Chapter 3. Lebesgue Measurable Functions
3.3. Littlewood’s Three Principles, Egoroff’s Theorem, and Lusin’s
Theorem—Proofs of Theorems
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lemma 3.10</td>
</tr>
<tr>
<td>2</td>
<td>Egoroff’s Theorem</td>
</tr>
<tr>
<td>3</td>
<td>Proposition 3.11</td>
</tr>
<tr>
<td>4</td>
<td>Lusin’s Theorem</td>
</tr>
</tbody>
</table>
Lemma 3.10. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta > 0$ and $\delta > 0$, there is a measurable subset A of E and an index N for which

$$|f_n - f| < \eta \text{ on } A \text{ for all } n \geq N \text{ and } m(E \setminus A) < \delta.$$

Proof. For each k, the function $|f - f_k|$ is well-defined (since f is real-valued then we do not have $\infty - \infty$ concerns, even though f_k might be extended real valued) and measurable by Theorem 3.6 and Proposition 3.9. So $\{x \in E \mid |f(x) - f_k(x)| < \eta\}$ is measurable for all $\eta \in \mathbb{R}$.
Lemma 3.10. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta > 0$ and $\delta > 0$, there is a measurable subset A of E and an index N for which

$$|f_n - f| < \eta \text{ on } A \text{ for all } n \geq N \text{ and } m(E \setminus A) < \delta.$$

Proof. For each k, the function $|f - f_k|$ is well-defined (since f is real-valued then we do not have $\infty - \infty$ concerns, even though f_k might be extended real valued) and measurable by Theorem 3.6 and Proposition 3.9. So $\{x \in E \mid |f(x) - f_k(x)| < \eta\}$ is measurable for all $\eta \in \mathbb{R}$. Now $E_n = \{x \in E \mid |f(x) - f_k(x)| < \eta \text{ for all } k \geq n\} = \bigcap_{k=n}^{\infty} \{x \in E \mid |f(x) - f_k(x)| < \eta\}$ is measurable. Also, $\{E_n\}_{n=1}^{\infty}$ is an ascending collection of measurable sets. Since $\{f_n\}$ converges pointwise to f on E then $E = \bigcup_{n=1}^{\infty} E_n = \lim E_n$.
Lemma 3.10. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta > 0$ and $\delta > 0$, there is a measurable subset A of E and an index N for which

$$|f_n - f| < \eta \text{ on } A \text{ for all } n \geq N \text{ and } m(E \setminus A) < \delta.$$

Proof. For each k, the function $|f - f_k|$ is well-defined (since f is real-valued then we do not have $\infty - \infty$ concerns, even though f_k might be extended real valued) and measurable by Theorem 3.6 and Proposition 3.9. So $\{x \in E \mid |f(x) - f_k(x)| < \eta\}$ is measurable for all $\eta \in \mathbb{R}$. Now $E_n = \{x \in E \mid |f(x) - f_k(x)| < \eta \text{ for all } k \geq n\} = \cap_{k=n}^{\infty} \{x \in E \mid |f(x) - f_k(x)| < \eta\}$ is measurable. Also, $\{E_n\}_{n=1}^{\infty}$ is an ascending collection of measurable sets. Since $\{f_n\}$ converges pointwise to f on E then $E = \cup_{n=1}^{\infty} E_n = \lim E_n$.

Lemma 3.10. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta > 0$ and $\delta > 0$, there is a measurable subset A of E and an index N for which

$$|f_n - f| < \eta \text{ on } A \text{ for all } n \geq N \text{ and } m(E \setminus A) < \delta.$$

Proof (continued). By continuity of measure (Theorem 2.15) $m(E) = \lim m(E_n)$. Since $m(E) < \infty$, we may choose $N \in \mathbb{N}$ such that $m(E_N) > m(E) - \delta$. Define $A = E_N$. Then by the Excision Property, $m(E \setminus A) = m(E) - m(A) = m(E) - m(E_N) < \delta$. \qed
Lemma 3.10. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta > 0$ and $\delta > 0$, there is a measurable subset A of E and an index N for which

$$|f_n - f| < \eta \text{ on } A \text{ for all } n \geq N \text{ and } m(E \setminus A) < \delta.$$

