Real Analysis J

Chapter 16. Continuous Linear Operators on Hilbert Spaces
16.2. The Dual Space and Weak Sequential Convergence—Proofs of
Theorems

REAT
ANALYSIS

H.L. Royden » P.M. Fitzpatrick

Real Analysis March 4, 2017 1 /13



R —
Table of contents

@ Theorem. The Riesz-Fréchet Representation Theorem
© Theorem 16.6
© Theorem. The Banach-Saks Theorem

@ The Radon-Riesz Theorem

Real Analysis March 4, 2017 2 /13



Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h) : H — R defined

by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto
H*.
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h) : H — R defined
by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto

H*.
Proof. Let h € H. Then for any o, 3 € R and u,v € H we have
T(h)[au+pv) = (h,au+pv) = alh,u)+B(h,v) = aT(h)[u]+BT(h)[v],

and so T(h) is linear.
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h) : H — R defined

by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto
H*.

Proof. Let h € H. Then for any o, 3 € R and u,v € H we have
T(h)[au+pv) = (h,au+pv) = alh,u)+B(h,v) = aT(h)[u]+BT(h)[v],

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1,
[t(M[ul] = [{h, w)[ < [[Allllull or | T(A)[u]l/l|ull < [[A]l and so T(h) is
bounded and || T(h)|| < ||h||. But for h # 0 we have

T(h)[h/|[hl] = T(M)A/IIAll = (h, h) /|| Al = ||AlI/]| Al = ||A] and so
IT(h)I[ = [Ihll.
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h) : H — R defined
by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto

H*.
Proof. Let h € H. Then for any o, 3 € R and u,v € H we have
T(h)[au+pv) = (h,au+pv) = alh,u)+B(h,v) = aT(h)[u]+BT(h)[v],

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1,
[t(M)[u]l = [Ch, u)| < [[Alll[ull or [T(A)[u]l/[lull < ||l and so T(h) is
bounded and || T(h)|| < ||h||. But for h # 0 we have
T(h)[h/ Al = T(W)A/|IAll = (b, h)/|IAll = [|8]]*/][A]] = [|A]l and so
|T(h)|| = ||h||. So T : H— H* is an isometry (since for h € H and
T(h) € H* we have ||h|| = || T(h)]])-
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The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for a, 3 € R and hy, hy € H we have
T(ahi+Bh)[u] = (ah1+Bh2, u) = alhy, u)p(z, u) = aT(h)[u]+8T(h2)[u]

That is, T is a linear isometry.
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The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for a, 3 € R and hy, hy € H we have
T(ozhﬁ—ﬁhg)[u] = <Ozh1—|—ﬁh2, u) = Oz<h1, u>5<2, u) = aT(hl)[u]+ﬁT(h2)[u]
That is, T is a linear isometry.

To show T : H — H* is onto, notice that T(0)[u] = (0, u) = 0 for all
ueH. So T maps0e€ Hto0e H".
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The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for a, 3 € R and hy, hy € H we have
T(ozhﬁ—ﬁhg)[u] = <Ozh1—|—ﬁh2, u) = O£<h1, u>5<2, u) = aT(hl)[u]+ﬁT(h2)[u]
That is, T is a linear isometry.

To show T : H — H* is onto, notice that T(0)[u] = (0, u) = 0 for all
u€ H. So T maps0¢€ Hto0e H*. Next, let g € H* with ¢y # 0 (so
1o :— R). Since 1) is linear then it is continuous and since ||0]| is closed
in R then ¢ 1({0}) = Ker(v) is closed in H (see Exercise 11.25(i)) and
since ¢ # 0 then Ker(1)p) is a proper subspace of H. By Theorem 16.3,
there is unit vector h, € H that is orthogonal to Ker(tg). Define

ho = o(hi)hy.
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The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for a, 3 € R and hy, hy € H we have
T(ozhﬁ—ﬁhg)[u] = <Ozh1—|—ﬁh2, u) = O£<h1, u>5<2, u) = aT(hl)[u]+ﬁT(h2)[u]
That is, T is a linear isometry.

