Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces
16.2. The Dual Space and Weak Sequential Convergence—Proofs of
Theorems
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for o, 3 € R and hy, ho € H we have
T(ah+Gh)[u] = (ahi+5ho, u) = alhy, u)g(o, u) = aT(h1)[u]+B T (h2)[u]
That is, T is a linear isometry.

To show T : H — H* is onto, notice that T(0)[u] = (0, u) = 0 for all
ueH. So T maps0e€ H to0e H*. Next, let g € H* with 19 # 0 (so
1o :— R). Since 9 is linear then it is continuous and since ||0|| is closed
in R then 15 ({0}) = Ker(¢) is closed in H (see Exercise 11.25(i)) and
since 1o # 0 then Ker(v)g) is a proper subspace of H. By Theorem 16.3,
there is unit vector h, € H that is orthogonal to Ker(¢g). Define

ho = vo(hs)h.. Then for h € H we have that

h — (vo(h)/vo(hs))hs € Ker(t)o) and so h, is orthogonal to this vector:

h— €o|§>f>*

@OA}*V
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h) : H — R defined
by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto
H*.

Proof. Let h € H. Then for any a, 3 € R and u,v € H we have
T(h)[au+pv) = (h,au+pBv) = alh,u)+B{h,v) = aT(h)[u]+BT(h)[v],

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1,
[t(Mul = [(h, )| < \[All[lu]l or [T (A)[u]l/llu]l < [[All and so T(h) is
bounded and || T(h)|| < ||h||. But for h # 0 we have

T(h[h/||hll] = T(h)[A/ 1Al = h, b) /1Al = |AlI2/[|All = [[A]] and so

| T(h)|| =1lh|]. So T : H— H* is an isometry (since for h € H and
T(h) € H* we have ||h]| = || T(h)]]).
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem, continued 2

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h) : H — R defined
by T(h)[u] = (h,u) for all h € H. Then T is a linear isometry of H onto
H*.

Proof (continued). That is,

_ ¢o(h)
@oﬁr*v

or (h, hy) — o(h)/vo(hs) =0 (since ||h«|| = 1 by choice) or

Po(hx){h, he) — tho(h) = 0 or ¢po(h) = (h,o(hs)hs) = (h, ho) = T (ho)[h].
That is, 1o € H* and T(hg) € H* are the same for all h € H. Hence
T(ho) = 1o and so T maps H onto H*, as claimed. O

(h, h,) (he,h,) =0
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Theorem 16.6

Theorem 16.6

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof. Let {h,}?°; be a bounded sequence in H. Define Hy to be the
closed linear span of {h,} (that is, the topological closure of the span of
{hn}; see page 254). Then Hy is separable since the set of all linear
combinations of elements of {h,} with rational coefficients is countable
and dense in Hp. For each n € N, define ¢, € H§ as ¢n(h) = (hn, h) for
all h € Ho. For h € H with ||h]| = 1 we have

[Yn(h)| = [(hn, hY| < ||hn|||lh]| by the Cauchy-Schwarz Inequality, and so
||l < ||hnl||- Since {hn} is a bounded then {1} is bounded. Then |1, }
is a bounded sequence of bounded linear functionals on the separable
linear space Hy. By Helley's Theorem (see page 283) there is a
subsequence {tp, } of {1} that converges pointwise to some 1y € Hj.
By the Riesz-Fréchet Representation Theorem, there is hg € Hy for which
Yo = ﬂA}oV Aﬁrmﬁ is, Go:& = ﬂA}O:S = A}og }v for all h e IOV.

0
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Theorem 16.6

Theorem 16.6 (continued 2)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Since P[h] € Hy,

lim (hn,, h) =

k—oo

lim (hy, . P[h])

k—o0

= (ho, P[h]) by (¥)
— (ho, h) for all he H.

