Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces

16.2. The Dual Space and Weak Sequential Convergence—Proofs of Theorems

Table of contents

- 1 Theorem. The Riesz-Fréchet Representation Theorem
- 2 Theorem 16.6
- 3 Theorem. The Banach-Saks Theorem
- The Radon-Riesz Theorem

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is the dual space of H, the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$T(h)[\alpha u + \beta v) = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha T(h)[u] + \beta T(h)[v],$$

and so T(h) is linear.

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is the dual space of H, the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$T(h)[\alpha u + \beta v) = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha T(h)[u] + \beta T(h)[v],$$

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1, $|t(h)[u]| = |\langle h, u \rangle| \le \|h\| \|u\|$ or $|T(h)[u]|/\|u\| \le \|h\|$ and so T(h) is bounded and $\|T(h)\| \le \|h\|$. But for $h \ne 0$ we have $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle/\|h\| = \|h\|^2/\|h\| = \|h\|$ and so $\|T(h)\| = \|h\|$.

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is the dual space of H, the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$T(h)[\alpha u + \beta v) = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha T(h)[u] + \beta T(h)[v],$$

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1, $|t(h)[u]| = |\langle h, u \rangle| \le \|h\| \|u\|$ or $|T(h)[u]|/\|u\| \le \|h\|$ and so T(h) is bounded and $\|T(h)\| \le \|h\|$. But for $h \ne 0$ we have $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle/\|h\| = \|h\|^2/\|h\| = \|h\|$ and so $\|T(h)\| = \|h\|$. So $T: H \to H^*$ is an isometry (since for $h \in H$ and $T(h) \in H^*$ we have $\|h\| = \|T(h)\|$).

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is the dual space of H, the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$T(h)[\alpha u + \beta v) = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha T(h)[u] + \beta T(h)[v],$$

and so T(h) is linear. By the Cauchy-Schwarz Inequality of Section 16.1, $|t(h)[u]| = |\langle h, u \rangle| \le \|h\| \|u\|$ or $|T(h)[u]|/\|u\| \le \|h\|$ and so T(h) is bounded and $\|T(h)\| \le \|h\|$. But for $h \ne 0$ we have $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle/\|h\| = \|h\|^2/\|h\| = \|h\|$ and so $\|T(h)\| = \|h\|$. So $T: H \to H^*$ is an isometry (since for $h \in H$ and $T(h) \in H^*$ we have $\|h\| = \|T(h)\|$).

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have

$$T(\alpha h_1 + \beta h_2)[u] = \langle \alpha h_1 + \beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle u_2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$$

That is, T is a linear isometry.

To show $T: H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$.

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have

$$T(\alpha h_1 + \beta h_2)[u] = \langle \alpha h_1 + \beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle 2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$$

That is, T is a linear isometry.

To show $T: H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $\psi_0 :\to \mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed in \mathbb{R} then $\psi_0^{-1}(\{0\}) = \operatorname{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and since $\psi_0 \neq 0$ then $\operatorname{Ker}(\psi_0)$ is a proper subspace of H. By Theorem 16.3, there is unit vector $h_* \in H$ that is orthogonal to $\operatorname{Ker}(\psi_0)$. Define $h_0 = \psi_0(h_*)h_*$.

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have

$$T(\alpha h_1 + \beta h_2)[u] = \langle \alpha h_1 + \beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle 2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$$

That is, T is a linear isometry.

To show $T: H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $\psi_0 :\to \mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed in \mathbb{R} then $\psi_0^{-1}(\{0\}) = \operatorname{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and since $\psi_0 \neq 0$ then $\operatorname{Ker}(\psi_0)$ is a proper subspace of H. By Theorem 16.3, there is unit vector $h_* \in H$ that is orthogonal to $\operatorname{Ker}(\psi_0)$. Define $h_0 = \psi_0(h_*)h_*$. Then for $h \in H$ we have that

 $h - (\psi_0(h)/\psi_0(h_*))h_* \in \text{Ker}(\psi_0)$ and so h_* is orthogonal to this vector:

 $f \in \operatorname{Ker}(\psi_0)$ and so H_* is orthogonal to this vector

$$\left\langle h - \frac{\psi_0(h)}{\psi_0(h_*)} h_*, h_* \right\rangle = 0.$$

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have

$$T(\alpha h_1 + \beta h_2)[u] = \langle \alpha h_1 + \beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle 2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$$

That is, T is a linear isometry.

