Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces

16.3. Bessel's Inequality and Orthonormal Bases—Proofs of Theorems

The General Pythagorean Identity

Theorem. The General Pythagorean Identity.

If u_1, u_2, \ldots, u_n are n orthonormal vectors in H, and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$

$$\|\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n\|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_n|^2.$$

$$\|\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n\|^2 = \langle \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n,$$

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n \rangle = \sum_{1 \le i, j \le n} \langle \alpha_i u_i, \alpha_j u_j \rangle$$

$$\sum_{1 \le i, j \le n} \alpha_i \alpha_j \langle u_i, u_j \rangle = \sum_{1 \le i \le n} \alpha_i \alpha_i \langle u_i, u_i \rangle \text{ since } \langle u_i, u_j \rangle = 0 \text{ for } i \ne j$$

because u_1, u_2, \ldots, u_n are orthogonal

Real Analysis

The General Pythagorean Identity, continued

Theorem. The General Pythagorean Identity.

If u_1, u_2, \ldots, u_n are n orthonormal vectors in H, and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$

$$\|\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n\|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_n|^2.$$

Proof (continued).

 $\sum_{1\leq i\leq n} lpha_i^2$ since $\langle u_i,u_i
angle = \|u_i\|^2 = 1$ because u_1,u_2,\ldots,u_n are orthonormal

$$= \sum_{1 \le i \le n} |\alpha_i|^2 - |\alpha_1|^2 + |\alpha_2|^2 + \dots + |\alpha_n|^2$$

Theorem. Bessel's Inequality.

Bessel's Inequality

For $\{\varphi_k\}$ an orthonormal sequence in H and $h \in H$, $\sum \langle \varphi_k, h \rangle^2 \leq \|h\|^2$.

Proof. For fixed $n \in \mathbb{N}$ define $h_n = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$. Then

$$0 \leq \|h - h_n\|^2 = \|h\|^2 - 2\langle h, h_n \rangle + \|h_n\|^2$$

$$= \|h\|^2 - 2\left\langle h, \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \right\rangle + \|h_n\|^2$$

$$= \|h\|^2 - 2\sum_{k=1}^n \langle h, \varphi_k \rangle \langle \varphi_k, h \rangle + \sum_{k=1}^n \langle h, \varphi_k \rangle^2$$

by the General Pythagorean Identity

$$= \|h\|^2 - \sum_{k=1}^n \langle h, \varphi_k \rangle^2.$$

Real Analysis

Real Analysis

March 7, 2017 4 / 12

March 7, 2017 5 / 12

Bessel's Inequality (continued)

Theorem. Bessel's Inequality.

For $\{\varphi_k\}$ an orthonormal sequence in H and $h \in H$, $\sum_{k=1}^{\infty} \langle \varphi_k, h \rangle^2 \leq ||h||^2$.

Proof (continued) . Therefore

$$\sum_{k=1}^{n} \langle h, \varphi_k \rangle^2 \le ||h||^2.$$

Since *n* is arbitrary,

$$\sum_{k=1}^{\infty} \langle h, \varphi_k \rangle^2 \le ||h||^2,$$

as claimed.

Proposition 16.9

strongly in H and the vector $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ is orthogonal to each φ_k . space H and let $h \in H$. Then the series $\sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ converges **Proposition 16.9.** Let $\{\varphi_k\}$ be an orthonormal sequence in a Hilbert

Pythagorean Identity, for each pair of natural number n and k, **Proof.** For each $n \in \mathbb{N}$, define $h_n = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$. By the General

$$\|h_{n+k} - h_n\|^2 = \left\| \sum_{i=n+1}^{n+k} \langle \varphi_i, h \rangle \varphi_i \right\|^2 = \sum_{i=n+1}^{n+k} \langle \varphi_i, h \rangle^2.$$

By Bessel's Inequality, $\sum_{i=1}^{\infty} \langle \varphi_i, h \rangle^2 \leq \|h\|^2$ so for $\varepsilon > 0$, there is $N_{\varepsilon} \in \mathbb{N}$ such that for all $m, n \geq N_{\varepsilon}$ (say $m \geq n$) we have

$$||h_m - n_n||^2 = \sum_{i=n_1}^{m} \langle \varphi_1, h \rangle^2 \le \sum_{i=n+1}^{\infty} \langle \varphi_i, h \rangle^2 < \varepsilon$$

(since the tail of a convergent sequence of real numbers must get small).

