Real Analysis

Chapter 16. Continuous Linear Operators on Hilbert Spaces 16.3. Bessel's Inequality and Orthonormal Bases—Proofs of Theorems

1 [Theorem. The General Pythagorean Identity](#page-2-0)

- 2 [Theorem. Bessel's Inequality](#page-5-0)
- 3 [Proposition 16.9](#page-8-0)
- [Lemma 16.3.A](#page-14-0)
- 5 [Proposition 16.10](#page-17-0)
	- [Theorem 16.11](#page-21-0)

The General Pythagorean Identity

Theorem. The General Pythagorean Identity.

If u_1, u_2, \ldots, u_n are n orthonormal vectors in H, and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ then

$$
\|\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n\|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \cdots + |\alpha_n|^2.
$$

Proof. We have

$$
||\alpha_1u_1 + \alpha_2u_2 + \cdots + \alpha_nu_n||^2 = \langle \alpha_1u_1 + \alpha_2u_2 + \cdots + \alpha_nu_n,
$$

$$
\alpha_1u_1 + \alpha_2u_2 + \cdots + \alpha_nu_n\rangle = \sum_{1 \le i,j \le n} \langle \alpha_iu_i, \alpha_ju_j \rangle
$$

$$
=\sum_{1\leq i,j\leq n}\alpha_i\alpha_j\langle u_i,u_j\rangle=\sum_{1\leq i\leq n}\alpha_i\alpha_i\langle u_i,u_j\rangle\text{ since }\langle u_i,u_j\rangle=0\text{ for }i\neq j
$$

because u_1, u_2, \ldots, u_n are orthogonal

The General Pythagorean Identity

Theorem. The General Pythagorean Identity.

If u_1, u_2, \ldots, u_n are n orthonormal vectors in H, and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ then

$$
\|\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n\|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \cdots + |\alpha_n|^2.
$$

Proof. We have

$$
\|\alpha_1u_1+\alpha_2u_2+\cdots+\alpha_nu_n\|^2=\langle \alpha_1u_1+\alpha_2u_2+\cdots+\alpha_nu_n,
$$

$$
\alpha_1u_1+\alpha_2u_2+\cdots+\alpha_nu_n\rangle=\sum_{1\leq i,j\leq n}\langle\alpha_iu_i,\alpha_ju_j\rangle
$$

$$
= \sum_{1 \leq i,j \leq n} \alpha_i \alpha_j \langle u_i, u_j \rangle = \sum_{1 \leq i \leq n} \alpha_i \alpha_i \langle u_i, u_i \rangle \text{ since } \langle u_i, u_j \rangle = 0 \text{ for } i \neq j
$$

because u_1, u_2, \ldots, u_n are orthogonal

The General Pythagorean Identity, continued

Theorem. The General Pythagorean Identity.

If u_1, u_2, \ldots, u_n are n orthonormal vectors in H, and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ then

$$
\|\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n\|^2 = |\alpha_1|^2 + |\alpha_2|^2 + \cdots + |\alpha_n|^2.
$$

Proof (continued).

 $\;=\;\sum\; \alpha_i^2$ since $\langle u_i, u_i \rangle = \| u_i \|^2 = 1$ because u_1, u_2, \ldots, u_n are orthonormal 1≤i≤n

$$
= \sum_{1 \leq i \leq n} |\alpha_i|^2 - |\alpha_1|^2 + |\alpha_2|^2 + \cdots + |\alpha_n|^2.
$$

Bessel's Inequality

Theorem. Bessel's Inequality.

For $\{\varphi_k\}$ an orthonormal sequence in H and $h\in H$, $\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle^2\leq \|h\|^2.$ $k=1$

Proof. For fixed $n \in \mathbb{N}$ define $h_n = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$. Then

$$
0 \leq ||h - h_n||^2 = ||h||^2 - 2\langle h, h_n \rangle + ||h_n||^2
$$

\n
$$
= ||h||^2 - 2\langle h, \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \rangle + ||h_n||^2
$$

\n
$$
= ||h||^2 - 2\sum_{k=1}^n \langle h, \varphi_k \rangle \langle \varphi_k, h \rangle + \sum_{k=1}^n \langle h, \varphi_k \rangle^2
$$

by the General Pythagorean Identity

$$
= \|h\|^2 - \sum_{k=1}^n \langle h, \varphi_k \rangle^2.
$$

Bessel's Inequality

Theorem. Bessel's Inequality.