To show $T: H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $\psi_0 :\to \mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed in \mathbb{R} then $\psi_0^{-1}(\{0\}) = \operatorname{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and since $\psi_0 \neq 0$ then $\operatorname{Ker}(\psi_0)$ is a proper subspace of H. By Theorem 16.3, there is unit vector $h_* \in H$ that is orthogonal to $\operatorname{Ker}(\psi_0)$. Define $h_0 = \psi_0(h_*)h_*$. Then for $h \in H$ we have that $h - (\psi_0(h)/\psi_0(h_*))h_* \in \operatorname{Ker}(\psi_0)$ and so h_* is orthogonal to this vector:

$$\left\langle h - \frac{\psi_0(h)}{\psi_0(h_*)} h_*, h_* \right\rangle = 0.$$

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is the dual space of H, the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof (continued). That is,

$$\langle h, h_* \rangle - \frac{\psi_0(h)}{\psi_0(h_*)} \langle h_*, h_* \rangle = 0$$

or $\langle h, h_* \rangle - \psi_0(h)/\psi_0(h_*) = 0$ (since $||h_*|| = 1$ by choice) or $\psi_0(h_*)\langle h, h_* \rangle - \psi_0(h) = 0$ or $\psi_0(h) = \langle h, \psi_0(h_*)h_* \rangle = \langle h, h_0 \rangle = T(h_0)[h]$. That is, $\psi_0 \in H^*$ and $T(h_0) \in H^*$ are the same for all $h \in H$. Hence $T(h_0) = \psi_0$ and so T maps H onto H^* , as claimed.

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $T: H \to H^*$ (where H^* is the dual space of H, the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof (continued). That is,

$$\langle h, h_* \rangle - \frac{\psi_0(h)}{\psi_0(h_*)} \langle h_*, h_* \rangle = 0$$

or $\langle h, h_* \rangle - \psi_0(h)/\psi_0(h_*) = 0$ (since $\|h_*\| = 1$ by choice) or $\psi_0(h_*)\langle h, h_* \rangle - \psi_0(h) = 0$ or $\psi_0(h) = \langle h, \psi_0(h_*)h_* \rangle = \langle h, h_0 \rangle = T(h_0)[h]$. That is, $\psi_0 \in H^*$ and $T(h_0) \in H^*$ are the same for all $h \in H$. Hence $T(h_0) = \psi_0$ and so T maps H onto H^* , as claimed.

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of $\{h_n\}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 .

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of $\{h_n\}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 . For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for all $h \in H_0$. For $h \in H$ with $\|h\| = 1$ we have $\|\psi_n(h)\| = \|\langle h_n, h \rangle\| \le \|h_n\| \|h\|$ by the Cauchy-Schwarz Inequality, and so $\|\psi_n\| \le \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded.

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of $\{h_n\}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 . For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for all $h \in H_0$. For $h \in H$ with ||h|| = 1 we have $|\psi_n(h)| = |\langle h_n, h \rangle| \le ||h_n|| ||h||$ by the Cauchy-Schwarz Inequality, and so $\|\psi_n\| \leq \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded. Then $\|\psi_n\}$ is a bounded sequence of bounded linear functionals on the separable linear space H_0 . By Helley's Theorem (see page 283) there is a subsequence $\{\psi_{n_k}\}$ of $\{\psi_n\}$ that converges pointwise to some $\psi_0 \in H_0^*$. By the Riesz-Fréchet Representation Theorem, there is $h_0 \in H_0$ for which $\psi_0 = T(h_0)$ (that is, $\psi_0(h) = T(h_0)[h] = \langle h_0, h \rangle$ for all $h \in H_0$).