Proposition 16.9 (continued 1)

converges strongly in H. then $\{h_n\} = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \to h_* \in H$. That is, $\sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$ **Proof.** Therefore $\{h_n\}$ is a Cauchy sequence in H. Since H is complete

Fix
$$m \in \mathbb{N}$$
. If $n > m$, then

$$\begin{split} \langle h - h_n, \varphi_m \rangle &= \left\langle h - \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k, \varphi_m \right\rangle = \langle h, \varphi_m \rangle - \sum_{k=1}^n \langle \varphi_k, h \rangle \langle \varphi_k, \varphi_m \rangle \\ &= \left\langle h, \varphi_m \right\rangle - \langle \varphi_m, h \rangle \langle \varphi_m, \varphi_m \rangle \text{ since } \langle \varphi_k, \varphi_m \rangle = 0 \text{ for } k \neq m \\ &\text{ because } \{ \varphi_k \} \text{ is an orthogonal set} \\ &= \left\langle h, \varphi_m \right\rangle - \langle \varphi_m, h \rangle \text{ since } \| \varphi_m \|^2 = \langle \varphi_m, \varphi_m \rangle = 1 \end{split}$$

||

By the continuity of the inner product (that is, for $\{u_n\} \to u$ and $v \in H$, $\lim_{n\to\infty}\langle u_n, v\rangle = \langle u, v\rangle$; this follows from Proposition 16.7) we have

Proposition 16.9 (continued 2)

space H and let $h \in H$. Then the series $\sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ converges strongly in H and the vector $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ is orthogonal to each φ_k . **Proposition 16.9.** Let $\{\varphi_k\}$ be an orthonormal sequence in a Hilbert

Proof (continued).

$$h - h_* = h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k = h - \lim_{n \to \infty} \left(\sum_{k=1}^{n} \langle \varphi_k, h \rangle \varphi_k \right) = h - \lim_{n \to \infty} h_n$$

and so

$$\langle h - h_*, \varphi_k = \left\langle h - \lim_{n \to \infty} h_n, \varphi_m \right\rangle = \lim_{n \to \infty} \langle h - h_n, \varphi_m \rangle = 0.$$

Since $m \in \mathbb{N}$ is arbitrary, $h - h_*$ is orthogonal to φ_m for all $m \in \mathbb{N}$.

Real Analysis March 7, 2017 8 / 12 Real Analysis March 7, 2017 9 / 12

Lemma 16.3 A Proposition 16.10

Then $\{\varphi_k\}$ is complete if and only if the closed linear span of $\{\varphi_k\}$ is H. **Lemma 16.3.A.** Let $\{\varphi_k\}$ be an orthonormal sequence in Hilbert space H.

Proof. Suppose $S=\{\varphi_k\}$ is complete. Then the only vector that is orthogonal to every element of S is 0; that is, $S^{\perp}=\{0\}$. So by Corollary 16.4, the linear space of S is all of H.

Suppose the closed linear span of S is H. Then by Corollary 16.4 $S = \{\varphi_k\}$ is 0. So, by the definition of "complete," $S = \{\varphi_k\}$ is $S^{\perp} = \{0\}$. That is, the only element of H orthogonal to every element of

> is complete if and only if it is an orthonormal basis. **Proposition 16.10.** An orthonormal sequence $\{\varphi_k\}$ is a Hilbert space H

only vector orthogonal to every φ_k is 0. So for all $h \in H$ we have orthogonal to wach φ_k . Since $\{\varphi_k\}$ is complete then, by definition, the sequence. Then by Proposition 16.9, for any $h \in H$, $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ is $h = \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$. Therefore $\{\varphi_k\}$ is an orthonormal basis for H. **Proof.** First, assume $\{\varphi_k\}$ is complete. Since $\{\varphi_k\}$ is an orthonormal

only vector $h \in H$ that is orthogonal to every φ_k is h = 0. That is, $\{\varphi_k\}$ is orthogonal to all φ_k then $h=\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k=\sum_{k=1}^{\infty}0\varphi_k=0$. So the (by definition) complete. Conversely, suppose $\{\varphi_k\}$ is an orthonormal basis for H. Then if $h \in H$ is

Theorem 16.11

orthonormal basis **Theorem 16.11.** Every infinite dimensional separable Hilbert space has an

union of the sets in the subcollection is an upper bound for the $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ could be added to S_0 thus violating its maximality. So $h = \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ and so $\{\varphi_k\}$ is an orthonormal basis for H. Proposition 16.9, $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ is orthogonal to each φ_k . Therefore countable. Let $\{\varphi_k\}_{k=1}^{\infty}$ be an enumeration of S_0 . If $h \in H$, $h \neq 0$, then by H is separable and S_0 is orthonormal, then by Exercise 16.19, S_0 is subcollection. By Zorn's Lemma, there is a maximal subset S_0 of \mathcal{F} . Since Order $\mathcal F$ by inclusion. For every linearly ordered subcollection of $\mathcal F$, the **Proof.** Let \mathcal{F} be the collection of subsets of H that are orthonormal.

Real Analysis

March 7, 2017 12 / 12