Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces 16.2. The Dual Space and Weak Sequential Convergence—Proofs of Theorems

¹ Theorem. The Riesz-Fréchet Representation Theorem

[Theorem 16.6](#page-12-0)

- 3 [Theorem. The Banach-Saks Theorem](#page-20-0)
- [The Radon-Riesz Theorem](#page-29-0)

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $\mathcal{T}: H \rightarrow H^*$ (where H^* is the dual space of H , the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h) : H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

 $T(h)[\alpha u+\beta v] = \langle h, \alpha u+\beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha T(h)[u] + \beta T(h)[v],$

and so $T(h)$ is linear.

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $\mathcal{T}: H \rightarrow H^*$ (where H^* is the dual space of H , the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h) : H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$
\mathcal{T}(h)[\alpha u + \beta v] = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha \mathcal{T}(h)[u] + \beta \mathcal{T}(h)[v],
$$

and so $T(h)$ is linear. By the Cauchy-Schwarz Inequality of Section 16.1, $|t(h)[u]| = |\langle h, u \rangle| \le ||h|| ||u||$ or $|T(h)[u]|/||u|| \le ||h||$ and so $T(h)$ is bounded and $||T(h)|| < ||h||$. But for $h \neq 0$ we have $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle / \|h\| = \|h\|^2 / \|h\| = \|h\|$ and so $||T(h)|| = ||h||.$

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $\mathcal{T}: H \rightarrow H^*$ (where H^* is the dual space of H , the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h) : H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$
\mathcal{T}(h)[\alpha u + \beta v] = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha \mathcal{T}(h)[u] + \beta \mathcal{T}(h)[v],
$$

and so $T(h)$ is linear. By the Cauchy-Schwarz Inequality of Section 16.1, $|t(h)[u]| = |\langle h, u \rangle| \le ||h|| ||u||$ or $|T(h)[u]|/||u|| \le ||h||$ and so $T(h)$ is bounded and $||T(h)|| \le ||h||$. But for $h \ne 0$ we have $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle / \|h\| = \|h\|^2 / \|h\| = \|h\|$ and so $\|\mathcal{T}(h)\| = \|h\|.$ So $T : H \to H^*$ is an isometry (since for $h \in H$ and $T(h) \in H^*$ we have $||h|| = ||T(h)||$).

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $\mathcal{T}: H \rightarrow H^*$ (where H^* is the dual space of H , the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h) : H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof. Let $h \in H$. Then for any $\alpha, \beta \in \mathbb{R}$ and $u, v \in H$ we have

$$
\mathcal{T}(h)[\alpha u + \beta v] = \langle h, \alpha u + \beta v \rangle = \alpha \langle h, u \rangle + \beta \langle h, v \rangle = \alpha \mathcal{T}(h)[u] + \beta \mathcal{T}(h)[v],
$$

and so $T(h)$ is linear. By the Cauchy-Schwarz Inequality of Section 16.1, $|t(h)[u]| = |\langle h, u \rangle| \le ||h|| ||u||$ or $|T(h)[u]|/||u|| \le ||h||$ and so $T(h)$ is bounded and $||T(h)|| \le ||h||$. But for $h \ne 0$ we have $T(h)[h/\|h\|] = T(h)[h]/\|h\| = \langle h, h \rangle / \|h\| = \|h\|^2 / \|h\| = \|h\|$ and so $||T(h)|| = ||h||$. So $T : H \rightarrow H^*$ is an isometry (since for $h \in H$ and $T(h) \in H^*$ we have $||h|| = ||T(h)||$).

Proof (continued). T is linear since for α , $\beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have $T(\alpha h_1+\beta h_2)[u] = \langle \alpha h_1+\beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle u_2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$

That is, T is a linear isometry.

To show T : $H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$.

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have $T(\alpha h_1+\beta h_2)[u] = \langle \alpha h_1+\beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle u_2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$

That is, T is a linear isometry.

