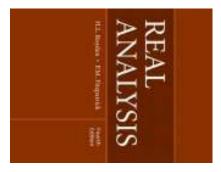
Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces

16.2. The Dual Space and Weak Sequential Convergence—Proofs of Theorems



The Riesz-Fréchet Representation Theorem, continued 2

The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have That is, T is a linear isometry. $T(\alpha h_1 + \beta h_2)[u] = \langle \alpha h_1 + \beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle 2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$

there is unit vector $h_* \in H$ that is orthogonal to $\operatorname{Ker}(\psi_0)$. Define since $\psi_0 \neq 0$ then Ker (ψ_0) is a proper subspace of H. By Theorem 16.3 in $\mathbb R$ then $\psi_0^{-1}(\{0\})=\mathsf{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and $\psi_0: \to \mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $h_0=\psi_0(h_*)h_*.$ Then for $h\in H$ we have that To show $T: H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all

$$\left\langle h - \frac{\psi_0(h)}{\psi_0(h_*)} h_*, h_* \right\rangle = 0.$$

 $h-(\psi_0(h)/\psi_0(h_*))h_*\in \operatorname{Ker}(\psi_0)$ and so h_* is orthogonal to this vector:

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.

by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H) by assigning to each $h\in H$ the linear functional $T(h):H o\mathbb{R}$ defined the dual space of H, the linear space of all bounded linear functionals on Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$T(h)[\alpha u + \beta v) = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha T(h)[u] + \beta T(h)[v],$$

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1 $|t(h)[u]| = |\langle h, u \rangle| \le ||h|| ||u||$ or $|T(h)[u]| / ||u|| \le ||h||$ and so T(h) is bounded and $||T(h)|| \le ||h||$. But for $h \ne 0$ we have $\|\mathcal{T}(h)\| = \|h\|$. So $\mathcal{T}: H o H^*$ is an isometry (since for $h \in H$ and $T(h) \in H^*$ we have ||h|| = ||T(h)||). $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle / \|h\| = \|h\|^2 / \|h\| = \|h\|$ and so

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is The Riesz-Fréchet Representation Theorem.

by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H) by assigning to each $h \in H$ the linear functional $T(h): H o \mathbb{R}$ defined the dual space of H, the linear space of all bounded linear functionals on

Proof (continued). That is,

$$\langle h, h_* \rangle - rac{\psi_0(h)}{\psi_0(h_*)} \langle h_*, h_* \rangle = 0$$

or $\langle h, h_* \rangle - \psi_0(h)/\psi_0(h_*) = 0$ (since $\|h_*\| = 1$ by choice) or $\psi_0(h_*)\langle h, h_* \rangle - \psi_0(h) = 0$ or $\psi_0(h) = \langle h, \psi_0(h_*)h_* \rangle = \langle h, h_0 \rangle = \mathcal{T}(h_0)[h].$ That is, $\psi_0 \in H^*$ and $\mathcal{T}(h_0) \in H^*$ are the same for all $h \in H$. Hence $T(h_0)=\psi_0$ and so T maps H onto H^* , as claimed

Theorem 16.6

weakly convergent subsequence **Theorem 16.6.** Every bounded sequence in a Hilbert space H has a

all $h \in H_0$. For $h \in H$ with ||h|| = 1 we have and dense in H_0 . For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for combinations of elements of $\{h_n\}$ with rational coefficients is countable closed linear span of $\{h_n\}$ (that is, the topological closure of the span of **Proof.** Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the $\{h_n\}$; see page 254). Then H_0 is separable since the set of all linear

subsequence $\{\psi_{n_k}\}$ of $\{\psi_n\}$ that converges pointwise to some $\psi_0\in H_0^*$. $\psi_0 = T(h_0)$ (that is, $\psi_0(h) = T(h_0)[h] = \langle h_0, h \rangle$ for all $h \in H_0$). By the Riesz-Fréchet Representation Theorem, there is $h_0 \in H_0$ for which linear space H_0 . By Helley's Theorem (see page 283) there is a is a bounded sequence of bounded linear functionals on the separable $\|\psi_n\|\leq \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded. Then $\|\psi_n\}$ $|\psi_n(h)|=|\langle h_n,h
angle|\leq \|h_n\|\|h\|$ by the Cauchy-Schwarz Inequality, and so

and similarly $\langle h_0, h \rangle = \langle h_0, P[h] \rangle$. Next, for all $h \in H$ we have March 4, 2017 7 / 13

