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Chapter 16. Continuous Linear Operators on Hilbert Spaces
16.3. Bessel’s Inequality and Orthonormal Bases—Proofs of Theorems
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Theorem. The General Pythagorean Identity

The General Pythagorean Identity

Theorem. The General Pythagorean Identity.
If u1, u2, . . . , un are n orthonormal vectors in H, and α1, α2, . . . , αn ∈ R
then

‖α1u1 + α2u2 + · · ·+ αnun‖2 = |α1|2 + |α2|2 + · · ·+ |αn|2.

Proof. We have

‖α1u1 + α2u2 + · · ·+ αnun‖2 = 〈α1u1 + α2u2 + · · ·+ αnun,

α1u1 + α2u2 + · · ·+ αnun〉 =
∑

1≤i ,j≤n

〈αiui , αjuj〉

=
∑

1≤i ,j≤n

αiαj〈ui , uj〉 =
∑

1≤i≤n

αiαi 〈ui , ui 〉 since 〈ui , uj〉 = 0 for i 6= j

because u1, u2, . . . , un are orthogonal
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Theorem. The General Pythagorean Identity

The General Pythagorean Identity, continued

Theorem. The General Pythagorean Identity.
If u1, u2, . . . , un are n orthonormal vectors in H, and α1, α2, . . . , αn ∈ R
then

‖α1u1 + α2u2 + · · ·+ αnun‖2 = |α1|2 + |α2|2 + · · ·+ |αn|2.

Proof (continued).

=
∑

1≤i≤n

α2
i since 〈ui , ui 〉 = ‖ui‖2 = 1 because u1, u2, . . . , un are orthonormal

=
∑

1≤i≤n

|αi |2 − |α1|2 + |α2|2 + · · ·+ |αn|2.
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Theorem. Bessel’s Inequality

Bessel’s Inequality

Theorem. Bessel’s Inequality.

For {ϕk} an orthonormal sequence in H and h ∈ H,
∞∑

k=1

〈ϕk , h〉2 ≤ ‖h‖2.

Proof. For fixed n ∈ N define hn =
∑n

k=1〈ϕk , h〉ϕk . Then

0 ≤ ‖h − hn‖2 = ‖h‖2 − 2〈h, hn〉+ ‖hn‖2

= ‖h‖2 − 2

〈
h,

n∑
k=1

〈ϕk , h〉ϕk

〉
+ ‖hn‖2

= ‖h‖2 − 2
n∑

k=1

〈h, ϕk〉〈ϕk , h〉+
n∑

k=1

〈h, ϕk〉2

by the General Pythagorean Identity

= ‖h‖2 −
n∑

k=1

〈h, ϕk〉2.
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Theorem. Bessel’s Inequality

Bessel’s Inequality (continued)

Theorem. Bessel’s Inequality.

For {ϕk} an orthonormal sequence in H and h ∈ H,
∞∑

k=1

〈ϕk , h〉2 ≤ ‖h‖2.

Proof (continued) . Therefore

n∑
k=1

〈h, ϕk〉2 ≤ ‖h‖2.

Since n is arbitrary,
∞∑

k=1

〈h, ϕk〉2 ≤ ‖h‖2,

as claimed.
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Proposition 16.9

Proposition 16.9

Proposition 16.9. Let {ϕk} be an orthonormal sequence in a Hilbert
space H and let h ∈ H. Then the series

∑∞
k=1〈ϕk , h〉ϕk converges

strongly in H and the vector h−
∑∞

k=1〈ϕk , h〉ϕk is orthogonal to each ϕk .

Proof. For each n ∈ N, define hn =
∑n

k=1〈ϕk , h〉ϕk . By the General
Pythagorean Identity, for each pair of natural number n and k,

‖hn+k − hn‖2 =

∥∥∥∥∥
n+k∑

i=n+1

〈ϕi , h〉ϕi

∥∥∥∥∥
2

=
n+k∑

i=n+1

〈ϕi , h〉2.

