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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem.
Let H be a Hilbert space. Define the operator T : H → H∗ (where H∗ is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h ∈ H the linear functional T (h) : H → R defined
by T (h)[u] = 〈h, u〉 for all h ∈ H. Then T is a linear isometry of H onto
H∗.

Proof. Let h ∈ H. Then for any α, β ∈ R and u, v ∈ H we have

T (h)[αu+βv) = 〈h, αu+βv〉 = α〈h, u〉+β〈h, v〉 = αT (h)[u]+βT (h)[v ],

and so T (h) is linear.

By the Cauchy-Schwarz Inequality of Section 16.1,
|t(h)[u]| = |〈h, u〉| ≤ ‖h‖‖u‖ or |T (h)[u]|/‖u‖ ≤ ‖h‖ and so T (h) is
bounded and ‖T (h)‖ ≤ ‖h‖. But for h 6= 0 we have
T (h)[h/‖h‖] = T (h)[h]/‖h‖ = 〈h, h〉/‖h‖ = ‖h‖2/‖h‖ = ‖h‖ and so
‖T (h)‖ = ‖h‖. So T : H → H∗ is an isometry (since for h ∈ H and
T (h) ∈ H∗ we have ‖h‖ = ‖T (h)‖).
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The Riesz-Fréchet Representation Theorem
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem, continued 1

Proof (continued). T is linear since for α, β ∈ R and h1, h2 ∈ H we have

T (αh1+βh2)[u] = 〈αh1+βh2, u〉 = α〈h1, u〉β〈2, u〉 = αT (h1)[u]+βT (h2)[u] for all u ∈ H.

That is, T is a linear isometry.

To show T : H → H∗ is onto, notice that T (0)[u] = 〈0, u〉 = 0 for all
u ∈ H. So T maps 0 ∈ H to 0 ∈ H∗.

Next, let ψ0 ∈ H∗ with ψ0 6= 0 (so
ψ0 :→ R). Since ψ0 is linear then it is continuous and since ‖0‖ is closed
in R then ψ−1

0 ({0}) = Ker(ψ0) is closed in H (see Exercise 11.25(i)) and
since ψ0 6= 0 then Ker(ψ0) is a proper subspace of H. By Theorem 16.3,
there is unit vector h∗ ∈ H that is orthogonal to Ker(ψ0). Define
h0 = ψ0(h∗)h∗. Then for h ∈ H we have that
h − (ψ0(h)/ψ0(h∗))h∗ ∈ Ker(ψ0) and so h∗ is orthogonal to this vector:〈

h − ψ0(h)

ψ0(h∗)
h∗, h∗

〉
= 0.
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Theorem. The Riesz-Fréchet Representation Theorem

The Riesz-Fréchet Representation Theorem, continued 2

The Riesz-Fréchet Representation Theorem.
Let H be a Hilbert space. Define the operator T : H → H∗ (where H∗ is
the dual space of H, the linear space of all bounded linear functionals on
H) by assigning to each h ∈ H the linear functional T (h) : H → R defined
by T (h)[u] = 〈h, u〉 for all h ∈ H. Then T is a linear isometry of H onto
H∗.

Proof (continued). That is,

〈h, h∗〉 −
ψ0(h)

ψ0(h∗)
〈h∗, h∗〉 = 0

or 〈h, h∗〉 − ψ0(h)/ψ0(h∗) = 0 (since ‖h∗‖ = 1 by choice) or
ψ0(h∗)〈h, h∗〉 − ψ0(h) = 0 or ψ0(h) = 〈h, ψ0(h∗)h∗〉 = 〈h, h0〉 = T (h0)[h].
That is, ψ0 ∈ H∗ and T (h0) ∈ H∗ are the same for all h ∈ H. Hence
T (h0) = ψ0 and so T maps H onto H∗, as claimed.
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Theorem 16.6

Theorem 16.6

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof. Let {hn}∞n=1 be a bounded sequence in H. Define H0 to be the
closed linear span of {hn} (that is, the topological closure of the span of
{hn}; see page 254). Then H0 is separable since the set of all linear
combinations of elements of {hn} with rational coefficients is countable
and dense in H0.