Proof (continued). By continuity of measure (Theorem 2.15) $m(E) = \lim m(E_n)$. Since $m(E) < \infty$, we may choose $N \in \mathbb{N}$ such that $m(E_N) > m(E) - \delta$. Define $A = E_N$. Then by the Excision Property, $m(E \setminus A) = m(E) - m(A) = m(E) - m(E_N) < \delta$. \qed
Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon > 0$, there is a closed set F contained in E for which

$$\{f_n\} \to f \text{ uniformly on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. Let $\delta = \varepsilon/2^{n+1}$ and $\eta = 1/n$.

Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon > 0$, there is a closed set F contained in E for which

$$\{f_n\} \to f \text{ uniformly on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. Let $\delta = \varepsilon/2^{n+1}$ and $\eta = 1/n$. Then by Lemma 3.10 (this is where finite measure is used) there exists measurable $A_n \subset E$ and $N(n) \in \mathbb{N}$ such that $|f_k - f| < \eta = 1/n$ on A_n for all $k \geq N(n)$ and $m(E \setminus A_n) < \delta = \varepsilon/2^{n+1}$. Define $A = \cap_{n=1}^{\infty} A_n$.
Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon > 0$, there is a closed set F contained in E for which

\[\{f_n\} \to f \text{ uniformly on } F \text{ and } m(E \setminus F) < \varepsilon. \]

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. Let $\delta = \varepsilon/2^{n+1}$ and $\eta = 1/n$. Then by Lemma 3.10 (this is where finite measure is used) there exists measurable $A_n \subset E$ and $N(n) \in \mathbb{N}$ such that $|f_k - f| < \eta = 1/n$ on A_n for all $k \geq N(n)$ and $m(E \setminus A_n) < \delta = \varepsilon/2^{n+1}$. Define $A = \bigcap_{n=1}^{\infty} A_n$. Then

\[
m(E \setminus A) = m(E \setminus (\bigcap_{n=1}^{\infty} A_n)) = m(\bigcup_{n=1}^{\infty} (E \setminus A_n)) \text{ by DeMorgan’s Laws}
\leq \sum_{n=1}^{\infty} m(E \setminus A_n) \text{ by countable subadditivity}
\]

Real Analysis

October 25, 2020 5 / 10
Egoroff’s Theorem

Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon > 0$, there is a closed set F contained in E for which

$$\{f_n\} \to f \text{ uniformly on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. Let $\delta = \varepsilon / 2^{n+1}$ and $\eta = 1/n$. Then by Lemma 3.10 (this is where finite measure is used) there exists measurable $A_n \subset E$ and $N(n) \in \mathbb{N}$ such that $|f_k - f| < \eta = 1/n$ on A_n for all $k \geq N(n)$ and $m(E \setminus A_n) < \delta = \varepsilon / 2^{n+1}$. Define $A = \cap_{n=1}^{\infty} A_n$. Then

$$m(E \setminus A) = m(E \setminus (\cap_{n=1}^{\infty} A_n))$$

$$= m(\cup_{n=1}^{\infty} (E \setminus A_n)) \text{ by DeMorgan’s Laws}$$

$$\leq \sum_{n=1}^{\infty} m(E \setminus A_n) \text{ by countable subadditivity}$$
Egoroff’s Theorem

Proof (continued).

\[m(E \setminus A) \leq \sum_{n=1}^{\infty} m(E \setminus A_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}. \]

We now show that \(\{f_n\} \rightarrow f \) uniformly on \(A \). Let \(\varepsilon > 0 \) and choose \(n_0 \) such that \(1/n_0 < \varepsilon \).
Egoroff’s Theorem

Proof (continued).

\[m(E \setminus A) \leq \sum_{n=1}^{\infty} m(E \setminus A_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}. \]