For $\{\varphi_k\}$ an orthonormal sequence in H and $h\in H$, $\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle^2\leq \|h\|^2.$ $k=1$

Proof. For fixed $n \in \mathbb{N}$ define $h_n = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$. Then

$$
0 \leq ||h - h_n||^2 = ||h||^2 - 2\langle h, h_n \rangle + ||h_n||^2
$$

\n
$$
= ||h||^2 - 2\langle h, \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \rangle + ||h_n||^2
$$

\n
$$
= ||h||^2 - 2\sum_{k=1}^n \langle h, \varphi_k \rangle \langle \varphi_k, h \rangle + \sum_{k=1}^n \langle h, \varphi_k \rangle^2
$$

by the General Pythagorean Identity

$$
= \|h\|^2 - \sum_{k=1}^n \langle h, \varphi_k \rangle^2.
$$

Bessel's Inequality (continued)

Theorem. Bessel's Inequality.

For $\{\varphi_k\}$ an orthonormal sequence in H and $h\in H$, $\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle^2\leq \|h\|^2.$ $k=1$

Proof (continued) . Therefore

$$
\sum_{k=1}^n \langle h, \varphi_k \rangle^2 \leq ||h||^2.
$$

Since *n* is arbitrary,

$$
\sum_{k=1}^{\infty} \langle h, \varphi_k \rangle^2 \leq ||h||^2,
$$

as claimed.

Proposition 16.9

Proposition 16.9. Let $\{\varphi_k\}$ be an orthonormal sequence in a Hilbert space H and let $h \in H$. Then the series $\sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ converges strongly in H and the vector $\mathcal{h}-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is orthogonal to each $\varphi_k.$

Proof. For each $n \in \mathbb{N}$, define $h_n = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$. By the General Pythagorean Identity, for each pair of natural number n and k ,

$$
||h_{n+k}-h_n||^2=\left\|\sum_{i=n+1}^{n+k}\langle\varphi_i,h\rangle\varphi_i\right\|^2=\sum_{i=n+1}^{n+k}\langle\varphi_i,h\rangle^2.
$$

By Bessel's Inequality, $\sum_{i=1}^{\infty}\langle\varphi_i,h\rangle^2\leq\|h\|^2$ so for $\varepsilon>0$, there is $N_\varepsilon\in\mathbb{N}$ such that for all $m, n > N_e$ (say $m > n$) we have

$$
||h_m - n_n||^2 = \sum_{i=n_1}^m \langle \varphi_1, h \rangle^2 \le \sum_{i=n+1}^\infty \langle \varphi_i, h \rangle^2 < \varepsilon
$$

(since the tail of a convergent sequence of real numbers must get small).

Proposition 16.9

Proposition 16.9. Let $\{\varphi_k\}$ be an orthonormal sequence in a Hilbert space H and let $h \in H$. Then the series $\sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ converges strongly in H and the vector $\mathcal{h}-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is orthogonal to each $\varphi_k.$

Proof. For each $n \in \mathbb{N}$, define $h_n = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$. By the General Pythagorean Identity, for each pair of natural number n and k ,

$$
||h_{n+k}-h_n||^2=\left\|\sum_{i=n+1}^{n+k}\langle\varphi_i,h\rangle\varphi_i\right\|^2=\sum_{i=n+1}^{n+k}\langle\varphi_i,h\rangle^2.
$$

By Bessel's Inequality, $\sum_{i=1}^\infty \langle \varphi_i, h \rangle^2 \leq \|h\|^2$ so for $\varepsilon > 0$, there is $N_\varepsilon \in \mathbb{N}$ such that for all $m, n > N_e$ (say $m > n$) we have

$$
||h_m - n_n||^2 = \sum_{i=n_1}^m \langle \varphi_1, h \rangle^2 \le \sum_{i=n+1}^\infty \langle \varphi_i, h \rangle^2 < \varepsilon
$$

(since the tail of a convergent sequence of real numbers must get small).