For each n ∈ N, define ψn ∈ H∗0 as ψn(h) = 〈hn, h〉 for
all h ∈ H0. For h ∈ H with ‖h‖ = 1 we have
|ψn(h)| = |〈hn, h〉| ≤ ‖hn‖‖h‖ by the Cauchy-Schwarz Inequality, and so
‖ψn‖ ≤ ‖hn‖. Since {hn} is a bounded then {ψn} is bounded. Then ‖ψn}
is a bounded sequence of bounded linear functionals on the separable
linear space H0. By Helley’s Theorem (see page 283) there is a
subsequence {ψnk

} of {ψn} that converges pointwise to some ψ0 ∈ H∗0 .
By the Riesz-Fréchet Representation Theorem, there is h0 ∈ H0 for which
ψ0 = T (h0) (that is, ψ0(h) = T (h0)[h] = 〈h0, h〉 for all h ∈ H0).
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By the Riesz-Fréchet Representation Theorem, there is h0 ∈ H0 for which
ψ0 = T (h0) (that is, ψ0(h) = T (h0)[h] = 〈h0, h〉 for all h ∈ H0).

() Real Analysis March 4, 2017 6 / 13



Theorem 16.6

Theorem 16.6 (continued 1)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Now the “pointwise convergence” of {ψnk
} to ψ0

means that for all points h ∈ H0 we have

lim
k→∞

ψnk
(h) = ψ0(h) of lim

k→∞
〈hnk

, h〉 = 〈h0, h〉 for all h ∈ H0. (∗)

(This shows that {hnk
} converges weakly to h0 in H0; we must still show

that {hnk
}⇀ h0 in H0). Let P be the orthogonal projection mapping from

H onto H0 (so P projects H = H0 ⊕ H⊥0 onto H0). For each k ∈ N, since
(Id− P)[H] = P(H)⊥ = H⊥0 , we have 〈hnk

, (Id− P)[h]〉 = 0 for all h ∈ H,
since hnk

∈ H0 and 〈h0, (Id− P)[h]〉 = 0 for all h ∈ H, since h0 ∈ H0.

Next, for all h ∈ H we have

〈hnk
, h〉 = 〈hnk

, (Id−P)[h]〉 = 〈hnk
, (Id−P)[h]〉+ 〈hnk

,P]h]〉 = 〈hnk
,P[h]〉

and similarly 〈h0, h〉 = 〈h0,P[h]〉.
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Theorem 16.6

Theorem 16.6 (continued 2)

Theorem 16.6. Every bounded sequence in a Hilbert space H has a
weakly convergent subsequence.

Proof (continued). Since P[h] ∈ H0,

lim
k→∞

〈hnk
, h〉 = lim

k→∞
〈hnk

,P[h]〉

= 〈h0,P[h]〉 by (∗)
= 〈h0, h〉 for all h ∈ H.

Therefore, by definition, {hnk
} converges weakly to h0 in H.
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Theorem. The Banach-Saks Theorem

The Banach-Saks Theorem

Theorem. The Banach-Saks Theorem.
Let {un}⇀ u weakly in Hilbert space H. Then there is a subsequence
{unk

} of {un} for which

lim
k→∞

un1 + un2 + · · ·+ unk

k
= u (strongly) in H.

Proof. Replacing each un with un − u we may suppose without loss of
generality that u = 0. A weakly convergent sequence is bounded by
Proposition 16.7, we may choose M > 0 such that ‖un‖2 ≤ M for all
n ∈ N.

Define n1 = 1. Since {un}⇀ u = 0 then, by definition,
limn→∞〈h, un〉 = 〈h, 0〉 = 0 for all h ∈ H and so with h = un = un1 , there
is some n2 ∈ N with n2 > n1 such that |〈un1 , un2〉| ≤ 1. Then

‖un1 + un2‖2 = 〈un1 + un2 , un1 + un2〉
= ‖un1‖2 + 2〈un1 , un2〉+ ‖un2‖2 ≤ 2 + 2M ≤ 4 + 2M = (2 + M)2.
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Define n1 = 1. Since {un}⇀ u = 0 then, by definition,
limn→∞〈h, un〉 = 〈h, 0〉 = 0 for all h ∈ H and so with h = un = un1 , there
is some n2 ∈ N with n2 > n1 such that |〈un1 , un2〉| ≤ 1.