To show T : H — H* is onto, notice that T(0)[u] = (0, u) = 0 for all
u€ H. So T maps0¢€ Hto0e H*. Next, let g € H* with ¢y # 0 (so
1o :— R). Since 1) is linear then it is continuous and since ||0]| is closed
in R then ¢ 1({0}) = Ker(v) is closed in H (see Exercise 11.25(i)) and
since ¢ # 0 then Ker(1)p) is a proper subspace of H. By Theorem 16.3,
there is unit vector h, € H that is orthogonal to Ker(tg). Define

ho = vYo(h«)hs. Then for h € H we have that

h — (vo(h)/1o(hs))h. € Ker(1hp) and so h, is orthogonal to this vector:
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem, continued 2

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h): H — R defined

by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto
H*.

Proof (continued). That is,

~ to(h)
<h’ h*> Tllo(h*)

(he,h) =0
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem, continued 2

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator T : H — H* (where H* is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h € H the linear functional T(h): H — R defined

by T(h)[u] = (h,u) for all h€ H. Then T is a linear isometry of H onto
H*.

Proof (continued). That is,

Yo(h)
h, h,) — he, ) =0
(ho ) = S50 (b )
or (h, hy) — vo(h)/1o(hs) = 0 (since || hi|| = 1 by choice) or
Yo(hi){h, he) — o(h) = 0 or Yo(h) = (h,do(hs)h) = (h, ho) = T (ho)[h].
That is, 1o € H* and T(hg) € H* are the same for all h € H. Hence
T(ho) = 1o and so T maps H onto H*, as claimed. O
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Theorem 16.6

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.
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Theorem 16.6

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof. Let {h,}7°; be a bounded sequence in H. Define Hy to be the
closed linear span of {h,} (that is, the topological closure of the span of
{hn}; see page 254). Then Hy is separable since the set of all linear
combinations of elements of {h,} with rational coefficients is countable
and dense in Hp.
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Theorem 16.6

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof. Let {h,}7°; be a bounded sequence in H. Define Hy to be the
closed linear span of {h,} (that is, the topological closure of the span of
{hn}; see page 254). Then Hy is separable since the set of all linear
combinations of elements of {h,} with rational coefficients is countable
and dense in Hy. For each n € N, define ¢, € H§ as ©,(h) = (hn, h) for
all h € Hy. For h e H with ||hl| = 1 we have

|tn(h)| = [(hn, hY| < ||hn|[||h]| by the Cauchy-Schwarz Inequality, and so
lnll < ||hnl|- Since {h,} is a bounded then {v,} is bounded.
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Theorem 16.6

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof. Let {h,}7°; be a bounded sequence in H. Define Hy to be the
closed linear span of {h,} (that is, the topological closure of the span of
{hn}; see page 254). Then Hy is separable since the set of all linear
combinations of elements of {h,} with rational coefficients is countable
and dense in Hy. For each n € N, define ¢, € H§ as ©,(h) = (hn, h) for
all h € Hy. For h e H with ||hl| = 1 we have

|tn(h)| = [(hn, hY| < ||hn|[||h]| by the Cauchy-Schwarz Inequality, and so
|¥nll < ||hnll- Since {h,} is a bounded then {v,} is bounded. Then ||1),}
is a bounded sequence of bounded linear functionals on the separable
linear space Hp. By Helley's Theorem (see page 283) there is a
subsequence {tp, } of {1} that converges pointwise to some 1y € H{.
By the Riesz-Fréchet Representation Theorem, there is hg € Hy for which
Py = T(ho) (that is, 1/)0(/7) = T(ho)[h] = <h0,h> for all h € Ho)
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Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Now the “pointwise convergence” of {1, } to 1o
means that for all points h € Hy we have

lim o, (h) = to(h) of lim (hn,, h) = (ho, h) for all h € Ho. (%)