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of $\{h_n\}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 . For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for all $h \in H_0$. For $h \in H$ with ||h|| = 1 we have $|\psi_n(h)| = |\langle h_n, h \rangle| \le ||h_n|| ||h||$ by the Cauchy-Schwarz Inequality, and so $\|\psi_n\| \leq \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded. Then $\|\psi_n\}$ is a bounded sequence of bounded linear functionals on the separable linear space H_0 . By Helley's Theorem (see page 283) there is a subsequence $\{\psi_{n_k}\}$ of $\{\psi_n\}$ that converges pointwise to some $\psi_0 \in H_0^*$. By the Riesz-Fréchet Representation Theorem, there is $h_0 \in H_0$ for which $\psi_0 = T(h_0)$ (that is, $\psi_0(h) = T(h_0)[h] = \langle h_0, h \rangle$ for all $h \in H_0$).

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Now the "pointwise convergence" of $\{\psi_{n_k}\}$ to ψ_0 means that for all points $h \in H_0$ we have

$$\lim_{k \to \infty} \psi_{n_k}(h) = \psi_0(h) \text{ of } \lim_{k \to \infty} \langle h_{n_k}, h \rangle = \langle h_0, h \rangle \text{ for all } h \in H_0.$$
 (*)

(This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show that $\{h_{n_k}\} \rightarrow h_0$ in H_0). Let P be the orthogonal projection mapping from H onto H_0 (so P projects $H = H_0 \oplus H_0^{\perp}$ onto H_0). For each $k \in \mathbb{N}$, since $(\mathrm{Id} - P)[H] = P(H)^{\perp} = H_0^{\perp}$, we have $\langle h_{n_k}, (\mathrm{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_{n_k} \in H_0$ and $\langle h_0, (\mathrm{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$.

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Now the "pointwise convergence" of $\{\psi_{n_k}\}$ to ψ_0 means that for all points $h \in H_0$ we have

$$\lim_{k \to \infty} \psi_{n_k}(h) = \psi_0(h) \text{ of } \lim_{k \to \infty} \langle h_{n_k}, h \rangle = \langle h_0, h \rangle \text{ for all } h \in H_0.$$
 (*)

(This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show that $\{h_{n_k}\} \to h_0$ in H_0). Let P be the orthogonal projection mapping from H onto H_0 (so P projects $H = H_0 \oplus H_0^{\perp}$ onto H_0). For each $k \in \mathbb{N}$, since $(\operatorname{Id} - P)[H] = P(H)^{\perp} = H_0^{\perp}$, we have $\langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_{n_k} \in H_0$ and $\langle h_0, (\operatorname{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$. Next, for all $h \in H$ we have

$$\langle h_{n_k}, h \rangle = \langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle = \langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle + \langle h_{n_k}, P]h] \rangle = \langle h_{n_k}, P[h] \rangle$$

and similarly $\langle h_0, h \rangle = \langle h_0, P[h] \rangle$.

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Now the "pointwise convergence" of $\{\psi_{n_k}\}$ to ψ_0 means that for all points $h \in H_0$ we have

$$\lim_{k \to \infty} \psi_{n_k}(h) = \psi_0(h) \text{ of } \lim_{k \to \infty} \langle h_{n_k}, h \rangle = \langle h_0, h \rangle \text{ for all } h \in H_0.$$
 (*)

(This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show that $\{h_{n_k}\} \rightharpoonup h_0$ in H_0). Let P be the orthogonal projection mapping from H onto H_0 (so P projects $H = H_0 \oplus H_0^{\perp}$ onto H_0). For each $k \in \mathbb{N}$, since $(\operatorname{Id} - P)[H] = P(H)^{\perp} = H_0^{\perp}$, we have $\langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_{n_k} \in H_0$ and $\langle h_0, (\operatorname{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$. Next, for all $h \in H$ we have

$$\langle h_{n_k}, h \rangle = \langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle = \langle h_{n_k}, (\operatorname{Id} - P)[h] \rangle + \langle h_{n_k}, P[h] \rangle = \langle h_{n_k}, P[h] \rangle$$

and similarly $\langle h_0, h \rangle = \langle h_0, P[h] \rangle$.

