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Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality

Theorem. The Cauchy-Schwarz Inequality.
For any two vectors u and v in an inner product space H,
|〈u, v〉| ≤ ‖u‖‖v‖ where ‖u‖ =

√
〈u, u〉.

Proof. For any t ∈ R we have

0 ≤ ‖u + tv‖2 = 〈u + tv , u + tv〉 = 〈u, u〉+ 2t〈u, v〉+ t2〈v , v〉

= ‖u‖2 + 2t〈u, v〉+ t2‖v‖2.

Treating the right hand side as a quadratic in t and noticing that it cannot
have distinct real roots (because if is nonnegative), we wee that the
discriminant (i.e., the quantity “b2 − 4ac”) is not positive. That is,
(2〈u, y〉)2 − 4(‖v‖2)(‖u‖2) ≤ 0 or 〈u, v〉2 ≤ ‖v‖2‖u‖2 or
|〈u, v〉| ≤ ‖u‖‖v‖.
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Proposition 16.1

Proposition 16.1

Proposition 16.1. For a vector h in an inner product space H, define
‖h‖ =

√
〈h, h〉. Then ‖ · ‖ is a norm on H called the norm induced by the

inner product 〈·, ·〉.
Proof. First, for h ∈ H and α ∈ R, we have
‖αh‖ =

√
〈αh, αh〉 =

√
α2〈h, h〉 = |α|‖h‖ so positive homogeneity holds.

Next, ‖h‖ =
√
〈h, h〉 ≥ 0 for all h ∈ H and by definition

‖h‖ =
√
〈h, h〉 > 0 for h 6= 0. If h = 0, then be positive homogeneity

2‖h‖ = ‖2h‖ = 2 · 0‖ = ‖0‖ = ‖h‖ and so ‖h‖ = 0 and nonnegativity
holds. Finally, for u, v ∈ H we have

‖u + v‖2 = 〈u + v , u + v〉 = 〈u, u〉+ 2〈u, v〉+ 〈v , v〉
= ‖u‖2 + 2〈u, v〉+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 by the Cauchy-Schwarz Inequality

= (‖u‖+ ‖v‖)2,
so ‖u + v‖ ≤ ‖u‖+ ‖v‖ and the triangle inequality holds. Therefore ‖ · ‖
is a norm on H.
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The Parallelogram Identity

The Parallelogram Identity

The Parallelogram Identity.
For any two vectors u, v in an inner product space H we have
‖u − v‖2 + ‖u + v‖2 = 2‖u‖2 + 2‖v‖2.

Proof. We have

‖u+v‖2 = 〈u+v , u+v〉 = 〈u, u〉+2〈u, v〉+〈v , v〉 = ‖u‖2+2〈u, v〉+‖v‖2

and

‖u−v‖2 = 〈u−v , u−v〉 = 〈u, u〉−2〈u, v〉+〈v , v〉 = ‖u‖2−2〈u, v〉+‖v‖2.

Adding the corresponding left and right sides of these equations yields the
result.
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Proposition 16.2

Proposition 16.2

Proposition 16.2. Let K be a nonempty closed convex subset of a Hilbert
space H and let j ∈ H \K . Then there is exactly one vector h∗ ∈ K that is
closest to h0 in the sense that ‖h0 − h∗‖ = dist(h0,K ) = infh∈K ‖h0 − h‖.

Proof. We prove the claim for h0 = 0 (the general result then following be
replacing K with K − h0). Let {hn} be a sequence in K for which
limn→∞ ‖hn‖ = infh∈K ‖h‖.

Then for any m, n ∈ N we have

‖hn‖2 + ‖hm‖2 = 2

∥∥∥∥hn + hm

2

∥∥∥∥2

+ 2

∥∥∥∥hn − hm

2

∥∥∥∥2

by The Parallelogram

Identity with u = (hn + hm)/2 and v = (hn − hm)/2

≥ 2 inf
h∈K

‖h‖2 + 2

∥∥∥∥hn − hm

2

∥∥∥∥ since (hn + hm)/2 ∈ K

because K is convex. (2)

So ‖hn‖2 − infh∈K ‖h‖2 + ‖hm‖2 − infh∈K ‖h‖ ≥ ‖hn − hm‖2 and since
{hn} → infh∈K ‖h‖ then {hn} is a Cauchy sequence.
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Proposition 16.2

Proposition 16.2 (continued)

Proof (continued). Since H is complete then there is h∗ ∈ H such that
{hn} → h∗. Since K is closed then it contains its limit points and so
h∗ ∈ K . By continuity of the norm (which follows from continuity of the
induced metric; continuity of the metric follows from Exercise 9.14),
‖h∗‖ = infh∈K ‖h‖. This is a point in K closest to h0. Suppose h∗ is
another vector in K that is closest to h0 = 0.

Then the sequence {hn}
where hn = h∗ or hn = h∗ for all n ∈ N satisfies ‖hn‖ → infh∈K ‖h‖
(trivially) and so by equation (2) with hn = h∗ and mm = h∗ we have

0 ≥ ‖h∗‖2 + ‖h∗‖2 − 2 inf
h∈K

‖h‖2 ≥ 2

∥∥∥∥h∗ − h∗
2

∥∥∥∥2

and since ‖h∗‖ = ‖h∗‖ = infh∈K ‖h‖, we must have h∗ = h∗ and so the
closest element to h0 = 0 is unique.
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Proposition 16.3

Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V ⊕ V⊥.