To show $T : H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $\psi_0:\to\mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed in $\mathbb R$ then $\psi_0^{-1}(\{0\}) = \mathsf{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and since $\psi_0 \neq 0$ then Ker(ψ_0) is a proper subspace of H. By Theorem 16.3, there is unit vector $h_* \in H$ that is orthogonal to Ker(ψ_0). Define $h_0 = \psi_0(h_*)h_*$.

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have $T(\alpha h_1+\beta h_2)[u] = \langle \alpha h_1+\beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle u_2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$

That is, T is a linear isometry.

To show $T : H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $\psi_0 \rightarrow \mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed in $\mathbb R$ then $\psi_0^{-1}(\{0\}) = \mathsf{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and since $\psi_0 \neq 0$ then Ker(ψ_0) is a proper subspace of H. By Theorem 16.3, there is unit vector $h_* \in H$ that is orthogonal to Ker(ψ_0). Define $h_0 = \psi_0(h_*)h_*$. Then for $h \in H$ we have that $h - (\psi_0(h)/\psi_0(h_*))h_* \in \text{Ker}(\psi_0)$ and so h_* is orthogonal to this vector:

$$
\left\langle h - \frac{\psi_0(h)}{\psi_0(h_*)} h_*, h_* \right\rangle = 0.
$$

Proof (continued). T is linear since for $\alpha, \beta \in \mathbb{R}$ and $h_1, h_2 \in H$ we have $T(\alpha h_1+\beta h_2)[u] = \langle \alpha h_1+\beta h_2, u \rangle = \alpha \langle h_1, u \rangle_{\beta} \langle u_2, u \rangle = \alpha T(h_1)[u] + \beta T(h_2)[u]$

That is, T is a linear isometry.

To show $T : H \to H^*$ is onto, notice that $T(0)[u] = \langle 0, u \rangle = 0$ for all $u \in H$. So T maps $0 \in H$ to $0 \in H^*$. Next, let $\psi_0 \in H^*$ with $\psi_0 \neq 0$ (so $\psi_0 : \to \mathbb{R}$). Since ψ_0 is linear then it is continuous and since $\|0\|$ is closed in $\mathbb R$ then $\psi_0^{-1}(\{0\}) = \mathsf{Ker}(\psi_0)$ is closed in H (see Exercise 11.25(i)) and since $\psi_0 \neq 0$ then Ker(ψ_0) is a proper subspace of H. By Theorem 16.3, there is unit vector $h_* \in H$ that is orthogonal to Ker(ψ_0). Define $h_0 = \psi_0(h_*)h_*$. Then for $h \in H$ we have that $h - (\psi_0(h)/\psi_0(h_*))h_* \in \text{Ker}(\psi_0)$ and so h_* is orthogonal to this vector:

$$
\left\langle h - \frac{\psi_0(h)}{\psi_0(h_*)} h_*, h_* \right\rangle = 0.
$$

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $\mathcal{T}: H \rightarrow H^*$ (where H^* is the dual space of H , the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof (continued). That is,

$$
\langle h, h_* \rangle - \frac{\psi_0(h)}{\psi_0(h_*)} \langle h_*, h_* \rangle = 0
$$

or $\langle h, h_* \rangle - \psi_0(h)/\psi_0(h_*) = 0$ (since $\|h_*\| = 1$ by choice) or $\psi_0(h_*)\langle h, h_*\rangle - \psi_0(h) = 0$ or $\psi_0(h) = \langle h, \psi_0(h_*)h_*\rangle = \langle h, h_0\rangle = \mathcal{T}(h_0)[h].$ That is, $\psi_0 \in H^*$ and $\mathcal{T}(h_0) \in H^*$ are the same for all $h \in H$. Hence $T(h_0) = \psi_0$ and so T maps H onto H^{*}, as claimed.

The Riesz-Fréchet Representation Theorem.

