$ Then $\|\cdot\|$ is a norm on H called the *norm induced* by the inner product $\langle \cdot, \cdot \rangle$. **Proof.** First, for $h \in H$ and $\alpha \in \mathbb{R}$, we have $\|\alpha h\| = \sqrt{\langle \alpha h, \alpha h \rangle} = \sqrt{\alpha^2 \langle h, h \rangle} = |\alpha| \|h\|$ so positive homogeneity holds. Next, $\|h\| = \sqrt{\langle h,h\rangle} \geq 0$ for all $h\in H$ and by definition $\|h\| = \sqrt{\langle h,h\rangle} > 0$ for $h\neq 0$. If $h=0$, then be positive homogeneity $2\|h\| = \|2h\| = 2 \cdot 0\| = \|0\| = \|h\|$ and so $\|h\| = 0$ and nonnegativity holds. Finally, for $u, v \in H$ we have \overline{u} + \overline{u} +

$$
||u + v||2 = \langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle
$$

= $||u||2 + 2\langle u, v \rangle + ||v||2$
 $\leq ||u||2 + 2||u|| ||v|| + ||v||2$ by the Cauchy-Schwarz Inequality
= $(||u|| + ||v||)2$,

so $||u + v|| \le ||u|| + ||v||$ and the triangle inequality holds. Therefore $|| \cdot ||$ is a norm on H .

The Parallelogram Identity

The Parallelogram Identity.

For any two vectors u, v in an inner product space H we have $||u - v||^2 + ||u + v||^2 = 2||u||^2 + 2||v||^2$.

Proof. We have

$$
||u + v||2 = \langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = ||u||2 + 2\langle u, v \rangle + ||v||2
$$

and

$$
||u - v||2 = \langle u - v, u - v \rangle = \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = ||u||2 - 2\langle u, v \rangle + ||v||2.
$$

Adding the corresponding left and right sides of these equations yields the result.

The Parallelogram Identity

The Parallelogram Identity.

For any two vectors u, v in an inner product space H we have $||u - v||^2 + ||u + v||^2 = 2||u||^2 + 2||v||^2$.

Proof. We have

$$
||u + v||2 = \langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = ||u||2 + 2\langle u, v \rangle + ||v||2
$$

and

$$
||u-v||^2 = \langle u-v, u-v \rangle = \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = ||u||^2 - 2\langle u, v \rangle + ||v||^2.
$$

Adding the corresponding left and right sides of these equations yields the result.

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||.$

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} ||h_n|| = \inf_{h\in K} ||h||.$

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||.$

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} \|h_n\| = \inf_{h\in K} \|h\|$. Then for any $m, n \in \mathbb{N}$ we have

$$
||h_n||^2 + ||h_m||^2 = 2\left\|\frac{h_n + h_m}{2}\right\|^2 + 2\left\|\frac{h_n - h_m}{2}\right\|^2
$$
 by The Parallelogram
Identity with $u = (h_n + h_m)/2$ and $v = (h_n - h_m)/2$

$$
\ge 2 \inf_{h \in K} ||h||^2 + 2\left\|\frac{h_n - h_m}{2}\right\|
$$
 since $(h_n + h_m)/2 \in K$
because K is convex. (2)

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||.$

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} ||h_n|| = \inf_{h\in K} ||h||$. Then for any $m, n \in \mathbb{N}$ we have

$$
||h_n||^2 + ||h_m||^2 = 2\left\|\frac{h_n + h_m}{2}\right\|^2 + 2\left\|\frac{h_n - h_m}{2}\right\|^2
$$
 by The Parallelogram
Identity with $u = (h_n + h_m)/2$ and $v = (h_n - h_m)/2$

$$
\ge 2 \inf_{h \in K} ||h||^2 + 2\left\|\frac{h_n - h_m}{2}\right\|
$$
 since $(h_n + h_m)/2 \in K$
because K is convex. (2)

So $\|h_n\|^2-\inf_{h\in K}\|h\|^2+\|h_m\|^2-\inf_{h\in K}\|h\|\geq \|h_n-h_m\|^2$ and since ${h_n} \rightarrow \inf_{h \in K} ||h||$ then ${h_n}$ is a Cauchy sequence.