Theorem 16.6 (continued 2)

weakly convergent subsequence **Theorem 16.6.** Every bounded sequence in a Hilbert space H has a

Proof (continued). Since $P[h] \in H_0$,

$$\lim_{k \to \infty} \langle h_{n_k}, h \rangle = \lim_{k \to \infty} \langle h_{n_k}, P[h] \rangle$$

$$= \langle h_0, P[h] \rangle \text{ by } (*)$$

$$= \langle h_0, h \rangle \text{ for all } h \in H.$$

Therefore, by definition, $\{h_{n_k}\}$ converges weakly to h_0 in H.

Theorem 16.6 (continued 1)

weakly convergent subsequence **Theorem 16.6.** Every bounded sequence in a Hilbert space H has a

Proof (continued). Now the "pointwise convergence" of
$$\{\psi_{n_k}\}$$
 to ψ_0 means that for all points $h \in H_0$ we have
$$\lim_{k \to \infty} \psi_{n_k}(h) = \psi_0(h) \text{ of } \lim_{k \to \infty} \langle h_{n_k}, h \rangle = \langle h_0, h \rangle \text{ for all } h \in H_0. \tag{*}$$

 $(\operatorname{Id} - P)[H] = P(H)^{\perp} = H_0^{\perp}$, we have $\langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_{n_k} \in H_0$ and $\langle h_0, (\operatorname{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$. H onto H_0 (so P projects $H=H_0\oplus H_0^\perp$ onto H_0). For each $k\in\mathbb{N}$, since that $\{h_{n_k}\} \longrightarrow h_0$ in H_0). Let P be the orthogonal projection mapping from (This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show

$$\langle h_{n_k}, h \rangle = \langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle = \langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle + \langle h_{n_k}, P]h] \rangle = \langle h_{n_k}, P[h] \rangle$$
 and similarly $\langle h_0, h \rangle = \langle h_0, P[h] \rangle$.

The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.

 $\{u_{n_k}\}$ of $\{u_n\}$ for which Let $\{u_n\} \rightarrow u$ weakly in Hilbert space H. Then there is a subsequence

$$\lim_{k \to \infty} \frac{u_{n_1} + u_{n_2} + \dots + u_{n_k}}{k} = u \text{ (strongly) in } H.$$

Proposition 16.7, we may choose M>0 such that $||u_n||^2\leq M$ for all generality that u = 0. A weakly convergent sequence is bounded by **Proof.** Replacing each u_n with $u_n - u$ we may suppose without loss of

is some $n_2\in\mathbb{N}$ with $n_2>n_1$ such that $|\langle u_{n_1},u_{n_2}
angle|\leq 1.$ Then $\lim_{n\to\infty}\langle h,u_n\rangle=\langle h,0\rangle=0$ for all $h\in H$ and so with $h=u_n=u_{n_1}$, there Define $n_1 = 1$. Since $\{u_n\} \rightarrow u = 0$ then, by definition,

$$||u_{n_1} + u_{n_2}||^2 = \langle u_{n_1} + u_{n_2}, u_{n_1} + u_{n_2} \rangle$$

= $||u_{n_1}||^2 + 2\langle u_{n_1}, u_{n_2} \rangle + ||u_{n_2}||^2 \le 2 + 2M \le 4 + 2M = (2 + M)2.$

Real Analysis

The Banach-Saks Theorem (continued 1)