Theorem 16.6 (continued 2)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Since $P[h] \in H_0$,

$$\lim_{k \to \infty} \langle h_{n_k}, h \rangle = \lim_{k \to \infty} \langle h_{n_k}, P[h] \rangle$$

$$= \langle h_0, P[h] \rangle \text{ by (*)}$$

$$= \langle h_0, h \rangle \text{ for all } h \in H.$$

Therefore, by definition, $\{h_{n_k}\}$ converges weakly to h_0 in H.

Real Analysis

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ for which

$$\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u \text{ (strongly) in } H.$$

Proof. Replacing each u_n with u_n-u we may suppose without loss of generality that u=0. A weakly convergent sequence is bounded by Proposition 16.7, we may choose M>0 such that $\|u_n\|^2\leq M$ for all $n\in\mathbb{N}$.

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ for which

$$\lim_{k o \infty} rac{u_{n_1} + u_{n_2} + \dots + u_{n_k}}{k} = u$$
 (strongly) in H .

Proof. Replacing each u_n with u_n-u we may suppose without loss of generality that u=0. A weakly convergent sequence is bounded by Proposition 16.7, we may choose M>0 such that $\|u_n\|^2\leq M$ for all $n\in\mathbb{N}$.

Define $n_1=1$. Since $\{u_n\} \to u=0$ then, by definition, $\lim_{n\to\infty} \langle h, u_n \rangle = \langle h, 0 \rangle = 0$ for all $h \in H$ and so with $h=u_n=u_{n_1}$, there is some $n_2 \in \mathbb{N}$ with $n_2 > n_1$ such that $|\langle u_{n_1}, u_{n_2} \rangle| \leq 1$.

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ for which

$$\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u \text{ (strongly) in } H.$$

Proof. Replacing each u_n with u_n-u we may suppose without loss of generality that u=0. A weakly convergent sequence is bounded by Proposition 16.7, we may choose M>0 such that $\|u_n\|^2\leq M$ for all $n\in\mathbb{N}$.

Define $n_1=1$. Since $\{u_n\} \rightharpoonup u=0$ then, by definition, $\lim_{n\to\infty}\langle h,u_n\rangle = \langle h,0\rangle = 0$ for all $h\in H$ and so with $h=u_n=u_{n_1}$, there is some $n_2\in\mathbb{N}$ with $n_2>n_1$ such that $|\langle u_{n_1},u_{n_2}\rangle|\leq 1$. Then

$$||u_{n_1} + u_{n_2}||^2 = \langle u_{n_1} + u_{n_2}, u_{n_1} + u_{n_2} \rangle$$

= $||u_{n_1}||^2 + 2\langle u_{n_1}, u_{n_2} \rangle + ||u_{n_2}||^2 \le 2 + 2M \le 4 + 2M = (2 + M)2.$

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ for which

$$\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u \text{ (strongly) in } H.$$

Proof. Replacing each u_n with u_n-u we may suppose without loss of generality that u=0. A weakly convergent sequence is bounded by Proposition 16.7, we may choose M>0 such that $\|u_n\|^2\leq M$ for all $n\in\mathbb{N}$.