Then

‖un1 + un2‖2 = 〈un1 + un2 , un1 + un2〉
= ‖un1‖2 + 2〈un1 , un2〉+ ‖un2‖2 ≤ 2 + 2M ≤ 4 + 2M = (2 + M)2.
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Theorem. The Banach-Saks Theorem

The Banach-Saks Theorem (continued 1)

Proof (continued). Suppose we have chosen natural numbers
n1 < n2 < · · · < nk such that ‖un1 + un2 + · · ·+ unj‖ ≤ (2 + M)j for
j = 1, 2, . . . , k. Since {un‖⇀ u = 0 then
limn→∞〈h, un〉 = 〈h, u〉 = 〈h, 0〉 = 0, so with h = un1 + un2 + · · ·+ unk

,
there is some nk+1 > nk such that |〈un1 + un2 + · · ·+ unk

, unk+1
〉| ≤ 1.

Then
‖un1 + un2 + · · ·+ unk

+ unk+1
‖2

= 〈un1 + un2 + · · ·+ unk
+ unk+1

, un1 + un2 + · · ·+ unk
+ unk+1

〉

= 〈un1 +un2 + · · ·+unk
, un1 +un2 + · · ·+unk

〉+2〈un1 +un2 + · · ·+unk
, unk+1

〉

+〈unk+1
, unk+1

〉

= ‖un1 + un2 + · · ·+ unk
‖2 + 2〈un1 + un2 + · · ·+ unk

, unk+1
〉+ ‖unk+1

‖2

≤ (2 + M)k + 2 + M = (2 + M)(k + 1).
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Theorem. The Banach-Saks Theorem

The Banach-Saks Theorem (continued 2)

Proof (continued). So by mathematical induction, for all k ∈ N we have
‖un1 + un2 + · · ·+ unk

‖2 ≤ (2 + M)k or∥∥∥∥un1 + un2 + · · ·+ unk

k

∥∥∥∥2

≤ 2 + M

k
.

Since M is fixed,

lim
k→∞

∥∥∥∥un1 + un2 + · · ·+ unk

k

∥∥∥∥ ≤ lim
k→∞

√
2 + M

k
= 0.

Therefore,

lim
k→∞

un1 + un2 + · · ·+ unk

k
= 0 = u,

and the claim holds.
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The Radon-Riesz Theorem

The Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let {un} → u weakly (that is, {un}⇀ u) in the Hilbert space H. Then

{un} → u strongly in H if and only if lim
n→∞

‖un‖ = ‖u‖.

Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof. The norm on H is a continuous function from H to R by Exercise
13.4. So if {un} → u strongly in H then
limn→∞ ‖un‖ = ‖limn→∞ un‖ = ‖u‖. Conversely, if limn→∞ ‖un‖ = ‖u‖
then

‖un − u‖2 = ‖un‖2 − 2〈un, u〉+ ‖u‖2 (∗)
for all n ∈ N.

With {un} → u we have (by definition)
limn→∞〈h, un〉 = 〈h, u〉 for all h ∈ H, so

lim
n→∞

〈un, u〉 = lim
n→∞

〈u, un〉 = 〈u, u〉 = ‖u‖2.
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The Radon-Riesz Theorem

The Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.
Let {un} → u weakly (that is, {un}⇀ u) in the Hilbert space H. Then

{un} → u strongly in H if and only if lim
n→∞

‖un‖ = ‖u‖.

Here, “strong convergence” means convergence with respect to the Hilbert
space norm.

Proof (continued). Therefore limn→∞ ‖un‖2 − 2〈un, u〉+ ‖u‖2 = 0 and
so by (∗), limn→∞ ‖un − u‖ = 0. That is, {un} → u strongly in H.
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