 $j=1,2,\ldots,k$. Since $\{u_n\| \rightarrow u=0 \text{ then } \}$ **Proof (continued).** Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $||u_{n_1} + u_{n_2} + \cdots + u_{n_j}|| \le (2+M)j$ for

there is some $n_{k+1} > n_k$ such that $|\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle| \leq 1$. $\lim_{n\to\infty}\langle h,u_n\rangle=\langle h,u\rangle=\langle h,0\rangle=0$, so with $h=u_{n_1}+u_{n_2}+\cdots+u_{n_k}$,

$$||u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}}||^2$$

$$= \langle u_{n_1} + u_{n_2} + \dots + u_{n_k} + u_{n_{k+1}}, u_{n_1} + u_{n_2} + \dots + u_{n_k} + u_{n_{k+1}} \rangle$$

$$= \langle u_{n_1} + u_{n_2} + \dots + u_{n_k}, u_{n_1} + u_{n_2} + \dots + u_{n_k} \rangle + 2\langle u_{n_1} + u_{n_2} + \dots + u_{n_k}, u_{n_{k+1}} \rangle$$

$$+ \langle u_{n_{k+1}}, u_{n_{k+1}} \rangle$$

$$= \|u_{n_1} + u_{n_2} + \dots + u_{n_k}\|^2 + 2\langle u_{n_1} + u_{n_2} + \dots + u_{n_k}, u_{n_{k+1}} \rangle + \|u_{n_{k+1}}\|^2$$

$$\leq (2+M)k + 2 + M = (2+M)(k+1).$$

$$\leq (2+M)k+2+M=(2+M)(k+1).$$

The Banach-Saks Theorem (continued 2)

 $||u_{n_1} + u_{n_2} + \dots + u_{n_k}||^2 \le (2 + M)k$ or **Proof (continued).** So by mathematical induction, for all $k \in \mathbb{N}$ we have

$$\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\bigg\|^2\leq \frac{2+M}{k}.$$

Since M is fixed

$$\underset{\rightarrow \infty}{\mathsf{m}} \left\| \frac{u_{n_1} + u_{n_2} + \dots + u_{n_k}}{k} \right\| \leq \lim_{k \to \infty} \sqrt{\frac{2 + M}{k}} = 0$$

$$\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=0=u,$$

and the claim holds.

11 / 13

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

The Radon-Riesz Theorem

Let $\{u_n\} o u$ weakly (that is, $\{u_n\} o u$) in the Hilbert space H. Then

$$\{u_n\} \to u \text{ strongly in } H \text{ if and only if } \lim_{n \to \infty} ||u_n|| = ||u||.$$

Here, "strong convergence" means convergence with respect to the Hilbert

Proof. The norm on H is a continuous function from H to \mathbb{R} by Exercise 13.4. So if $\{u_n\} \rightarrow u$ strongly in H then

$$\lim_{n\to\infty}\|u_n\|=\|\lim_{n\to\infty}u_n\|=\|u\|$$
. Conversely, if $\lim_{n\to\infty}\|u_n\|=\|u\|$ then

$$||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2$$
 (*)

for all $n \in \mathbb{N}$. With $\{u_n\} \to u$ we have (by definition) $\lim_{n\to\infty}\langle h,u_n\rangle=\langle h,u\rangle$ for all $h\in H$, so

$$\lim_{n\to\infty}\langle u_n,u\rangle=\lim_{n\to\infty}\langle u,u_n\rangle=\langle u,u\rangle=\|u\|^2.$$

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then

$$\{u_n\} \to u$$
 strongly in H if and only if $\lim_{n \to \infty} ||u_n|| = ||u||$.

space norm. Here, "strong convergence" means convergence with respect to the Hilbert

so by (*), $\lim_{n\to\infty} ||u_n - u|| = 0$. That is, $\{u_n\} \to u$ strongly in H. **Proof (continued).** Therefore $\lim_{n\to\infty}\|u_n\|^2-2\langle u_n,u\rangle+\|u\|^2=0$ and

Real Analysis