]

Therefore, by definition, {h,, } converges weakly to hg in H.
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Theorem 16.6

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Now the “pointwise convergence” of {1, } to g
means that for all points h € Hy we have

»:3 Yn,(h) = vo(h) of »:3 (hn,, h) = (ho, h) for all h € Hp. (%)
(This shows that {h,, } converges weakly to hg in Hp; we must still show
that {hp, } — ho in Hp). Let P be the orthogonal projection mapping from
H onto Hy (so P projects H = Ho ® Hy onto Hp). For each k € N, since
(Id — P)[H] = P(H)* = Hg", we have (hp,, (Id — P)[h]) = 0 for all h € H,
since hp, € Hy and (ho, (Id — P)[h]) = 0 for all h € H, since hy € Hp.
Next, for all h € H we have

A?,:Z }v = A}:i A_Q - V:SV = A}:i A_Q - VV_HSV + A}:T \U_Sv = A}:ﬁ \U—Sv
and similarly (ho, h) = (ho, P[h]).
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Theorem. The Banach-Saks Theorem

The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.
Let {u,} — u weakly in Hilbert space H. Then there is a subsequence
{upn, } of {un} for which
:3 :\;I_IQZMI_I...I_I:\‘:A
k—o0 k

= u (strongly) in H.

Proof. Replacing each u, with u, — u we may suppose without loss of
generality that u = 0. A weakly convergent sequence is bounded by
Proposition 16.7, we may choose M > 0 such that |u,||> < M for all
n e N.

Define n; = 1. Since {up} — u = 0 then, by definition,
limp—oo(h, un) = (h,0) =0 for all h € H and so with h = u, = up,, there
is some np € N with ny > ny such that |{u,,, us,)| < 1. Then

__:E + ::m__m = A:E + Uny, Upy + ::Nv

= __:E__N +MA::t::wv + __:S__N <2+2M <4+2M = AM._. >\DM.
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Theorem. The Banach-Saks Theorem

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers
np < nmy < --- < ngsuch that [up, + tp, + - + up || < (24 M);j for
j=1,2,... k. Since {uy|| = u =0 then
limp_o0(h, up) = (h,uy = (h,0) =0, so with h = up, + tp, + -+ + Up,,
there is some ny 1 > ny such that |[(un, + up, + - 4 Up,, Un, )| < 1.
Then

[tny + Uny + -+ + tn, + ::»i:m

= (Upy + Upy + -+ F Un, + Unyyys Uny + Uny + -+ Up, + Un,,,)
= (Uny + Uny + - Uny, Uny + Upy + -t ) +2(Uny + Upy + -+ Uny, Uny )
+(Uny 1 Unyyy)
= ||tny + tny + -+ U P+ 2(Uny + Uny + o Ungy Ungy) + U |2
<(Q2+Mk+2+M=(2+ M)(k+1).

The Radon-Riesz Theorem

The Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let {u,} — u weakly (that is, {u,} — u) in the Hilbert space H. Then
{un} — u strongly in H if and only if lim |Ju,|| = ||u]|.
n—oo
Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof. The norm on H is a continuous function from H to R by Exercise
13.4. So if {u,} — u strongly in H then
liMmp_oo ||un|| = [|limp—oo un|| = ||ul|. Conversely, if limp_ [|unl| = | ull
then

lun — ull? = llunll® = 2(un, u) + [|u]® (*)
for all n € N. With {u,} — u we have (by definition)
limp—oo(h, up) = (h,u) for all h € H, so

lim (up, u) = lim (u, u,) = (u, u) = ||u]|?.
n—oo n—0o0

0 ]
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Theorem. The Banach-Saks Theorem

The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all k € N we have
[ny + tny + -+ + un [|* < (24 M)k or

:3H+:3N+...l_|:3> MAMI_IE
k - k-

Since M is fixed,

. Up. +Un, +---+ U B M + §
lim || 2 Bl < lim W/ =—— =0.
k—o0 k k—o00 k
Therefore,
. Up t+Up,+--F U
lim 2 % =0=u,
k—o00 k
and the claim holds. ]
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The Radon-Riesz Theorem

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.
Let {u,} — u weakly (that is, {u,} — u) in the Hilbert space H. Then

{un} — u strongly in H if and only if lim |[ju,| = |Ju]].
n—oo
Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof (continued). Therefore lim, oo ||tnl|? — 2(un, u) + ||uf> = 0 and
so by (x), limp—eo |[un — u|| = 0. Thatis, {u,} — u strongly in H. O
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