(This shows that {hp, } converges weakly to hg in Hp; we must still show
that {hnk} — hg in Ho).
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Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Now the “pointwise convergence” of {1, } to 1o
means that for all points h € Hy we have

lim o, (h) = to(h) of lim (hn,, h) = (ho, h) for all h € Ho. (%)

(This shows that {hp, } converges weakly to hg in Hp; we must still show
that {hp, } — ho in Hp). Let P be the orthogonal projection mapping from
H onto Hp (so P projects H = Ho @ Hjy onto Hp). For each k € N, since
(Id — P)[H] = P(H)* = Hg", we have (h,,,(Id — P)[h]) = 0 for all h € H,
since hp, € Hy and (ho, (Id — P)[h]) = 0 for all h € H, since hy € Hp.
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Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Now the “pointwise convergence” of {1, } to 1o
means that for all points h € Hy we have

lim o, (h) = to(h) of lim (hn,, h) = (ho, h) for all h € Ho. (%)

(This shows that {hp, } converges weakly to hg in Hp; we must still show
that {hp, } — ho in Hp). Let P be the orthogonal projection mapping from
H onto Hy (so P projects H = Hy @ HOL onto Hp). For each k € N, since
(Id — P)[H] = P(H)* = Hg", we have (h,,,(Id — P)[h]) = 0 for all h € H,
since hp, € Hy and (ho, (Id — P)[h]) = 0 for all h € H, since hy € Hp.
Next, for all h € H we have

<hnk7 h> = <hnk’ (Id - P)[h]> = <hf7k’ (ld - 'D)[h]> + <hnkv ’D]h]> = <hnk7 'D[h]>

and similarly (ho, h) = (ho, P[h]).
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Theorem 16.6 (continued 2)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Since P[h] € Hp,

k“—>moo<hnk’ hy = k”—>n;o<hnk’ P[h])
= (ho, P[h]) by (%)
= (hg, hy for all h € H.

Therefore, by definition, {hy, } converges weakly to hg in H. Ol
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The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.
Let {u,} — u weakly in Hilbert space H. Then there is a subsequence
{up, } of {un} for which

im Um0 U

Jim_ p = u (strongly) in H.
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The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.
Let {u,} — u weakly in Hilbert space H. Then there is a subsequence
{up, } of {un} for which
im Um0 U
k—o00 k

= u (strongly) in H.

Proof. Replacing each u, with u, — u we may suppose without loss of
generality that u = 0. A weakly convergent sequence is bounded by
Proposition 16.7, we may choose M > 0 such that ||u,||? < M for all
neN.
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The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.
Let {u,} — u weakly in Hilbert space H. Then there is a subsequence
{up, } of {un} for which
im Um0 U
k—o00 k

= u (strongly) in H.

Proof. Replacing each u, with u, — u we may suppose without loss of
generality that u = 0. A weakly convergent sequence is bounded by
Proposition 16.7, we may choose M > 0 such that ||u,||? < M for all
neN.

Define n; = 1. Since {u,} — u = 0 then, by definition,
limp—oo(h, up) = (h,0) =0 for all h € H and so with h = u, = uy,, there
is some ny € N with ny > ny such that |(un,, up,)| < 1.
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The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.
Let {u,} — u weakly in Hilbert space H. Then there is a subsequence
{up, } of {un} for which
im Um0 U
k—o00 k

= u (strongly) in H.

Proof. Replacing each u, with u, — u we may suppose without loss of
generality that u = 0. A weakly convergent sequence is bounded by
Proposition 16.7, we may choose M > 0 such that ||u,||? < M for all
neN.