We now show that \(\{f_n\} \to f \) uniformly on \(A \). Let \(\varepsilon > 0 \) and choose \(n_0 \) such that \(1/n_0 < \varepsilon \). Then from above there is \(N(n_0) \in \mathbb{N} \) such that
\[
|f_k - f| < 1/n_0 \quad \text{on} \quad A_{n_0} \quad \text{for} \quad k \geq N(n_0).
\]
Since \(A \subset A_{n_0} \) and \(1/n_0 < \varepsilon \) then the previous observation implies \(|f_k - f| < \varepsilon \) on \(A \) for \(k \geq N(n_0) \). So \(\{f_n\} \) converges to \(f \) uniformly on \(A \) and \(m(E \setminus A) < \varepsilon/2 \).
Egoroff’s Theorem

Proof (continued).

\[m(E \setminus A) \leq \sum_{n=1}^{\infty} m(E \setminus A_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}. \]

We now show that \(\{f_n\} \to f \) uniformly on \(A \). Let \(\varepsilon > 0 \) and choose \(n_0 \) such that \(1/n_0 < \varepsilon \). Then from above there is \(N(n_0) \in \mathbb{N} \) such that \(|f_k - f| < 1/n_0 \) on \(A_{n_0} \) for \(k \geq N(n_0) \). Since \(A \subset A_{n_0} \) and \(1/n_0 < \varepsilon \) then the previous observation implies \(|f_k - f| < \varepsilon \) on \(A \) for \(k \geq N(n_0) \). So \(\{f_n\} \) converges to \(f \) uniformly on \(A \) and \(m(E \setminus A) < \varepsilon/2 \).

Now we need to find the desired closed set. By Theorem 2.11 there is a closed set \(F \) contained in \(A \) for which \(m(A \setminus F) < \varepsilon/2 \).
Egoroff’s Theorem

Proof (continued).

\[m(E \setminus A) \leq \sum_{n=1}^{\infty} m(E \setminus A_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}. \]

We now show that \(\{f_n\} \to f \) uniformly on \(A \). Let \(\varepsilon > 0 \) and choose \(n_0 \) such that \(1/n_0 < \varepsilon \). Then from above there is \(N(n_0) \in \mathbb{N} \) such that \(|f_k - f| < 1/n_0 \) on \(A_{n_0} \) for \(k \geq N(n_0) \). Since \(A \subset A_{n_0} \) and \(1/n_0 < \varepsilon \) then the previous observation implies \(|f_k - f| < \varepsilon \) on \(A \) for \(k \geq N(n_0) \). So \(\{f_n\} \) converges to \(f \) uniformly on \(A \) and \(m(E \setminus A) < \varepsilon/2 \).

Now we need to find the desired closed set. By Theorem 2.11 there is a closed set \(F \) contained in \(A \) for which \(m(A \setminus F) < \varepsilon/2 \). So \(E \setminus F = (E \setminus A) \cup (A \setminus F) \) and

\[m(E \setminus F) = m(E \setminus A) + m(A \setminus F) < \varepsilon/2 + \varepsilon/2 = \varepsilon. \]

Since \(F \subset A \), then \(\{f_n\} \) converges uniformly on \(F \). \(\square \)
Egoroff’s Theorem

Proof (continued).

\[m(E \setminus A) \leq \sum_{n=1}^{\infty} m(E \setminus A_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2}. \]

We now show that \(\{f_n\} \to f \) uniformly on \(A \). Let \(\varepsilon > 0 \) and choose \(n_0 \) such that \(1/n_0 < \varepsilon \). Then from above there is \(N(n_0) \in \mathbb{N} \) such that \(|f_k - f| < 1/n_0 \) on \(A_{n_0} \) for \(k \geq N(n_0) \). Since \(A \subset A_{n_0} \) and \(1/n_0 < \varepsilon \) then the previous observation implies \(|f_k - f| < \varepsilon \) on \(A \) for \(k \geq N(n_0) \). So \(\{f_n\} \) converges to \(f \) uniformly on \(A \) and \(m(E \setminus A) < \varepsilon/2 \).