By Bessel’s Inequality,
∑∞

i=1〈ϕi , h〉2 ≤ ‖h‖2 so for ε > 0, there is Nε ∈ N
such that for all m, n ≥ Nε (say m ≥ n) we have

‖hm − nn‖2 =
m∑

i=n1

〈ϕ1, h〉2 ≤
∞∑

i=n+1

〈ϕi , h〉2 < ε

(since the tail of a convergent sequence of real numbers must get small).
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Proposition 16.9

Proposition 16.9 (continued 1)

Proof. Therefore {hn} is a Cauchy sequence in H. Since H is complete
then {hn} =

∑n
k=1〈ϕk , h〉ϕk → h∗ ∈ H. That is,

∑n
k=1〈ϕk , h〉ϕk

converges strongly in H.
Fix m ∈ N. If n > m, then

〈h − hn, ϕm〉 =

〈
h −

n∑
k=1

〈ϕk , h〉ϕk , ϕm

〉
= 〈h, ϕm〉 −

n∑
k=1

〈ϕk , h〉〈ϕk , ϕm〉

= 〈h, ϕm〉 − 〈ϕm, h〉〈ϕm, ϕm〉 since 〈ϕk , ϕm〉 = 0 for k 6= m

because {ϕk} is an orthogonal set

= 〈h, ϕm〉 − 〈ϕm, h〉 since ‖ϕm‖2 = 〈ϕm, ϕm〉 = 1

= 0.

By the continuity of the inner product (that is, for {un} → u and v ∈ H,
limn→∞〈un, v〉 = 〈u, v〉; this follows from Proposition 16.7) we have
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Proposition 16.9

Proposition 16.9 (continued 2)

Proposition 16.9. Let {ϕk} be an orthonormal sequence in a Hilbert
space H and let h ∈ H. Then the series

∑∞
k=1〈ϕk , h〉ϕk converges

strongly in H and the vector h−
∑∞

k=1〈ϕk , h〉ϕk is orthogonal to each ϕk .

Proof (continued).

h − h∗ = h −
∞∑

k=1

〈ϕk , h〉ϕk = h − lim
n→∞

(
n∑

k=1

〈ϕk , h〉ϕk

)
= h − lim

n→∞
hn

and so

〈h − h∗, ϕk =
〈
h − lim

n→∞
hn, ϕm

〉
= lim

n→∞
〈h − hn, ϕm〉 = 0.

Since m ∈ N is arbitrary, h − h∗ is orthogonal to ϕm for all m ∈ N.
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Lemma 16.3.A

Lemma 16.3.A

Lemma 16.3.A. Let {ϕk} be an orthonormal sequence in Hilbert space H.
Then {ϕk} is complete if and only if the closed linear span of {ϕk} is H.

Proof. Suppose S = {ϕk} is complete. Then the only vector that is
orthogonal to every element of S is 0; that is, S⊥ = {0}. So by Corollary
16.4, the linear space of S is all of H.

Suppose the closed linear span of S is H. Then by Corollary 16.4,
S⊥ = {0}. That is, the only element of H orthogonal to every element of
S = {ϕk} is 0. So, by the definition of “complete,” S = {ϕk} is
complete.
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Proposition 16.10

Proposition 16.10

Proposition 16.10. An orthonormal sequence {ϕk} is a Hilbert space H
is complete if and only if it is an orthonormal basis.

Proof. First, assume {ϕk} is complete. Since {ϕk} is an orthonormal
sequence. Then by Proposition 16.9, for any h ∈ H, h−

∑∞
k=1〈ϕk , h〉ϕk is

orthogonal to wach ϕk .

Since {ϕk} is complete then, by definition, the
only vector orthogonal to every ϕk is 0. So for all h ∈ H we have
h =

∑∞
k=1〈ϕk , h〉ϕk . Therefore {ϕk} is an orthonormal basis for H.

Conversely, suppose {ϕk} is an orthonormal basis for H. Then if h ∈ H is
orthogonal to all ϕk then h =

∑∞
k=1〈ϕk , h〉ϕk =

∑∞
k=1 0ϕk = 0. So the

only vector h ∈ H that is orthogonal to every ϕk is h = 0. That is, {ϕk} is
(by definition) complete.
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Theorem 16.11

Theorem 16.11

Theorem 16.11. Every infinite dimensional separable Hilbert space has an
orthonormal basis.

Proof. Let F be the collection of subsets of H that are orthonormal.
Order F by inclusion. For every linearly ordered subcollection of F , the
union of the sets in the subcollection is an upper bound for the
subcollection.

By Zorn’s Lemma, there is a maximal subset S0 of F . Since
H is separable and S0 is orthonormal, then by Exercise 16.19, S0 is
countable. Let {ϕk}∞k=1 be an enumeration of S0. If h ∈ H, h 6= 0, then by
Proposition 16.9, h −

∑∞
k=1〈ϕk , h〉ϕk is orthogonal to each ϕk . Therefore

h−
∑∞

k=1〈ϕk , h〉ϕk could be added to S0 thus violating its maximality. So
h =

∑∞
k=1〈ϕk , h〉ϕk and so {ϕk} is an orthonormal basis for H.
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