Let H be a Hilbert space. Define the operator $\mathcal{T}: H \rightarrow H^*$ (where H^* is the dual space of H , the linear space of all bounded linear functionals on H) by assigning to each $h \in H$ the linear functional $T(h): H \to \mathbb{R}$ defined by $T(h)[u] = \langle h, u \rangle$ for all $h \in H$. Then T is a linear isometry of H onto H^* .

Proof (continued). That is,

$$
\langle h, h_* \rangle - \frac{\psi_0(h)}{\psi_0(h_*)} \langle h_*, h_* \rangle = 0
$$

or $\langle h, h_* \rangle - \psi_0(h)/\psi_0(h_*) = 0$ (since $\|h_*\| = 1$ by choice) or $\psi_0(h_*)\langle h, h_*\rangle - \psi_0(h) = 0$ or $\psi_0(h) = \langle h, \psi_0(h_*)h_*\rangle = \langle h, h_0\rangle = \mathcal{T}(h_0)[h].$ That is, $\psi_0 \in H^*$ and $\mathcal{T}(h_0) \in H^*$ are the same for all $h \in H$. Hence $T(h_0) = \psi_0$ and so T maps H onto H^* , as claimed. П

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of $\{h_n\}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 .

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of ${h_n}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable **and dense in** H_0 **.** For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for all $h \in H_0$. For $h \in H$ with $||h|| = 1$ we have $|\psi_n(h)| = |\langle h_n, h \rangle| \le ||h_n|| ||h||$ by the Cauchy-Schwarz Inequality, and so $\|\psi_n\| \leq \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded.

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of ${h_n}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 . For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for all $h \in H_0$. For $h \in H$ with $||h|| = 1$ we have $|\psi_n(h)| = |\langle h_n, h \rangle| \le ||h_n|| ||h||$ by the Cauchy-Schwarz Inequality, and so $\|\psi_n\| \leq \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded. Then $\|\psi_n\|$ is a bounded sequence of bounded linear functionals on the separable linear space H_0 . By Helley's Theorem (see page 283) there is a subsequence $\{\psi_{n_k}\}$ of $\{\psi_n\}$ that converges pointwise to some $\psi_0\in H_0^*.$ By the Riesz-Fréchet Representation Theorem, there is $h_0 \in H_0$ for which $\psi_0 = \mathcal{T}(h_0)$ (that is, $\psi_0(h) = \mathcal{T}(h_0)[h] = \langle h_0, h \rangle$ for all $h \in H_0$).

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in H. Define H_0 to be the closed linear span of $\{h_n\}$ (that is, the topological closure of the span of ${h_n}$; see page 254). Then H_0 is separable since the set of all linear combinations of elements of $\{h_n\}$ with rational coefficients is countable and dense in H_0 . For each $n \in \mathbb{N}$, define $\psi_n \in H_0^*$ as $\psi_n(h) = \langle h_n, h \rangle$ for all $h \in H_0$. For $h \in H$ with $||h|| = 1$ we have $|\psi_n(h)| = |\langle h_n, h \rangle| \le ||h_n|| ||h||$ by the Cauchy-Schwarz Inequality, and so $\|\psi_n\| \leq \|h_n\|$. Since $\{h_n\}$ is a bounded then $\{\psi_n\}$ is bounded. Then $\|\psi_n\|$ is a bounded sequence of bounded linear functionals on the separable linear space H_0 . By Helley's Theorem (see page 283) there is a subsequence $\{\psi_{n_k}\}$ of $\{\psi_n\}$ that converges pointwise to some $\psi_0\in H_0^*.$ By the Riesz-Fréchet Representation Theorem, there is $h_0 \in H_0$ for which $\psi_0 = \mathcal{T}(h_0)$ (that is, $\psi_0(h) = \mathcal{T}(h_0)[h] = \langle h_0, h \rangle$ for all $h \in H_0$).