Proposition 16.9 (continued 1)

Proof. Therefore $\{h_n\}$ is a Cauchy sequence in H. Since H is complete then $\{h_n\} = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \to h_* \in H$. That is, $\sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$ converges strongly in H.

Fix $m \in \mathbb{N}$. If $n > m$, then

$$
\langle h - h_n, \varphi_m \rangle = \left\langle h - \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k, \varphi_m \right\rangle = \langle h, \varphi_m \rangle - \sum_{k=1}^n \langle \varphi_k, h \rangle \langle \varphi_k, \varphi_m \rangle
$$

\n
$$
= \langle h, \varphi_m \rangle - \langle \varphi_m, h \rangle \langle \varphi_m, \varphi_m \rangle \text{ since } \langle \varphi_k, \varphi_m \rangle = 0 \text{ for } k \neq m
$$

\nbecause $\{\varphi_k\}$ is an orthogonal set
\n
$$
= \langle h, \varphi_m \rangle - \langle \varphi_m, h \rangle \text{ since } ||\varphi_m||^2 = \langle \varphi_m, \varphi_m \rangle = 1
$$

\n
$$
= 0.
$$

Proposition 16.9 (continued 1)

Proof. Therefore $\{h_n\}$ is a Cauchy sequence in H. Since H is complete then $\{h_n\} = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \to h_* \in H$. That is, $\sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$ converges strongly in H.

Fix $m \in \mathbb{N}$. If $n > m$, then

$$
\langle h - h_n, \varphi_m \rangle = \left\langle h - \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k, \varphi_m \right\rangle = \langle h, \varphi_m \rangle - \sum_{k=1}^n \langle \varphi_k, h \rangle \langle \varphi_k, \varphi_m \rangle
$$

= $\langle h, \varphi_m \rangle - \langle \varphi_m, h \rangle \langle \varphi_m, \varphi_m \rangle$ since $\langle \varphi_k, \varphi_m \rangle = 0$ for $k \neq m$
because $\{\varphi_k\}$ is an orthogonal set
= $\langle h, \varphi_m \rangle - \langle \varphi_m, h \rangle$ since $||\varphi_m||^2 = \langle \varphi_m, \varphi_m \rangle = 1$
= 0.

By the continuity of the inner product (that is, for $\{u_n\} \to u$ and $v \in H$, $\lim_{n\to\infty} \langle u_n, v \rangle = \langle u, v \rangle$; this follows from Proposition 16.7) we have

Proposition 16.9 (continued 1)

Proof. Therefore $\{h_n\}$ is a Cauchy sequence in H. Since H is complete then $\{h_n\} = \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \to h_* \in H$. That is, $\sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k$ converges strongly in H.

Fix $m \in \mathbb{N}$. If $n > m$, then

$$
\langle h - h_n, \varphi_m \rangle = \left\langle h - \sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k, \varphi_m \right\rangle = \langle h, \varphi_m \rangle - \sum_{k=1}^n \langle \varphi_k, h \rangle \langle \varphi_k, \varphi_m \rangle
$$

\n
$$
= \langle h, \varphi_m \rangle - \langle \varphi_m, h \rangle \langle \varphi_m, \varphi_m \rangle \text{ since } \langle \varphi_k, \varphi_m \rangle = 0 \text{ for } k \neq m
$$

\nbecause $\{\varphi_k\}$ is an orthogonal set
\n
$$
= \langle h, \varphi_m \rangle - \langle \varphi_m, h \rangle \text{ since } ||\varphi_m||^2 = \langle \varphi_m, \varphi_m \rangle = 1
$$

\n
$$
= 0.
$$

By the continuity of the inner product (that is, for $\{u_n\} \to u$ and $v \in H$, $\lim_{n\to\infty}\langle u_n, v\rangle = \langle u, v\rangle$; this follows from Proposition 16.7) we have

Proposition 16.9 (continued 2)

