Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces
16.3. Bessel's Inequality and Orthonormal Bases—Proofs of Theorems
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Theorem. The General Pythagorean Identity

The General Pythagorean Identity, continued

Theorem. The General Pythagorean ldentity.

If ui,un,...,u, are n orthonormal vectors in H, and a1, ap,...,a, € R
then

|loaur + agup + -+ - + Q:::__M = _ca_N + _QN_N + -+ _Q:_m.

Proof (continued).

= MU o? since (uj, uj) = ||u;||?> = 1 because uy, us, . .., u, are orthonormal
1<i<n

= > il = Jeaf + laaf + - + Janl?.
1<i<n

0
0 ]
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Theorem. The General Pythagorean Identity

The General Pythagorean Identity
Theorem. The General Pythagorean ldentity.

If uy,up, ..., u, are n orthonormal vectors in H, and a1, o,
then

...,ap €R
larur + apup + -+ + Q::z__M = _oﬁ_M + _QN_M +oe _Q:_w.

Proof. We have

latuy + asus + -+ - + apun||® = (a1uy + agus + - - - + aptp,

> (i, aju)

aquy + Qoup + -+ -+ aplp) =

1<ij<n
= M ajo(uj, uj) = M aja(uj, up) since (uj, uj) =0 for i # j
1<ij<n 1<i<n
because u1, up, ..., u, are orthogonal
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Theorem. Bessel's Inequality

Bessel's Inequality
Theorem. Bessel’s Inequality.
For {¢«} an orthonormal sequence in H and h € H, MUAG? h)2 < || Al

k=1
Proof. For fixed n € N define h, = Y} _; (pk, h)ok. Then

0 < |[lh— hall? = (1Al = 2(h, ) + || a2

n
= 81> =2(h Y (eox Mo ) + l[all?
k=1

= [Al> =2 (h o) (er by + > (h o)
k=1 k=1

by the General Pythagorean Identity

n

= [h> =Y _(h.on)?*

k=1
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Theorem. Bessel's Inequality

Bessel's Inequality (continued)

Theorem. Bessel’s Inequality.

o0
For {¢k} an orthonormal sequence in H and h € H, MUAG? h)? < ||h||2.
k=1

Proof (continued) . Therefore

> (i) < |l
Since n is arbitrary,

(@)

MATV ﬁwvw < __}__Mu
as claimed.

0
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Proposition 16.9

Proposition 16.9 (continued 1)

Proof. Therefore {h,} is a Cauchy sequence in H. Since H is complete

then {hn} = > 4_1{¢k, Nk — hy € H. Thatis, >} _1{¢k, )¢k
converges strongly in H.

Fix m & N. If n > m, then

n n

Ar — hp, ﬁsv =
k=1 k=1

= (h,om) = (©m: h){(©m, ¢m) since (i, om) =0 for k #m

because {¢} is an orthogonal set

= A}vﬁ\:v - Amblj }v m:._ﬁm __63__N = Aﬁljﬁz,_v = H
0.

By the continuity of the inner product (that is, for {u,} — v and v € H,
limp—oo(Un, v) = (u, v); this follows from Proposition 16.7) we have

0 ]
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h—= (P Byis om ) = (h,om) = > _(0us Yk, om)
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Proposition 16.9

Proposition 16.9

Proposition 16.9. Let {¢x} be an orthonormal sequence in a Hilbert
space H and let h € H. Then the series Y - ; (¢, h)¢k converges
strongly in H and the vector h — >"72 , (¢, h)py is orthogonal to each .

Proof. For each n € N, define h, = Y} _; (p«, h)pk. By the General
Pythagorean Identity, for each pair of natural number n and k,
2

n+k n+k
__\.:1‘» - }:__m = MU Aﬁ? bvﬁ_. = MU AﬁT }Vm
5”31_7”_. ~H3+”_.

By Bessel's Inequality, 22, (i, h)? < ||h||? so for £ > 0, there is N. € N
such that for all m,n > N (say m > n) we have
m [e.9]
lam = mal? = (1. M2 < > (pih)? <e

i=n i=n+1

(since the tail of a convergent sequence of real numbers must get small).
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Proposition 16.9

Proposition 16.9 (continued 2)

Proposition 16.9. Let {¢x} be an orthonormal sequence in a Hilbert
space H and let h € H. Then the series Y - ; (¢, h)@k converges
strongly in H and the vector h — >"72 , (¢, h)py is orthogonal to each .

Proof (continued).

oo
h—he=h=> (o, hypi=h— lim
k=1

n—oo n—oo
k=1
and so
(h— hy, ok = ? — lim S%sv — lim (h— hp,om) = 0.
n—oo n—oo
Since m € N is arbitrary, h — h, is orthogonal to ¢, for all m € N. ]
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Lemma 16.3.A

Proposition 16.10

Lemma 16.3.A Proposition 16.10

Proposition 16.10. An orthonormal sequence {p} is a Hilbert space H
Lemma 16.3.A. Let ﬁﬁ»% be an orthonormal sequence In Hilbert space H. is ﬁO—j—U_m.ﬁm if and OS_V\ if it is an orthonormal basis.

Then {¢k} is complete if and only if the closed linear span of {¢k} is H.

Proof. First, assume {¢} is complete. Since {¢} is an orthonormal

Proof. Suppose S = {¢k} is complete. Then ﬁ:m only vector that is sequence. Then by Proposition 16.9, for any h € H, h— "7, (¢k, )i is
orthogonal to every element of S is 0; that is, - = {0}. So by Corollary orthogonal to wach . Since {¢k} is complete then, by definition, the
16.4, the linear space of S is all of H. only vector orthogonal to every ¢y is 0. So for all h € H we have
— o . .

Suppose the closed linear span of S is H. Then by Corollary 16.4, h =73 " 1(ok, h)wk. Therefore {pk} is an orthonormal basis for H.
S+ ={0}. That is, the only m._mBm:ﬁ of H orthogonal to every element of Conversely, suppose {¢k} is an orthonormal basis for H. Then if h € H is
S ={¢k} is 0. So, by the definition of “complete,” S = {p} is orthogonal to all ¢y then h =377 (pk, h)px =D 7o 0k = 0. So the
complete. [ only vector h € H that is orthogonal to every ¢, is h = 0. That is, {pk} is

(by definition) complete. O
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Theorem 16.11

Theorem 16.11. Every infinite dimensional separable Hilbert space has an
orthonormal basis.

Proof. Let F be the collection of subsets of H that are orthonormal.
Order F by inclusion. For every linearly ordered subcollection of F, the
union of the sets in the subcollection is an upper bound for the
subcollection. By Zorn's Lemma, there is a maximal subset Sy of F. Since
H is separable and Sp is orthonormal, then by Exercise 16.19, Sg is
countable. Let {¢}22, be an enumeration of So. If h € H, h # 0, then by
Proposition 16.9, h — >"7° ; (pk, h)py is orthogonal to each ¢k. Therefore
h— %21 (@K, hypk could be added to Sy thus violating its maximality. So
h=>721(pk, h)pk and so {¢k} is an orthonormal basis for H. O