Now we need to find the desired closed set. By Theorem 2.11 there is a closed set \(F \) contained in \(A \) for which \(m(A \setminus F) < \varepsilon/2 \). So \(E \setminus F = (E \setminus A) \cup (A \setminus F) \) and \(m(E \setminus F) = m(E \setminus A) + m(A \setminus F) < \varepsilon/2 + \varepsilon/2 = \varepsilon \). Since \(F \subset A \), then \(\{f_n\} \) converges uniformly on \(F \).
Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let a_1, a_2, \ldots, a_n be the finite number of distinct values taken by f and let the values be taken on the sets E_1, E_2, \ldots, E_n respectively. Since the a_k’s are distinct then the E_k’s are disjoint.
Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let a_1, a_2, \ldots, a_n be the finite number of distinct values taken by f and let the values be taken on the sets E_1, E_2, \ldots, E_n respectively. Since the a_k’s are distinct then the E_k’s are disjoint. By Theorem 2.11 there are closed sets F_1, F_2, \ldots, F_n such that for each k, $F_k \subset E_k$ and $m(E_k \setminus F_k) < \varepsilon/n$. Then $F = \bigcup_{k=1}^{n} F_k$ is closed.
Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let a_1, a_2, \ldots, a_n be the finite number of distinct values taken by f and let the values be taken on the sets E_1, E_2, \ldots, E_n respectively. Since the a_k’s are distinct then the E_k’s are disjoint. By Theorem 2.11 there are closed sets F_1, F_2, \ldots, F_n such that for each k, $F_k \subset E_k$ and $m(E_k \setminus F_k) < \varepsilon/n$. Then $F = \bigcup_{k=1}^n F_k$ is closed. Since the E_k are disjoint, we have by countable additivity

$$m(E \setminus F) = m((\bigcup_{k=1}^n E_k) \setminus (\bigcup_{k=1}^n F_k)) = m(\bigcup_{k=1}^n (E_k \setminus F_k)) = \sum_{k=1}^n m(E_k \setminus F_k) < \sum_{k=1}^n \frac{\varepsilon}{n} = \varepsilon.$$
Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. Let a_1, a_2, \ldots, a_n be the finite number of distinct values taken by f and let the values be taken on the sets E_1, E_2, \ldots, E_n respectively. Since the a_k’s are distinct then the E_k’s are disjoint. By Theorem 2.11 there are closed sets F_1, F_2, \ldots, F_n such that for each k, $F_k \subset E_k$ and $m(E_k \setminus F_k) < \varepsilon/n$. Then $F = \bigcup_{k=1}^n F_k$ is closed. Since the E_k are disjoint, we have by countable additivity

$$m(E \setminus F) = m((\bigcup_{k=1}^n E_k) \setminus (\bigcup_{k=1}^n F_k)) = m(\bigcup_{k=1}^n (E_k \setminus F_k))$$

$$= \sum_{k=1}^n m(E_k \setminus F_k) < \sum_{k=1}^n \frac{\varepsilon}{n} = \varepsilon.$$
Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof (continued). Define g on F as $g(x) = a_k$ for $x \in F_k$. (The F_k's are disjoint, so g is well-defined.) Since the F_k's are closed, g is continuous on F (for $x \in F_k$, there is an open interval containing x which is disjoint from the other F_k's, so g is constant on this open interval intersecting F).
Proposition 3.11. Let \(f \) be a simple function defined on \(E \). Then for each \(\varepsilon > 0 \), there is a continuous function \(g \) on \(\mathbb{R} \) and a closed set \(F \) contained in \(E \) for which

\[
f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.
\]

