Chapter 2. Lebesgue Measure
2.5. Countable Additivity, Continuity, and the Borel-Cantelli Lemma—Proofs of Theorems
Table of contents

1. Theorem 2.15

2. The Borel-Cantelli Lemma
Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(i) If $\{A_k\}_{k=1}^{\infty}$ is an ascending collection of measurable sets (i.e., $A_k \subset A_{k+1}$), then
$$m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k \to \infty} A_k) = \lim_{k \to \infty} m(A_k).$$

(ii) If $\{B_k\}_{k=1}^{\infty}$ is a descending collection of measurable sets (i.e., $B_k \supset B_{k+1}$) and $m(B_1) < \infty$, then
$$m(\bigcap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k).$$

Proof of (i). If $m(A_{k_0}) = \infty$ for some k_0, then the result holds trivially. So suppose, without loss of generality, that $m(A_k) < \infty$ for all k.
Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(i) If \(\{A_k\}_{k=1}^{\infty} \) is an ascending collection of measurable sets (i.e., \(A_k \subset A_{k+1} \)), then
\[
m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k \to \infty} A_k) = \lim_{k \to \infty} m(A_k).
\]

(ii) If \(\{B_k\}_{k=1}^{\infty} \) is a descending collection of measurable sets (i.e., \(B_k \supset B_{k+1} \)) and \(m(B_1) < \infty \), then
\[
m(\bigcap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k).
\]

Proof of (i). If \(m(A_{k_0}) = \infty \) for some \(k_0 \), then the result holds trivially. So suppose, without loss of generality, that \(m(A_k) < \infty \) for all \(k \). Define \(A_0 = \emptyset \) and \(C_k = A_k \setminus A_{k-1} \) for \(k \geq 1 \). Since \(\{A_k\} \) is ascending, the \(C_k \)'s are disjoint and \(\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} C_k \). Since \(m \) is countably additive by Proposition 2.6,
\[
m(\bigcup_{k=1}^{\infty} A_k) = m(\bigcup_{k=1}^{\infty} C_k) = \sum_{k=1}^{\infty} m(C_k) = \sum_{k=1}^{\infty} m(A_k \setminus A_{k-1}).
\]
Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(i) If \(\{A_k\}_{k=1}^{\infty} \) is an ascending collection of measurable sets (i.e., \(A_k \subset A_{k+1} \)), then
\[
m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k \to \infty} A_k) = \lim_{k \to \infty} m(A_k).
\]

(ii) If \(\{B_k\}_{k=1}^{\infty} \) is a descending collection of measurable sets (i.e., \(B_k \supset B_{k+1} \)) and \(m(B_1) < \infty \), then
\[
m(\bigcap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k).
\]

Proof of (i). If \(m(A_{k_0}) = \infty \) for some \(k_0 \), then the result holds trivially. So suppose, without loss of generality, that \(m(A_k) < \infty \) for all \(k \). Define \(A_0 = \emptyset \) and \(C_k = A_k \setminus A_{k-1} \) for \(k \geq 1 \). Since \(\{A_k\} \) is ascending, the \(C_k \)'s are disjoint and \(\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} C_k \). Since \(m \) is countably additive by Proposition 2.6,
\[
m(\bigcup_{k=1}^{\infty} A_k) = m(\bigcup_{k=1}^{\infty} C_k) = \sum_{k=1}^{\infty} m(C_k) = \sum_{k=1}^{\infty} m(A_k \setminus A_{k-1}).
\]
Theorem 2.15 (continued 1)

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

1. If \(\{A_k\}_{k=1}^{\infty} \) is an ascending collection of measurable sets (i.e., \(A_k \subset A_{k+1} \)), then
 \[
 m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k \to \infty} A_k) = \lim_{k \to \infty} m(A_k).
 \]