Proposition 16.9. Let $\{\varphi_k\}$ be an orthonormal sequence in a Hilbert space H and let $h\in H$. Then the series $\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ converges strongly in H and the vector $\mathcal{h}-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is orthogonal to each $\varphi_k.$

Proof (continued).

$$
h-h_* = h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k = h - \lim_{n \to \infty} \left(\sum_{k=1}^n \langle \varphi_k, h \rangle \varphi_k \right) = h - \lim_{n \to \infty} h_n
$$

and so

$$
\langle h-h_*,\varphi_k=\left\langle h-\lim_{n\to\infty}h_n,\varphi_m\right\rangle=\lim_{n\to\infty}\langle h-h_n,\varphi_m\rangle=0.
$$

Since $m \in \mathbb{N}$ is arbitrary, $h - h_{*}$ is orthogonal to φ_m for all $m \in \mathbb{N}$.

Lemma 16.3.A. Let $\{\varphi_k\}$ be an orthonormal sequence in Hilbert space H. Then $\{\varphi_k\}$ is complete if and only if the closed linear span of $\{\varphi_k\}$ is H.

Proof. Suppose $S = {\varphi_k}$ is complete. Then the only vector that is orthogonal to every element of S is 0; that is, $S^\perp=\{0\}.$ So by Corollary 16.4, the linear space of S is all of H .

Lemma 16.3.A. Let $\{\varphi_k\}$ be an orthonormal sequence in Hilbert space H. Then $\{\varphi_k\}$ is complete if and only if the closed linear span of $\{\varphi_k\}$ is H.

Proof. Suppose $S = {\varphi_k}$ is complete. Then the only vector that is orthogonal to every element of S is 0; that is, $\mathcal{S}^{\perp}=\{0\}.$ So by Corollary 16.4, the linear space of S is all of H .

Suppose the closed linear span of S is H . Then by Corollary 16.4, $\mathcal{S}^\perp = \{0\}.$ That is, the only element of H orthogonal to every element of $S = {\varphi_k}$ is 0. So, by the definition of "complete," $S = {\varphi_k}$ is complete.

Lemma 16.3.A. Let $\{\varphi_k\}$ be an orthonormal sequence in Hilbert space H. Then $\{\varphi_k\}$ is complete if and only if the closed linear span of $\{\varphi_k\}$ is H.

Proof. Suppose $S = {\varphi_k}$ is complete. Then the only vector that is orthogonal to every element of S is 0; that is, $\mathcal{S}^{\perp}=\{0\}.$ So by Corollary 16.4, the linear space of S is all of H .

Suppose the closed linear span of S is H . Then by Corollary 16.4, $\mathcal{S}^\perp = \{0\}.$ That is, the only element of H orthogonal to every element of $S = {\varphi_k}$ is 0. So, by the definition of "complete," $S = {\varphi_k}$ is complete.

Proposition 16.10

Proposition 16.10. An orthonormal sequence $\{\varphi_k\}$ is a Hilbert space H is complete if and only if it is an orthonormal basis.

Proof. First, assume $\{\varphi_k\}$ is complete. Since $\{\varphi_k\}$ is an orthonormal sequence. Then by Proposition 16.9, for any $h\in H$, $h-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is orthogonal to wach φ_k .

Proposition 16.10. An orthonormal sequence $\{\varphi_k\}$ is a Hilbert space H is complete if and only if it is an orthonormal basis.

Proof. First, assume $\{\varphi_k\}$ is complete. Since $\{\varphi_k\}$ is an orthonormal sequence. Then by Proposition 16.9, for any $h\in H$, $h-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is **orthogonal to wach** φ_k **.** Since $\{\varphi_k\}$ is complete then, by definition, the only vector orthogonal to every φ_k is 0. So for all $h \in H$ we have $h = \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$. Therefore $\{\varphi_k\}$ is an orthonormal basis for H.

Proposition 16.10. An orthonormal sequence $\{\varphi_k\}$ is a Hilbert space H is complete if and only if it is an orthonormal basis.