Define $n_1=1$. Since $\{u_n\} \rightharpoonup u=0$ then, by definition, $\lim_{n\to\infty}\langle h,u_n\rangle = \langle h,0\rangle = 0$ for all $h\in H$ and so with $h=u_n=u_{n_1}$, there is some $n_2\in\mathbb{N}$ with $n_2>n_1$ such that $|\langle u_{n_1},u_{n_2}\rangle|\leq 1$. Then

$$||u_{n_1} + u_{n_2}||^2 = \langle u_{n_1} + u_{n_2}, u_{n_1} + u_{n_2} \rangle$$

= $||u_{n_1}||^2 + 2\langle u_{n_1}, u_{n_2} \rangle + ||u_{n_2}||^2 \le 2 + 2M \le 4 + 2M = (2 + M)2.$

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $\|u_{n_1} + u_{n_2} + \cdots + u_{n_j}\| \le (2+M)j$ for $j=1,2,\ldots,k$. Since $\{u_n\| \rightharpoonup u=0$ then $\lim_{n\to\infty} \langle h,u_n\rangle = \langle h,u\rangle = \langle h,0\rangle = 0$, so with $h=u_{n_1}+u_{n_2}+\cdots+u_{n_k}$, there is some $n_{k+1}>n_k$ such that $|\langle u_{n_1}+u_{n_2}+\cdots+u_{n_k},u_{n_{k+1}}\rangle| \le 1$.

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $\|u_{n_1} + u_{n_2} + \cdots + u_{n_j}\| \le (2+M)j$ for $j=1,2,\ldots,k$. Since $\{u_n\| \rightharpoonup u=0$ then $\lim_{n\to\infty} \langle h,u_n\rangle = \langle h,u\rangle = \langle h,0\rangle = 0$, so with $h=u_{n_1}+u_{n_2}+\cdots+u_{n_k}$, there is some $n_{k+1}>n_k$ such that $|\langle u_{n_1}+u_{n_2}+\cdots+u_{n_k},u_{n_{k+1}}\rangle| \le 1$.

Then

$$||u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} + u_{n_{k+1}}||^{2}$$

$$= \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} + u_{n_{k+1}}, u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} + u_{n_{k+1}} \rangle$$

$$= \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}, u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} \rangle + 2 \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}, u_{n_{k+1}} \rangle$$

$$+ \langle u_{n_{k+1}}, u_{n_{k+1}} \rangle$$

$$= ||u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}||^{2} + 2 \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}, u_{n_{k+1}} \rangle + ||u_{n_{k+1}}||^{2}$$

$$\leq (2 + M)k + 2 + M = (2 + M)(k + 1).$$

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $\|u_{n_1} + u_{n_2} + \cdots + u_{n_j}\| \le (2+M)j$ for $j=1,2,\ldots,k$. Since $\{u_n\| \rightharpoonup u=0$ then $\lim_{n\to\infty}\langle h,u_n\rangle = \langle h,u\rangle = \langle h,0\rangle = 0$, so with $h=u_{n_1}+u_{n_2}+\cdots+u_{n_k}$, there is some $n_{k+1}>n_k$ such that $|\langle u_{n_1}+u_{n_2}+\cdots+u_{n_k},u_{n_{k+1}}\rangle| \le 1$. Then

$$||u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} + u_{n_{k+1}}||^{2}$$

$$= \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} + u_{n_{k+1}}, u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} + u_{n_{k+1}} \rangle$$

$$= \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}, u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}} \rangle + 2 \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}, u_{n_{k+1}} \rangle$$

$$+ \langle u_{n_{k+1}}, u_{n_{k+1}} \rangle$$

$$= ||u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}||^{2} + 2 \langle u_{n_{1}} + u_{n_{2}} + \dots + u_{n_{k}}, u_{n_{k+1}} \rangle + ||u_{n_{k+1}}||^{2}$$

$$< (2 + M)k + 2 + M = (2 + M)(k + 1).$$

The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all $k \in \mathbb{N}$ we have $\|u_{n_1} + u_{n_2} + \cdots + u_{n_k}\|^2 \le (2 + M)k$ or

$$\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|^2\leq \frac{2+M}{k}.$$

Since M is fixed,

$$\lim_{k\to\infty}\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|\leq \lim_{k\to\infty}\sqrt{\frac{2+M}{k}}=0.$$

Therefore,

$$\lim_{k \to \infty} \frac{u_{n_1} + u_{n_2} + \dots + u_{n_k}}{k} = 0 = u,$$

and the claim holds.