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert space H and let $j \in H \setminus K$. Then there is exactly one vector $h_* \in K$ that is closest to h_0 in the sense that $||h_0 - h_*|| = \text{dist}(h_0, K) = \inf_{h \in K} ||h_0 - h||.$

Proof. We prove the claim for $h_0 = 0$ (the general result then following be replacing K with $K - h_0$). Let $\{h_n\}$ be a sequence in K for which $\lim_{n\to\infty} ||h_n|| = \inf_{h\in K} ||h||$. Then for any $m, n \in \mathbb{N}$ we have

$$
||h_n||^2 + ||h_m||^2 = 2\left\|\frac{h_n + h_m}{2}\right\|^2 + 2\left\|\frac{h_n - h_m}{2}\right\|^2
$$
 by The Parallelogram
Identity with $u = (h_n + h_m)/2$ and $v = (h_n - h_m)/2$

$$
\ge 2 \inf_{h \in K} ||h||^2 + 2\left\|\frac{h_n - h_m}{2}\right\|
$$
 since $(h_n + h_m)/2 \in K$
because K is convex. (2)
So $||h_n||^2 - \inf_{h \in K} ||h||^2 + ||h_m||^2 - \inf_{h \in K} ||h|| \ge ||h_n - h_m||^2$ and since

 ${h_n} \rightarrow \inf_{h \in K} ||h||$ then ${h_n}$ is a Cauchy sequence.

Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is $h^* \in H$ such that $\{h_n\} \rightarrow h^*$. Since K is closed then it contains its limit points and so $h^* \in K$. By continuity of the norm (which follows from continuity of the induced metric; continuity of the metric follows from Exercise 9.14), $||h^*|| = inf_{h \in K} ||h||$. This is a point in K closest to h_0 . Suppose h^* is another vector in K that is closest to $h_0 = 0$.

Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is $h^* \in H$ such that $\{h_n\} \rightarrow h^*$. Since K is closed then it contains its limit points and so $h^* \in K$. By continuity of the norm (which follows from continuity of the induced metric; continuity of the metric follows from Exercise 9.14), $||h^*|| = inf_{h \in K} ||h||$. This is a point in K closest to h_0 . Suppose h^* is another vector in K that is closest to $h_0 = 0$. Then the sequence $\{h_n\}$ where $h_n = h_*$ or $h_n = h^*$ for all $n \in \mathbb{N}$ satisfies $||h_n|| \rightarrow \inf_{h \in K} ||h||$ (trivially) and so by equation (2) with $h_n = h^*$ and $m_m = h_*$ we have

$$
0 \ge ||h^*||^2 + ||h_*||^2 - 2 \inf_{h \in K} ||h||^2 \ge 2 \left\| \frac{h^* - h_*}{2} \right\|^2
$$

and since $||h^*|| = ||h_*|| = \inf_{h \in K} ||h||$, we must have $h_* = h^*$ and so the closest element to $h_0 = 0$ is unique.

Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is $h^* \in H$ such that $\{h_n\} \rightarrow h^*$. Since K is closed then it contains its limit points and so $h^* \in K$. By continuity of the norm (which follows from continuity of the induced metric; continuity of the metric follows from Exercise 9.14), $||h^*|| = inf_{h \in K} ||h||$. This is a point in K closest to h_0 . Suppose h^* is another vector in K that is closest to $h_0 = 0$. Then the sequence $\{h_n\}$ where $h_n = h_*$ or $h_n = h^*$ for all $n \in \mathbb{N}$ satisfies $||h_n|| \rightarrow \inf_{h \in K} ||h||$ (trivially) and so by equation (2) with $h_n = h^*$ and $m_m = h_*$ we have

$$
0 \geq ||h^*||^2 + ||h_*||^2 - 2 \inf_{h \in K} ||h||^2 \geq 2 \left\| \frac{h^* - h_*}{2} \right\|^2
$$

and since $||h^*|| = ||h_*|| = \inf_{h \in K} ||h||$, we must have $h_* = h^*$ and so the closest element to $h_0 = 0$ is unique.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^\perp$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 .

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^\perp$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that **is closest to** h_0 **.** Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then $h^* - th \in V$ and therefore

$$
\langle h_0 - h^*, h_0 - h^* \rangle = ||h_0 - h^*||^2
$$

\n
$$
\leq ||h_0 - (h^* - th)||^2 \text{ since } h^* \text{ is closest to } h_0
$$

\n
$$
= \langle h_0 - (h^* - th), h_0 - (h^* - th) \rangle
$$

\n
$$
= \langle h_0 - h^*, h_0 - h^* \rangle + 2t \langle h_0 - h^*, h \rangle + t^2 \langle h, h \rangle.
$$

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^\perp$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 . Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then $h^* - th \in V$ and therefore

$$
\langle h_0 - h^*, h_0 - h^* \rangle = ||h_0 - h^*||^2
$$

\n
$$
\leq ||h_0 - (h^* - th)||^2 \text{ since } h^* \text{ is closest to } h_0
$$