Proof (continued). By the Excision Property of measure (Lemma 2.4.A),

\[
m(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} m(A_k \setminus A_{k-1}) = \sum_{k=1}^{\infty} [m(A_k) - m(A_{k-1})]
\]

\[
= \lim_{n \to \infty} \left(\sum_{k=1}^{n} [m(A_k) - m(A_{k-1})] \right) = \lim_{n \to \infty} [m(A_n) - m(A_0)] = \lim_{n \to \infty} m(A_n),
\]

since \(m(A_0) = m(\emptyset) = 0 \). Therefore

\[
m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k \to \infty} A_k) = \lim_{k \to \infty} m(A_k), \text{ as claimed.}
\]
Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(ii) If \(\{ B_k \}_{k=1}^{\infty} \) is a descending collection of measurable sets (i.e., \(B_k \supset B_{k+1} \)) and \(m(B_1) < \infty \), then

\[
m(\cap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k).
\]

Proof of (ii). Define \(D_k = B_1 \setminus B_k \) for \(k \in \mathbb{N} \). Since \(\{ B_k \}_{k=1}^{\infty} \) is a descending sequence of sets, then \(\{ D_k \}_{k=1}^{\infty} \) is an ascending sequence of sets. Applying (i) to \(\{ D_k \}_{k=1}^{\infty} \) gives

\[
m(\cup_{k=1}^{\infty} D_k) = \lim_{k \to \infty} m(D_k). \quad (*)
\]

By De Morgan’s Laws (Theorem 0.1, applied to relative complements)

\[
\cup_{k=1}^{\infty} D_k = \cup_{k=1}^{\infty} (B_1 \setminus B_k) = \cup_{k=1}^{\infty} (B_1 \cap B_k^c) = B_1 \setminus \cap_{k=1}^{\infty} B_k. \quad (**)
\]
Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(ii) If \(\{B_k\}_{k=1}^{\infty} \) is a descending collection of measurable sets (i.e., \(B_k \supset B_{k+1} \)) and \(m(B_1) < \infty \), then

\[
m(\cap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k).
\]

Proof of (ii). Define \(D_k = B_1 \setminus B_k \) for \(k \in \mathbb{N} \). Since \(\{B_k\}_{k=1}^{\infty} \) is a descending sequence of sets, then \(\{D_k\}_{k=1}^{\infty} \) is an ascending sequence of sets. Applying (i) to \(\{D_k\}_{k=1}^{\infty} \) gives

\[
m(\bigcup_{k=1}^{\infty} D_k) = \lim_{k \to \infty} m(D_k).
\]

By De Morgan’s Laws (Theorem 0.1, applied to relative complements)

\[
\bigcup_{k=1}^{\infty} D_k = \bigcup_{k=1}^{\infty} (B_1 \setminus B_k) = \bigcup_{k=1}^{\infty} (B_1 \cap B_k^c) = B_1 \setminus \bigcap_{k=1}^{\infty} B_k.
\]
Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since \(m(B_k) < \infty \) and \(B_k \subset B_1 \), we have

\[
m(D_k) = m(B_1 \setminus B_k) = m(B_1) - m(B_k)
\]

for all \(k \in \mathbb{N} \). So

\[
m(\bigcup_{k=1}^{\infty} D_k) = m(B_1 \setminus \bigcap_{k=1}^{\infty} B_k) \text{ by (**)}
= m(B_1) - m(\bigcap_{k=1}^{\infty} B_k) \text{ by the Excision Property}
= \lim_{k \to \infty} m(D_k) \text{ by (*)}
= \lim_{k \to \infty} (m(B_1) - m(B_k)) \text{ by the definition of } D_k
= m(B_1) - \lim_{k \to \infty} m(B_k).
\]

Hence, since \(m(B_1) < \infty \), \(m(\bigcap_{k=1}^{\infty} B_k) = \lim_{k \to \infty} m(B_k) \), as claimed. \qed
Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since $m(B_k) < \infty$ and $B_k \subset B_1$, we have

$$m(D_k) = m(B_1 \setminus B_k) = m(B_1) - m(B_k)$$

for all $k \in \mathbb{N}$. So

$$m(\bigcup_{k=1}^{\infty} D_k) = m(B_1 \setminus \bigcap_{k=1}^{\infty} B_k) \text{ by (**)}$$

$$= m(B_1) - m(\bigcap_{k=1}^{\infty} B_k) \text{ by the Excision Property}$$

$$= \lim_{k \to \infty} m(D_k) \text{ by (*)}$$

$$= \lim_{k \to \infty} (m(B_1) - m(B_k)) \text{ by the definition of } D_k$$

$$= m(B_1) - \lim_{k \to \infty} m(B_k).$$

Hence, since $m(B_1) < \infty$, $m(\bigcap_{k=1}^{\infty} B_k) = \lim_{k \to \infty} m(B_k)$, as claimed. \qed
The Borel-Cantelli Lemma