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Now the "pointwise convergence" of $\{\psi_{n_k}\}$ to ψ_0 means that for all points $h \in H_0$ we have

$$
\lim_{k\to\infty}\psi_{n_k}(h)=\psi_0(h)\,\,\text{of}\,\,\lim_{k\to\infty}\langle h_{n_k},h\rangle=\langle h_0,h\rangle\,\,\text{for all}\,\,h\in H_0.\tag{*}
$$

(This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show $\left\{\bm{\mathit{h}}_{\bm{\mathit{n}}_k}\right\} \rightharpoonup \bm{\mathit{h}}_{\bm{0}}$ in $H_{\bm{0}}).$ Let P be the orthogonal projection mapping from H onto H_0 (so P projects $H = H_0 \oplus H_0^{\perp}$ onto H_0). For each $k \in \mathbb{N}$, since $(\mathsf{Id} - P)[H] = P(H)^{\perp} = H_0^{\perp}$, we have $\langle h_{n_k}, (\mathsf{Id} - P)[h] \rangle = 0$ for all $h \in H$, since $h_{n_k} \in H_0$ and $\langle h_0, (Id - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$.

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Now the "pointwise convergence" of $\{\psi_{n_k}\}$ to ψ_0 means that for all points $h \in H_0$ we have

$$
\lim_{k\to\infty}\psi_{n_k}(h)=\psi_0(h)\,\,\text{of}\,\,\lim_{k\to\infty}\langle h_{n_k},h\rangle=\langle h_0,h\rangle\,\,\text{for all}\,\,h\in H_0.\tag{*}
$$

(This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show that $\{h_{n_k}\}\rightharpoonup h_0$ in $H_0)$. Let P be the orthogonal projection mapping from H onto \bar{H}_0 (so P projects $H=H_0\oplus H_0^\perp$ onto $H_0)$. For each $k\in\mathbb{N}$, since $(\mathsf{Id}-P)[H]=P(H)^{\perp}=H_0^{\perp}$, we have $\langle h_{n_k},(\mathsf{Id}-P)[h]\rangle=0$ for all $h\in H,$ since $h_{n_k} \in H_0$ and $\langle h_0, (Id - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$. Next, for all $h \in H$ we have

 $\langle h_{n_k}, h \rangle = \langle h_{n_k}, (Id - P)[h] \rangle = \langle h_{n_k}, (Id - P)[h] \rangle + \langle h_{n_k}, P[h] \rangle = \langle h_{n_k}, P[h] \rangle$ and similarly $\langle h_0, h \rangle = \langle h_0, P[h] \rangle$.

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Now the "pointwise convergence" of $\{\psi_{n_k}\}$ to ψ_0 means that for all points $h \in H_0$ we have

$$
\lim_{k\to\infty}\psi_{n_k}(h)=\psi_0(h)\,\,\text{of}\,\,\lim_{k\to\infty}\langle h_{n_k},h\rangle=\langle h_0,h\rangle\,\,\text{for all}\,\,h\in H_0.\tag{*}
$$

(This shows that $\{h_{n_k}\}$ converges weakly to h_0 in H_0 ; we must still show that $\{h_{n_k}\}\rightharpoonup h_0$ in $H_0)$. Let P be the orthogonal projection mapping from H onto \bar{H}_0 (so P projects $H=H_0\oplus H_0^\perp$ onto $H_0)$. For each $k\in\mathbb{N}$, since $(\mathsf{Id}-P)[H]=P(H)^{\perp}=H_0^{\perp}$, we have $\langle h_{n_k},(\mathsf{Id}-P)[h]\rangle=0$ for all $h\in H,$ since $h_{n_k} \in H_0$ and $\langle h_0, (Id - P)[h] \rangle = 0$ for all $h \in H$, since $h_0 \in H_0$. Next, for all $h \in H$ we have

$$
\langle h_{n_k}, h \rangle = \langle h_{n_k}, (Id - P)[h] \rangle = \langle h_{n_k}, (Id - P)[h] \rangle + \langle h_{n_k}, P[h] \rangle = \langle h_{n_k}, P[h] \rangle
$$

and similarly $\langle h_0, h \rangle = \langle h_0, P[h] \rangle$.

Theorem 16.6 (continued 2)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a weakly convergent subsequence.