Define n; = 1. Since {u,} — u = 0 then, by definition,
limp—o00(h, un) = (h,0) =0 for all h € H and so with h = u, = u,,, there
is some ny € N with ny > ny such that |(un,, un,)| < 1. Then

H”nl + Un2||2 = <Un1 =+ Uny, Un; + Unz>

= ||ty [1? + 2{um, ) + [[um||* < 2+2M < 4+2M = (2+ M)2.
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The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers
np < mp < --- < ngsuch that |[up, + tp, + -+ up || < (2+ M)j for
j=12 ... k.
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The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers

np < mp < --- < ngsuch that |[up, + tp, + -+ up || < (2+ M)j for
Jj=1,2,... k. Since {up| = u =0 then

limp—oo(h, up) = (h,u) = (h,0) =0, so with h = un, + up, + -+ + up,,
there is some nyy1 > ny such that [(up, + tp, + -+ 4 tn,, Up,, )| < 1
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The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers
np < mp < --- < ngsuch that |[up, + tp, + -+ up || < (2+ M)j for
Jj=1,2,... k. Since {up| = u =0 then
limp—oo(h, up) = (h,u) = (h,0) =0, so with h = un, + up, + -+ + up,,
there is some nyy1 > ny such that [(up, + tp, + -+ 4 tn,, Up,, )| < 1
Then

”Un1 + Up, + -+ Up, + unk+1H2

= (Uny + Uny + -+ Un, + Un s Ung + Uny + -+ Upy + Uny,)
= (Un; + Uny ++++ Uny, Upy + Upy + -+ 4 Up, ) +2(Uny + Upy -+ Up,, Uny,)
+(Ung 1> Ungyy)
= [|tny + tny + -+ U |2+ 2y + Uy e F Ungs Ungyy) + g 1P
<24+ Mk+2+M=(2+M)(k+1).
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The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all k € N we have
HUn1 + un2 + tet + UnkHz S (2+ M)k or

un1+un2+...+unk

2
<2+M.
k

-k
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The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all k € N we have
HUn1 + un2 + tet + UnkHz S (2+ M)k or

Upy + Upy + -+ + Up,
k

2
<2+M.
-k

k—o00 \/ k

fim Um T Unp * e Un,
k—o00 k
and the claim holds. O

Since M is fixed,

Upy + Upy + + - + Up,
k

lim
k—o0

Therefore,

:0:“7
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The Radon-Riesz Theorem

The Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let {un} — u weakly (that is, {u,} — wu) in the Hilbert space H. Then

{un} — u strongly in H if and only if nll_)moo lunl| = ||ul|.

Here, “strong convergence” means convergence with respect to the Hilbert
space norm.
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The Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let {un} — u weakly (that is, {u,} — wu) in the Hilbert space H. Then
{un} — u strongly in H if and only if lim |lu,| = ||ul|.
n—oo
Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof. The norm on H is a continuous function from H to R by Exercise
13.4. So if {up} — u strongly in H then

liMp—oo [[Un|] = |liMp—oco tnl| = ||u]|. Conversely, if lim,—oo ||un| = |ull
then

lun = ull® = [|unll* = 2(un, u) + [Jul]? (*)
for all n € N.
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The Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let {un} — u weakly (that is, {u,} — wu) in the Hilbert space H. Then

{un} — u strongly in H if and only if nll_)moo lunl| = ||ul|.

Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof. The norm on H is a continuous function from H to R by Exercise
13.4. So if {up} — u strongly in H then
liMp—oo [[Un|] = |liMp—oco tnl| = ||u]|. Conversely, if lim,—oo ||un| = |ull
then

lun — ul® = llunl|* = 2(un, u) + ul? (%)
for all n € N. With {u,} — u we have (by definition)
limp—oo(h, up) = (h,u) for all h € H, so

lim (up, u) = lim (u, u,) = (u,u) = ||u||2
n—oo n—oo
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The Radon-Riesz Theorem

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.
Let {un} — u weakly (that is, {u,} — wu) in the Hilbert space H. Then

{un} — u strongly in H if and only if nll_)ngo lunl| = ||ul|.

Here, “strong convergence” means convergence with respect to the Hilbert
space norm.
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The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.
Let {un} — u weakly (that is, {u,} — wu) in the Hilbert space H. Then

{un} — u strongly in H if and only if nll_)ngo lunl| = ||ul|.

Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof (continued). Therefore lim, .o ||un||? — 2{up, u) + ||ul|?> = 0 and
so by (%), limp—oo ||un — u|| = 0. That is, {u,} — u strongly in H. O
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