Let \(\{ E_k \}_{k=1}^{\infty} \) be a countable collection of measurable sets for which \(\sum_{k=1}^{\infty} m(E_k) < \infty \). Then almost all \(x \in \mathbb{R} \) belong to at most finitely many of the \(E_k \)'s.

Proof. By countable subadditivity \(m(\bigcup_{k=n}^{\infty} E_k) \leq \sum_{k=n}^{\infty} m(E_k) < \infty \). So

\[
m(\bigcap_{n=1}^{\infty} [\bigcup_{k=n}^{\infty} E_k]) = \lim_{n \to \infty} m(\bigcup_{k=n}^{\infty} E_k) \quad \text{by Theorem 2.15(ii)}
\]

\[
\leq \lim_{n \to \infty} \sum_{k=n}^{\infty} m(E_k) \quad \text{as above}
\]

\[
= 0 \quad \text{since} \quad \sum_{n=1}^{\infty} m(E_k) < \infty.
\]
The Borel-Cantelli Lemma

Let \(\{E_k\}_{k=1}^{\infty} \) be a countable collection of measurable sets for which \(\sum_{k=1}^{\infty} m(E_k) < \infty \). Then almost all \(x \in \mathbb{R} \) belong to at most finitely many of the \(E_k \)'s.

Proof. By countable subadditivity \(m(\bigcup_{k=n}^{\infty} E_k) \leq \sum_{k=n}^{\infty} m(E_k) < \infty \). So

\[
m(\bigcap_{n=1}^{\infty} \left[\bigcup_{k=n}^{\infty} E_k \right]) = \lim_{n \to \infty} m(\bigcup_{k=n}^{\infty} E_k) \text{ by Theorem 2.15(ii)}
\]

\[
\leq \lim_{n \to \infty} \sum_{k=n}^{\infty} m(E_k) \text{ as above}
\]

\[
= 0 \text{ since } \sum_{n=1}^{\infty} m(E_k) < \infty.
\]

Now \(\bigcap_{n=1}^{\infty} \left[\bigcup_{k=n}^{\infty} E_k \right] \) is the set of all points which are in infinitely many \(E_k \)'s. Since the measure of this set is zero, almost all real numbers belong to finitely many \(E_k \)'s, as claimed.

\(\square \)
The Borel-Cantelli Lemma

Let \(\{E_k\}_{k=1}^\infty \) be a countable collection of measurable sets for which \(\sum_{k=1}^\infty m(E_k) < \infty \). Then almost all \(x \in \mathbb{R} \) belong to at most finitely many of the \(E_k \)'s.

Proof. By countable subadditivity \(m(\bigcup_{k=n}^\infty E_k) \leq \sum_{k=n}^\infty m(E_k) < \infty \). So

\[
m(\bigcap_{n=1}^\infty [\bigcup_{k=n}^\infty E_k]) = \lim_{n \to \infty} m(\bigcup_{k=n}^\infty E_k) \text{ by Theorem 2.15(ii)}
\]

\[
\leq \lim_{n \to \infty} \sum_{k=n}^\infty m(E_k) \text{ as above}
\]

\[
= 0 \text{ since } \sum_{n=1}^\infty m(E_k) < \infty.
\]

Now \(\bigcap_{n=1}^\infty [\bigcup_{k=n}^\infty E_k] \) is the set of all points which are in infinitely many \(E_k \)'s. Since the measure of this set is zero, almost all real numbers belong to finitely many \(E_k \)'s, as claimed.