Proof (continued). Since $P[h] \in H_0$,

$$
\lim_{k \to \infty} \langle h_{n_k}, h \rangle = \lim_{k \to \infty} \langle h_{n_k}, P[h] \rangle
$$

= $\langle h_0, P[h] \rangle$ by (*)
= $\langle h_0, h \rangle$ for all $h \in H$.

Therefore, by definition, $\{h_{n_k}\}$ converges weakly to h_0 in $H.$

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}\,$ of $\{u_n\}$ for which

$$
\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u\text{ (strongly) in }H.
$$

Proof. Replacing each u_n with $u_n - u$ we may suppose without loss of generality that $u = 0$. A weakly convergent sequence is bounded by Proposition 16.7, we may choose $M>0$ such that $\|u_n\|^2\leq M$ for all $n \in \mathbb{N}$.

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}\,$ of $\{u_n\}$ for which

$$
\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u\text{ (strongly) in }H.
$$

Proof. Replacing each u_n with $u_n - u$ we may suppose without loss of generality that $u = 0$. A weakly convergent sequence is bounded by Proposition 16.7, we may choose $M>0$ such that $\|u_n\|^2\leq M$ for all $n \in \mathbb{N}$.

Define $n_1 = 1$. Since $\{u_n\} \rightarrow u = 0$ then, by definition, $\lim_{n\to\infty}\langle h,u_n\rangle = \langle h,0\rangle = 0$ for all $h\in H$ and so with $h=u_n=u_{n_1},$ there is some $n_2 \in \mathbb{N}$ with $n_2 > n_1$ such that $|\langle u_{n_1}, u_{n_2} \rangle| \leq 1$.

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}\,$ of $\{u_n\}$ for which

$$
\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u\text{ (strongly) in }H.
$$

Proof. Replacing each u_n with $u_n - u$ we may suppose without loss of generality that $u = 0$. A weakly convergent sequence is bounded by Proposition 16.7, we may choose $M>0$ such that $\|u_n\|^2\leq M$ for all $n \in \mathbb{N}$.

Define $n_1 = 1$. Since $\{u_n\} \rightarrow u = 0$ then, by definition, $\lim_{n\to\infty}\langle h,u_n\rangle = \langle h,0\rangle = 0$ for all $h\in H$ and so with $h=u_n=u_{n_1},$ there is some $n_2 \in \mathbb{N}$ with $n_2 > n_1$ such that $|\langle u_{n_1}, u_{n_2} \rangle| \leq 1$. Then

$$
||u_{n_1} + u_{n_2}||^2 = \langle u_{n_1} + u_{n_2}, u_{n_1} + u_{n_2} \rangle
$$

= $||u_{n_1}||^2 + 2\langle u_{n_1}, u_{n_2}\rangle + ||u_{n_2}||^2 \le 2 + 2M \le 4 + 2M = (2 + M)2.$

Theorem. The Banach-Saks Theorem.

Let $\{u_n\} \rightharpoonup u$ weakly in Hilbert space H. Then there is a subsequence $\{u_{n_k}\}\,$ of $\{u_n\}$ for which

$$
\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=u\text{ (strongly) in }H.
$$

Proof. Replacing each u_n with $u_n - u$ we may suppose without loss of generality that $u = 0$. A weakly convergent sequence is bounded by Proposition 16.7, we may choose $M>0$ such that $\|u_n\|^2\leq M$ for all $n \in \mathbb{N}$.