Proof (continued). Define \(g \) on \(F \) as \(g(x) = a_k \) for \(x \in F_k \). (The \(F_k \)'s are disjoint, so \(g \) is well-defined.) Since the \(F_k \)'s are closed, \(g \) is continuous on \(F \) (for \(x \in F_k \), there is an open interval containing \(x \) which is disjoint from the other \(F_k \)'s, so \(g \) is constant on this open interval intersecting \(F \)). By Problem 3.25, \(g \) can be extended to a function continuous on all of \(\mathbb{R} \). This extension of \(g \) is the desired function. \(\square \)
Proposition 3.11. Let \(f \) be a simple function defined on \(E \). Then for each \(\varepsilon > 0 \), there is a continuous function \(g \) on \(\mathbb{R} \) and a closed set \(F \) contained in \(E \) for which

\[
f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.
\]

Proof (continued). Define \(g \) on \(F \) as \(g(x) = a_k \) for \(x \in F_k \). (The \(F_k \)'s are disjoint, so \(g \) is well-defined.) Since the \(F_k \)'s are closed, \(g \) is continuous on \(F \) (for \(x \in F_k \), there is an open interval containing \(x \) which is disjoint from the other \(F_k \)'s, so \(g \) is constant on this open interval intersecting \(F \)). By Problem 3.25, \(g \) can be extended to a function continuous on all of \(\mathbb{R} \). This extension of \(g \) is the desired function. \(\square \)
Lusin’s Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. The case $m(E) = \infty$ is Problem 3.29, so we consider $m(E) < \infty$.

Lusin’s Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$ f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon. $$

Proof. The case $m(E) = \infty$ is Problem 3.29, so we consider $m(E) < \infty$. By the Simple Approximation Theorem, there is a sequence $\{f_n\}$ of simple functions defined on E that converges to f pointwise on E. Let $n \in \mathbb{N}$.
Lusin’s Theorem. Let \(f \) be a real-valued measurable function on \(E \). Then for each \(\varepsilon > 0 \), there is a continuous function \(g \) on \(\mathbb{R} \) and a closed set \(F \) contained in \(E \) for which

\[
f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.
\]

Proof. The case \(m(E) = \infty \) is Problem 3.29, so we consider \(m(E) < \infty \). By the Simple Approximation Theorem, there is a sequence \(\{f_n\} \) of simple functions defined on \(E \) that converges to \(f \) pointwise on \(E \). Let \(n \in \mathbb{N} \). By Proposition 3.11, with \(f \) replaced by \(f_n \) and \(\varepsilon \) replaced by \(\varepsilon/2^{n+1} \), there is a continuous \(g_n \) defined on \(\mathbb{R} \) and a closed set \(F_n \) contained in \(E \) for which \(f_n = g_n \) on \(F_n \) and \(m(E \setminus F_n) < \varepsilon/2^{n+1} \).
Lusin’s Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E. Then for each $\varepsilon > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.$$

Proof. The case $m(E) = \infty$ is Problem 3.29, so we consider $m(E) < \infty$. By the Simple Approximation Theorem, there is a sequence $\{f_n\}$ of simple functions defined on E that converges to f pointwise on E. Let $n \in \mathbb{N}$. By Proposition 3.11, with f replaced by f_n and ε replaced by $\varepsilon/2^{n+1}$, there is a continuous g_n defined on \mathbb{R} and a closed set F_n contained in E for which $f_n = g_n$ on F_n and $m(E \setminus F_n) < \varepsilon/2^{n+1}$. By Egoroff’s Theorem (this is where finite measure is used), there is a closed set F_0 contained in E such that $\{f_n\}$ converges to f uniformly on F_0 and $m(E \setminus F_0) < \varepsilon/2$. Define $F = \bigcap_{n=0}^{\infty} F_n$.

Lusin’s Theorem. Let \(f \) be a real-valued measurable function on \(E \). Then for each \(\varepsilon > 0 \), there is a continuous function \(g \) on \(\mathbb{R} \) and a closed set \(F \) contained in \(E \) for which

\[
f = g \text{ on } F \text{ and } m(E \setminus F) < \varepsilon.
\]