Proof. First, assume $\{\varphi_k\}$ is complete. Since $\{\varphi_k\}$ is an orthonormal sequence. Then by Proposition 16.9, for any $h\in H$, $h-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is orthogonal to wach φ_k . Since $\{\varphi_k\}$ is complete then, by definition, the only vector orthogonal to every φ_k is 0. So for all $h \in H$ we have $h = \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$. Therefore $\{\varphi_k\}$ is an orthonormal basis for H.

Conversely, suppose $\{\varphi_k\}$ is an orthonormal basis for H. Then if $h \in H$ is orthogonal to all φ_k then $h=\sum_{k=1}^\infty \langle\varphi_k,h\rangle\varphi_k=\sum_{k=1}^\infty 0\varphi_k=0.$ So the only vector $h \in H$ that is orthogonal to every φ_k is $h = 0$. That is, $\{\varphi_k\}$ is (by definition) complete.

Proposition 16.10. An orthonormal sequence $\{\varphi_k\}$ is a Hilbert space H is complete if and only if it is an orthonormal basis.

Proof. First, assume $\{\varphi_k\}$ is complete. Since $\{\varphi_k\}$ is an orthonormal sequence. Then by Proposition 16.9, for any $h\in H$, $h-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ is orthogonal to wach φ_k . Since $\{\varphi_k\}$ is complete then, by definition, the only vector orthogonal to every φ_k is 0. So for all $h \in H$ we have $h = \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$. Therefore $\{\varphi_k\}$ is an orthonormal basis for H.

Conversely, suppose $\{\varphi_k\}$ is an orthonormal basis for H. Then if $h \in H$ is orthogonal to all φ_k then $h=\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k=\sum_{k=1}^{\infty}0\varphi_k=0.$ So the only vector $h \in H$ that is orthogonal to every φ_k is $h = 0$. That is, $\{\varphi_k\}$ is (by definition) complete.

Proof. Let F be the collection of subsets of H that are orthonormal. Order F by inclusion. For every linearly ordered subcollection of $\mathcal F$, the union of the sets in the subcollection is an upper bound for the subcollection.

Proof. Let F be the collection of subsets of H that are orthonormal. Order F by inclusion. For every linearly ordered subcollection of $\mathcal F$, the union of the sets in the subcollection is an upper bound for the **subcollection.** By Zorn's Lemma, there is a maximal subset S_0 of F. Since H is separable and S_0 is orthonormal, then by Exercise 16.19, S_0 is countable. Let $\{\varphi_k\}_{k=1}^\infty$ be an enumeration of S_0 .

Proof. Let F be the collection of subsets of H that are orthonormal. Order F by inclusion. For every linearly ordered subcollection of $\mathcal F$, the union of the sets in the subcollection is an upper bound for the subcollection. By Zorn's Lemma, there is a maximal subset S_0 of F. Since H is separable and S_0 is orthonormal, then by Exercise 16.19, S_0 is countable. Let $\{\varphi_k\}_{k=1}^\infty$ be an enumeration of \mathcal{S}_0 . If $h\in H$, $h\neq 0$, then by Proposition 16.9, $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ is orthogonal to each φ_k . Therefore $h-\sum_{k=1}^{\infty}\langle\varphi_k,h\rangle\varphi_k$ could be added to S_0 thus violating its maximality. So $h = \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ and so $\{\varphi_k\}$ is an orthonormal basis for H.

Proof. Let F be the collection of subsets of H that are orthonormal. Order F by inclusion. For every linearly ordered subcollection of $\mathcal F$, the union of the sets in the subcollection is an upper bound for the subcollection. By Zorn's Lemma, there is a maximal subset S_0 of F. Since H is separable and S_0 is orthonormal, then by Exercise 16.19, S_0 is countable. Let $\{\varphi_k\}_{k=1}^{\infty}$ be an enumeration of S_0 . If $h \in H$, $h \neq 0$, then by Proposition 16.9, $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ is orthogonal to each φ_k . Therefore $h - \sum_{k=1}^{\infty} \langle \varphi_k, h \rangle \varphi_k$ could be added to S_0 thus violating its maximality. So $h=\overline{\sum_{k=1}^{\infty}}\langle\varphi_{k},h\rangle\varphi_{k}$ and so $\{\varphi_{k}\}$ is an orthonormal basis for $H.$