Define $n_1 = 1$. Since $\{u_n\} \rightharpoonup u = 0$ then, by definition, $\lim_{n\to\infty}\langle h,u_n\rangle = \langle h,0\rangle = 0$ for all $h\in H$ and so with $h=u_n=u_{n_1},$ there is some $n_2 \in \mathbb{N}$ with $n_2 > n_1$ such that $|\langle u_{n_1}, u_{n_2} \rangle| \leq 1$. Then

$$
||u_{n_1} + u_{n_2}||^2 = \langle u_{n_1} + u_{n_2}, u_{n_1} + u_{n_2} \rangle
$$

= $||u_{n_1}||^2 + 2\langle u_{n_1}, u_{n_2} \rangle + ||u_{n_2}||^2 \le 2 + 2M \le 4 + 2M = (2 + M)2.$
¹ Read Analysis
March 4, 2017 9/13

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $\| u_{n_1} + u_{n_2} + \cdots + u_{n_j} \| \leq (2+M)j$ for $j = 1, 2, \ldots, k$. Since $\{u_n\} \rightarrow u = 0$ then $\lim_{n\to\infty}\langle h, u_n\rangle = \langle h, u\rangle = \langle h, 0\rangle = 0$, so with $h = u_{n_1} + u_{n_2} + \cdots + u_{n_k}$, there is some $n_{k+1} > n_k$ such that $|\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle| \leq 1$.

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $\| u_{n_1} + u_{n_2} + \cdots + u_{n_j} \| \leq (2+M)j$ for $j = 1, 2, \ldots, k$. Since $\{u_n\} \rightarrow u = 0$ then $\lim_{n\to\infty}\langle h, u_n\rangle = \langle h, u\rangle = \langle h, 0\rangle = 0$, so with $h = u_{n_1} + u_{n_2} + \cdots + u_{n_k}$, there is some $n_{k+1} > n_k$ such that $|\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle| \leq 1$. Then

$$
||u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}}||^2
$$

$$
= \langle u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}}, u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}} \rangle
$$

 $= \langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_1} + u_{n_2} + \cdots + u_{n_k} \rangle + 2\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle$ $+\langle u_{n_{k+1}}, u_{n_{k+1}} \rangle$

 $= ||u_{n_1} + u_{n_2} + \cdots + u_{n_k}||^2 + 2\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}}\rangle + ||u_{n_{k+1}}||^2$ $\leq (2 + M)k + 2 + M = (2 + M)(k + 1).$

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers $n_1 < n_2 < \cdots < n_k$ such that $\| u_{n_1} + u_{n_2} + \cdots + u_{n_j} \| \leq (2+M)j$ for $j = 1, 2, \ldots, k$. Since $\{u_n\} \rightarrow u = 0$ then $\lim_{n\to\infty}\langle h, u_n\rangle = \langle h, u\rangle = \langle h, 0\rangle = 0$, so with $h = u_{n_1} + u_{n_2} + \cdots + u_{n_k}$, there is some $n_{k+1} > n_k$ such that $|\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle| \leq 1$. Then

$$
||u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}}||^2
$$

= $\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}}, u_{n_1} + u_{n_2} + \cdots + u_{n_k} + u_{n_{k+1}} \rangle$
= $\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_1} + u_{n_2} + \cdots + u_{n_k} \rangle + 2\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle$
+ $\langle u_{n_{k+1}}, u_{n_{k+1}} \rangle$
= $||u_{n_1} + u_{n_2} + \cdots + u_{n_k}||^2 + 2\langle u_{n_1} + u_{n_2} + \cdots + u_{n_k}, u_{n_{k+1}} \rangle + ||u_{n_{k+1}}||^2$
 $\leq (2 + M)k + 2 + M = (2 + M)(k + 1).$

The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all $k \in \mathbb{N}$ we have $||u_{n_1} + u_{n_2} + \cdots + u_{n_k}||^2 \leq (2 + M)k$ or

$$
\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|^2\leq \frac{2+M}{k}.
$$

Since M is fixed,

$$
\lim_{k\to\infty}\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|\leq \lim_{k\to\infty}\sqrt{\frac{2+M}{k}}=0.
$$

Therefore,

$$
\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=0=u,
$$

and the claim holds.