The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all $k \in \mathbb{N}$ we have $\|u_{n_1} + u_{n_2} + \cdots + u_{n_k}\|^2 < (2 + M)k$ or

$$\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|^2\leq \frac{2+M}{k}.$$

Since M is fixed,

$$\lim_{k\to\infty}\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|\leq \lim_{k\to\infty}\sqrt{\frac{2+M}{k}}=0.$$

Therefore.

$$\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=0=u,$$

and the claim holds.

The Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then $\{u_n\} \to u$ strongly in H if and only if $\lim_{n \to \infty} \|u_n\| = \|u\|$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof. The norm on H is a continuous function from H to \mathbb{R} by Exercise 13.4. So if $\{u_n\} \to u$ strongly in H then $\lim_{n \to \infty} \|u_n\| = \|\lim_{n \to \infty} u_n\| = \|u\|$. Conversely, if $\lim_{n \to \infty} \|u_n\| = \|u\|$ then

$$||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2$$
 (*

for all $n \in \mathbb{N}$.

The Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then $\{u_n\} \to u$ strongly in H if and only if $\lim_{n \to \infty} \|u_n\| = \|u\|$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof. The norm on H is a continuous function from H to \mathbb{R} by Exercise 13.4. So if $\{u_n\} \to u$ strongly in H then

 $\lim_{n\to\infty}\|u_n\|=\|\lim_{n\to\infty}u_n\|=\|u\|$. Conversely, if $\lim_{n\to\infty}\|u_n\|=\|u\|$ then

$$||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2$$
 (*)

for all $n \in \mathbb{N}$. With $\{u_n\} \to u$ we have (by definition) $\lim_{n \to \infty} \langle h, u_n \rangle = \langle h, u \rangle$ for all $h \in H$, so

$$\lim_{n\to\infty} \langle u_n, u \rangle = \lim_{n\to\infty} \langle u, u_n \rangle = \langle u, u \rangle = ||u||^2.$$

The Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then $\{u_n\} \to u$ strongly in H if and only if $\lim_{n \to \infty} \|u_n\| = \|u\|$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof. The norm on H is a continuous function from H to \mathbb{R} by Exercise 13.4. So if $\{u_n\} \to u$ strongly in H then

 $\lim_{n\to\infty}\|u_n\|=\|\lim_{n\to\infty}u_n\|=\|u\|$. Conversely, if $\lim_{n\to\infty}\|u_n\|=\|u\|$ then

$$||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2$$
 (*)

for all $n \in \mathbb{N}$. With $\{u_n\} \to u$ we have (by definition) $\lim_{n \to \infty} \langle h, u_n \rangle = \langle h, u \rangle$ for all $h \in H$, so

$$\lim_{n\to\infty}\langle u_n,u\rangle=\lim_{n\to\infty}\langle u,u_n\rangle=\langle u,u\rangle=\|u\|^2.$$

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \rightharpoonup u$) in the Hilbert space H. Then

$$\{u_n\} \to u$$
 strongly in H if and only if $\lim_{n \to \infty} \|u_n\| = \|u\|$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof (continued). Therefore
$$\lim_{n\to\infty} \|u_n\|^2 - 2\langle u_n, u \rangle + \|u\|^2 = 0$$
 and so by $(*)$, $\lim_{n\to\infty} \|u_n - u\| = 0$. That is, $\{u_n\} \to u$ strongly in H .

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then $\{u_n\} \to u$ strongly in H if and only if $\lim_{n \to \infty} \|u_n\| = \|u\|$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof (continued). Therefore $\lim_{n\to\infty} \|u_n\|^2 - 2\langle u_n, u \rangle + \|u\|^2 = 0$ and so by (*), $\lim_{n\to\infty} \|u_n - u\| = 0$. That is, $\{u_n\} \to u$ strongly in H.