Proof. The case \(m(E) = \infty \) is Problem 3.29, so we consider \(m(E) < \infty \). By the Simple Approximation Theorem, there is a sequence \(\{f_n\} \) of simple functions defined on \(E \) that converges to \(f \) pointwise on \(E \). Let \(n \in \mathbb{N} \). By Proposition 3.11, with \(f \) replaced by \(f_n \) and \(\varepsilon \) replaced by \(\varepsilon/2^{n+1} \), there is a continuous \(g_n \) defined on \(\mathbb{R} \) and a closed set \(F_n \) contained in \(E \) for which \(f_n = g_n \) on \(F_n \) and \(m(E \setminus F_n) < \varepsilon/2^{n+1} \). By Egoroff’s Theorem (this is where finite measure is used), there is a closed set \(F_0 \) contained in \(E \) such that \(\{f_n\} \) converges to \(f \) uniformly on \(F_0 \) and \(m(E \setminus F_0) < \varepsilon/2 \). Define \(F = \cap_{n=0}^\infty F_n \).
Proof (continued). Then

\[
m(E \setminus F) = m(E \setminus \bigcap_{n=0}^{\infty} F_n) = m(\bigcup_{n=0}^{\infty} (E \setminus F_n)) = m((E \setminus F_0) \cup (\bigcup_{n=1}^{\infty} (E \setminus F_n))) < \varepsilon + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

The set \(F\) is closed (since it’s the intersection of closed sets \(F_n\)). Each \(f_n\) is continuous on \(F\) since \(F \subset F_n\) and \(f_n = g_n\) on \(F_n\) and \(g_n\) is continuous on \(\mathbb{R}\). Finally, \(\{f_n\}\) converges to \(f\) uniformly on \(F\) since \(F \subset F_0\) and \(\{f_n\}\) converges uniformly to \(f\) on \(F_0\) (that’s how \(F_0\) was chosen).
Lusin’s Theorem

Proof (continued). Then

\[m(E \setminus F) = m(E \setminus \bigcap_{n=0}^{\infty} F_n) = m\left(\bigcup_{n=0}^{\infty} (E \setminus F_n)\right) = m((E \setminus F_0) \cup \bigcup_{n=1}^{\infty} (E \setminus F_n)) \]

\[< \frac{\varepsilon}{2} + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \]

The set \(F \) is closed (since it’s the intersection of closed sets \(F_n \)). Each \(f_n \) is continuous on \(F \) since \(F \subseteq F_n \) and \(f_n = g_n \) on \(F_n \) and \(g_n \) is continuous on \(\mathbb{R} \). Finally, \(\{f_n\} \) converges to \(f \) uniformly on \(F \) since \(F \subseteq F_0 \) and \(\{f_n\} \) converges uniformly to \(f \) on \(F_0 \) (that’s how \(F_0 \) was chosen). However, the uniform limit of continuous functions is continuous, so the restriction of \(f \) to set \(F \) is continuous. By Problem 3.25, there is a continuous function \(g \) defined on all of \(\mathbb{R} \) such that \(g = f \) on \(F \). Function \(g \) is the desired function.
Proof (continued). Then

\[m(E \setminus F) = m(E \setminus \bigcap_{n=0}^{\infty} F_n) = m(\bigcup_{n=0}^{\infty} (E \setminus F_n)) = m((E \setminus F_0) \cup (\bigcup_{n=1}^{\infty} (E \setminus F_n))) \]

\[< \frac{\varepsilon}{2} + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \]

The set \(F \) is closed (since it’s the intersection of closed sets \(F_n \)). Each \(f_n \) is continuous on \(F \) since \(F \subseteq F_n \) and \(f_n = g_n \) on \(F_n \) and \(g_n \) is continuous on \(\mathbb{R} \). Finally, \(\{f_n\} \) converges to \(f \) uniformly on \(F \) since \(F \subseteq F_0 \) and \(\{f_n\} \) converges uniformly to \(f \) on \(F_0 \) (that’s how \(F_0 \) was chosen). However, the uniform limit of continuous functions is continuous, so the restriction of \(f \) to set \(F \) is continuous. By Problem 3.25, there is a continuous function \(g \) defined on all of \(\mathbb{R} \) such that \(g = f \) on \(F \). Function \(g \) is the desired function.