The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all $k \in \mathbb{N}$ we have $||u_{n_1} + u_{n_2} + \cdots + u_{n_k}||^2 \leq (2 + M)k$ or

$$
\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|^2\leq \frac{2+M}{k}.
$$

Since M is fixed,

$$
\lim_{k\to\infty}\left\|\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}\right\|\leq \lim_{k\to\infty}\sqrt{\frac{2+M}{k}}=0.
$$

Therefore,

$$
\lim_{k\to\infty}\frac{u_{n_1}+u_{n_2}+\cdots+u_{n_k}}{k}=0=u,
$$

and the claim holds.

The Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let $\{u_n\} \rightarrow u$ weakly (that is, $\{u_n\} \rightarrow u$) in the Hilbert space H. Then ${u_n} \rightarrow u$ strongly in H if and only if $\lim_{n\to\infty} ||u_n|| = ||u||$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof. The norm on H is a continuous function from H to $\mathbb R$ by Exercise 13.4. So if $\{u_n\} \rightarrow u$ strongly in H then $\lim_{n\to\infty} ||u_n|| = ||\lim_{n\to\infty} u_n|| = ||u||$. Conversely, if $\lim_{n\to\infty} ||u_n|| = ||u||$ then

$$
||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2 \qquad (*)
$$

for all $n \in \mathbb{N}$.

The Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then ${u_n} \rightarrow u$ strongly in H if and only if $\lim_{n\to\infty} ||u_n|| = ||u||$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof. The norm on H is a continuous function from H to $\mathbb R$ by Exercise 13.4. So if $\{u_n\} \rightarrow u$ strongly in H then $\lim_{n\to\infty} ||u_n|| = ||\lim_{n\to\infty} u_n|| = ||u||$. Conversely, if $\lim_{n\to\infty} ||u_n|| = ||u||$ then

$$
||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2 \qquad (*)
$$

for all $n \in \mathbb{N}$ **.** With $\{u_n\} \to u$ we have (by definition) $\lim_{n\to\infty}\langle h, u_n\rangle = \langle h, u\rangle$ for all $h \in H$, so

 $\lim_{n\to\infty}\langle u_n, u\rangle = \lim_{n\to\infty}\langle u, u_n\rangle = \langle u, u\rangle = ||u||^2.$

The Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then ${u_n} \rightarrow u$ strongly in H if and only if $\lim_{n\to\infty} ||u_n|| = ||u||$.

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof. The norm on H is a continuous function from H to $\mathbb R$ by Exercise 13.4. So if $\{u_n\} \rightarrow u$ strongly in H then $\lim_{n\to\infty} ||u_n|| = ||\lim_{n\to\infty} u_n|| = ||u||$. Conversely, if $\lim_{n\to\infty} ||u_n|| = ||u||$ then

$$
||u_n - u||^2 = ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2 \qquad (*)
$$

for all $n \in \mathbb{N}$. With $\{u_n\} \to u$ we have (by definition) $\lim_{n\to\infty}\langle h, u_n\rangle = \langle h, u\rangle$ for all $h \in H$, so

 $\lim_{n\to\infty}\langle u_n, u\rangle = \lim_{n\to\infty}\langle u, u_n\rangle = \langle u, u\rangle = ||u||^2.$

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then

$$
\{u_n\} \to u \text{ strongly in } H \text{ if and only if } \lim_{n \to \infty} ||u_n|| = ||u||.
$$

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof (continued). Therefore $\lim_{n\to\infty} ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2 = 0$ and so by (*), $\lim_{n\to\infty} ||u_n - u|| = 0$. That is, $\{u_n\} \to u$ strongly in H.

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let $\{u_n\} \to u$ weakly (that is, $\{u_n\} \to u$) in the Hilbert space H. Then

$$
\{u_n\} \to u \text{ strongly in } H \text{ if and only if } \lim_{n \to \infty} ||u_n|| = ||u||.
$$

Here, "strong convergence" means convergence with respect to the Hilbert space norm.

Proof (continued). Therefore $\lim_{n\to\infty} ||u_n||^2 - 2\langle u_n, u \rangle + ||u||^2 = 0$ and so by (*), $\lim_{n\to\infty} ||u_n - u|| = 0$. That is, $\{u_n\} \to u$ strongly in H.