\n
$$
= \langle h_0 - (h^* - th), h_0 - (h^* - th) \rangle
$$

\n
$$
= \langle h_0 - h^*, h_0 - h^* \rangle + 2t \langle h_0 - h^*, h \rangle + t^2 \langle h, h \rangle.
$$

Hence $0 \leq 2t \langle h_0 - h^*, h \rangle + t^2 ||h||^2$ for all $t \in \mathbb{R}$, or $(t\|h\|^2 + 2\langle h_0 - h^*, h \rangle)t \ge 0$. As a function of t, this is an opening upward parabola with intercepts at $t=0$ and $t=-2\langle h_0-h^*,h\rangle/\|h\|^2$ if $h\neq 0.1$ Such a parabola cannot have two intercepts since its graph is nonnegative.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^\perp$.

Proof. Let $h_0 \in H \setminus V$. By Proposition 16.1 there is a unique $h^* \in V$ that is closest to h_0 . Let $h \in V$. For $t \in \mathbb{R}$, since V is a linear space then $h^* - th \in V$ and therefore

$$
\langle h_0 - h^*, h_0 - h^* \rangle = ||h_0 - h^*||^2
$$

\n
$$
\leq ||h_0 - (h^* - th)||^2 \text{ since } h^* \text{ is closest to } h_0
$$

\n
$$
= \langle h_0 - (h^* - th), h_0 - (h^* - th) \rangle
$$

\n
$$
= \langle h_0 - h^*, h_0 - h^* \rangle + 2t \langle h_0 - h^*, h \rangle + t^2 \langle h, h \rangle.
$$

Hence $0 \leq 2t \langle h_0 - h^*, h \rangle + t^2 ||h||^2$ for all $t \in \mathbb{R}$, or $(t\|h\|^2+2\langle h_0-h^*,h\rangle)t\geq 0.$ As a function of $t,$ this is an opening upward parabola with intercepts at $t=0$ and $t=-2\langle h_0-h^\ast,h\rangle/\|h\|^2$ if $h\neq 0.$ Such a parabola cannot have two intercepts since its graph is nonnegative.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^{\perp}.$

Proof. So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $\langle h_0 - h^*, h \rangle = 0$ (notice that if $h = 0$ then we still have $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since h is an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V . Next, $h_0 = h^* + (h_0 - h^*)$. So arbitrary $h_0 \in H \setminus V$ is a sum of an element of V (namely, h^*) and an element of V^{\perp} (namely, h_0-h^*). Of course any vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an element of V^\perp (namely, 0). So $H=V+V^\perp$.

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^{\perp}.$

Proof. So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $\langle h_0 - h^*, h \rangle = 0$ (notice that if $h = 0$ then we still have $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since h is an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V. Next, $h_0 = h^* + (h_0 - h^*)$. So arbitrary $h_0 \in H \setminus V$ is a sum of an element of V (namely, h^*) and an element of V^\perp (namely, h_0-h^*). Of course any vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an element of V^\perp (namely, 0). So $H=V+V^\perp$. Now $V\cap B^\perp=\{0\}$ (the only element of V orthogonal to all elements of V is 0; in particular, the only vector orthogonal to itself is 0). Therefore $H=V\oplus V^{\perp}.$

Proposition 16.3. Let V be a closed subspace of a Hilbert space H . Then H has the orthogonal direct sum decomposition $H=V\oplus V^{\perp}.$

Proof. So it must be that $t = -2\langle h_0 - h^*, h \rangle / ||h||^2 = 0$ also; that is, $\langle h_0 - h^*, h \rangle = 0$ (notice that if $h = 0$ then we still have $\langle h_0 - h^*, h \rangle = \langle h_0 - h^*, 0 \rangle = 0$). So $h_0 - h^*$ is orthogonal to h and since h is an arbitrary vector in V then $h_0 - h^*$ is orthogonal to V. Next, $h_0 = h^* + (h_0 - h^*)$. So arbitrary $h_0 \in H \setminus V$ is a sum of an element of V (namely, h^*) and an element of V^\perp (namely, h_0-h^*). Of course any vector h_1 in V is the sum of an element of V (namely, h_1 itself) and an element of V^\perp (namely, 0). So $H=V+V^\perp$. Now $V\cap B^\perp=\{0\}$ (the only element of V orthogonal to all elements of V is 0; in particular, the only vector orthogonal to itself is 0). Therefore $H=V\oplus V^{\perp}.$