Proof. Let h0 ∈ H \V . By Proposition 16.1 there is a unique h∗ ∈ V that
is closest to h0.

Let h ∈ V . For t ∈ R, since V is a linear space then
h∗ − th ∈ V and therefore

〈h0 − h∗, h0 − h∗〉 = ‖h0 − h∗‖2

≤ ‖h0 − (h∗ − th)‖2 since h∗ is closest to h0

= 〈h0 − (h∗ − th), h0 − (h∗ − th)〉
= 〈h0 − h∗, h0 − h∗〉+ 2t〈h0 − h∗, h〉+ t2〈h, h〉.

Hence 0 ≤ 2t〈h0 − h∗, h〉+ t2‖h‖2 for all t ∈ R, or
(t‖h‖2 + 2〈h0 − h∗, h〉)t ≥ 0. As a function of t, this is an opening upward
parabola with intercepts at t = 0 and t = −2〈h0 − h∗, h〉/‖h‖2 if h 6= 0.
Such a parabola cannot have two intercepts since its graph is nonnegative.
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Proposition 16.3

Proposition 16.3

Proposition 16.3. Let V be a closed subspace of a Hilbert space H.
Then H has the orthogonal direct sum decomposition H = V ⊕ V⊥.

Proof. So it must be that t = −2〈h0 − h∗, h〉/‖h‖2 = 0 also; that is,
〈h0 − h∗, h〉 = 0 (notice that if h = 0 then we still have
〈h0 − h∗, h〉 = 〈h0 − h∗, 0〉 = 0). So h0 − h∗ is orthogonal to h and since h
is an arbitrary vector in V then h0 − h∗ is orthogonal to V . Next,
h0 = h∗ + (h0 − h∗). So arbitrary h0 ∈ H \ V is a sum of an element of V
(namely, h∗) and an element of V⊥ (namely, h0 − h∗). Of course any
vector h1 in V is the sum of an element of V (namely, h1 itself) and an
element of V⊥ (namely, 0). So H = V + V⊥.

Now V ∩ B⊥ = {0} (the
only element of V orthogonal to all elements of V is 0; in particular, the
only vector orthogonal to itself is 0). Therefore H = V ⊕ V⊥.
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Proposition 16.5

Proposition 16.5

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ‖P‖ = 1 and
〈P(u), v〉 = 〈u,P(v)〉 for all u, v ∈ H.

Proof. Let h ∈ H. With the identity on H denoted as “Id” we have

‖u‖2 = 〈u, u〉 = 〈P(u) + (Id− P)(u),P(u) + (Id− P)(u)〉
= ‖P(u)‖2 + 2〈P(u), (Id− P)(u)〉+ ‖(Id− P)(u)‖2

= ‖P(u)‖2 + ‖(Id− P)(u)‖2 since P(u) ∈ V and

u − P(u) ∈ V⊥ (by Theorem 16.3) so that

〈P(u), (Id− P)(u)〉 = 0

≥ ‖P(u)‖2,

and hence ‖P(u)‖ ≤ ‖u‖.

Therefore ‖P‖ = infu∈H,n 6=0
‖P(u)‖
‖u‖ ≤ 1. Since

P(v) = v for all nonzero v ∈ V (such v exists since V is nontrivial) and
‖P(v)‖
‖v‖ = ‖v‖

‖v‖ = 1, then ‖P‖ = 1.
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Proposition 16.5

Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ‖P‖ = 1 and
〈P(u), v〉 = 〈u,P(v)〉 for all u, v ∈ H.

Proof (continued). Now for u, v ∈ H we have 〈P(u), (Id− P)(v)〉 = 0
since P(u) ∈ V and (Id− P)(v) ∈ V⊥ and so 〈P(u), v〉 = 〈P(u),P(v)〉.
Also 〈(Id− P)(u),P(v)〉 = 0 since P(v) ∈ V and (Id− P)(u) ∈ V⊥ and
so 〈u,P(v)〉 = 〈P(u),P(v)〉. Therefore
〈P(u),P(v)〉 = 〈P(u), v〉 = 〈u,P(v)〉, as claimed.
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Proposition 16.5 (continued)

Proposition 16.5. Let P be the orthogonal projection of a Hilbert space
H onto a nontrivial closed subspace V of H. Then ‖P‖ = 1 and
〈P(u), v〉 = 〈u,P(v)〉 for all u, v ∈ H.

Proof (continued). Now for u, v ∈ H we have 〈P(u), (Id− P)(v)〉 = 0
since P(u) ∈ V and (Id− P)(v) ∈ V⊥ and so 〈P(u), v〉 = 〈P(u),P(v)〉.
Also 〈(Id− P)(u),P(v)〉 = 0 since P(v) ∈ V and (Id− P)(u) ∈ V⊥ and
so 〈u,P(v)〉 = 〈P(u),P(v)〉. Therefore
〈P(u),P(v)〉 = 〈P(u), v〉 = 〈u,P(v)〉, as claimed.

() Real Analysis February 19, 2017 11 / 11


	Theorem. The Cauchy-Schwarz Inequality
	Proposition 16.1
	The Parallelogram Identity
	Proposition 16.2
	Proposition 16.3
	Proposition 16.5