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then $||P|| = 1$ and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$
||u||2 = \langle u, u \rangle = \langle P(u) + (\text{Id} - P)(u), P(u) + (\text{Id} - P)(u) \rangle
$$

= $||P(u)||^{2} + 2\langle P(u), (\text{Id} - P)(u) \rangle + ||(\text{Id} - P)(u)||^{2}$
= $||P(u)||^{2} + ||(\text{Id} - P)(u)||^{2}$ since $P(u) \in V$ and
 $u - P(u) \in V^{\perp}$ (by Theorem 16.3) so that
 $\langle P(u), (\text{Id} - P)(u) \rangle = 0$
 $\geq ||P(u)||^{2},$

and hence $||P(u)|| \le ||u||$.

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then $||P|| = 1$ and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$
||u||2 = \langle u, u \rangle = \langle P(u) + (Id - P)(u), P(u) + (Id - P)(u) \rangle
$$

= $||P(u)||2 + 2\langle P(u), (Id - P)(u) \rangle + ||(Id - P)(u)||2$
= $||P(u)||2 + ||(Id - P)(u)||2$ since $P(u) \in V$ and
 $u - P(u) \in V\perp$ (by Theorem 16.3) so that
 $\langle P(u), (Id - P)(u) \rangle = 0$
 $\geq ||P(u)||2$,

and hence $\|P(u)\| \leq \|u\|.$ Therefore $\|P\| = \inf_{u \in H, n \neq 0} \frac{\|P(u)\|}{\|u\|} \leq 1.$ Since $P(v) = v$ for all nonzero $v \in V$ (such v exists since V is nontrivial) and $\frac{\|P(v)\|}{\|v\|} = \frac{\|v\|}{\|v\|} = 1$, then $\|P\| = 1$.

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then $||P|| = 1$ and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof. Let $h \in H$. With the identity on H denoted as "Id" we have

$$
||u||2 = \langle u, u \rangle = \langle P(u) + (Id - P)(u), P(u) + (Id - P)(u) \rangle
$$

= $||P(u)||2 + 2\langle P(u), (Id - P)(u) \rangle + ||(Id - P)(u)||2$
= $||P(u)||2 + ||(Id - P)(u)||2$ since $P(u) \in V$ and
 $u - P(u) \in V\perp$ (by Theorem 16.3) so that
 $\langle P(u), (Id - P)(u) \rangle = 0$
 $\geq ||P(u)||2$,

and hence $\|P(u)\|\leq \|u\|.$ Therefore $\|P\|=\inf_{u\in H,n\neq 0}\frac{\|P(u)\|}{\|u\|}\leq 1.$ Since $P(v) = v$ for all nonzero $v \in V$ (such v exists since V is nontrivial) and $\frac{\|P(v)\|}{\|v\|} = \frac{\|v\|}{\|v\|} = 1$, then $\|P\| = 1$.

Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then $||P|| = 1$ and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof (continued). Now for $u, v \in H$ we have $\langle P(u), (Id - P)(v) \rangle = 0$ since $P(u) \in V$ and $(\mathsf{Id} - P)(v) \in V^\perp$ and so $\langle P(u), v \rangle = \langle P(u), P(v) \rangle.$ Also $\langle (\mathsf{Id} - P)(u), P(v) \rangle = 0$ since $P(v) \in V$ and $(\mathsf{Id} - P)(u) \in V^\perp$ and so $\langle u, P(v) \rangle = \langle P(u), P(v) \rangle$. Therefore $\langle P(u), P(v) \rangle = \langle P(u), v \rangle = \langle u, P(v) \rangle$, as claimed.

Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space H onto a nontrivial closed subspace V of H. Then $||P|| = 1$ and $\langle P(u), v \rangle = \langle u, P(v) \rangle$ for all $u, v \in H$.

Proof (continued). Now for $u, v \in H$ we have $\langle P(u), (Id - P)(v) \rangle = 0$ since $P(u) \in V$ and $(\mathsf{Id} - P)(v) \in V^\perp$ and so $\langle P(u), v \rangle = \langle P(u), P(v) \rangle.$ Also $\langle (\mathsf{Id} - P)(u), P(v) \rangle = 0$ since $P(v) \in V$ and $(\mathsf{Id} - P)(u) \in V^{\perp}$ and so $\langle u, P(v) \rangle = \langle P(u), P(v) \rangle$. Therefore $\langle P(u), P(v) \rangle = \langle P(u), v \rangle = \langle u, P(v) \rangle$, as claimed.