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Theorem 9.3.A. The /6 Criterion for Continuity.

Theorem 9.3.A. The ¢/§ Criterion for Continuity.

Theorem. The ¢/6 Criterion for Continuity.

A mapping f from a metric space (X, p) to a metric space (Y, o) is
continuous at the point x € X if and only if for every point € > 0 there is
d > 0 for which if p(x,x’) < & then o(f(x), f(x")) < e; that is,

f(B(x,0)) C B(f(x),¢).
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Theorem 9.3.A. The /6 Criterion for Continuity.

Theorem 9.3.A. The ¢/§ Criterion for Continuity.

Theorem. The ¢/6 Criterion for Continuity.

A mapping f from a metric space (X, p) to a metric space (Y, o) is
continuous at the point x € X if and only if for every point € > 0 there is
d > 0 for which if p(x,x’) < & then o(f(x), f(x")) < e; that is,

f(B(x,0)) C B(f(x),¢).

Proof. First, suppose f : X — Y is continuous. ASSUME there is g > 0
for which there is no > 0 for which f(B(x,d)) C B(f(x),&0). In
particular if n € N and n > 1/ then it is not true that

f(B(x,1/n)) C B(f(x),¢eo).
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Theorem 9.3.A. The /6 Criterion for Continuity.

Theorem 9.3.A. The ¢/§ Criterion for Continuity.

Theorem. The ¢/6 Criterion for Continuity.

A mapping f from a metric space (X, p) to a metric space (Y, o) is
continuous at the point x € X if and only if for every point € > 0 there is
d > 0 for which if p(x,x’) < & then o(f(x), f(x")) < e; that is,

f(B(x,0)) C B(f(x),¢).

Proof. First, suppose f : X — Y is continuous. ASSUME there is g > 0
for which there is no > 0 for which f(B(x,d)) C B(f(x),&0). In
particular if n € N and n > 1/ then it is not true that

f(B(x,1/n)) C B(f(x),e0). So there is x, € X such that p(x, x,) < 1/n
(i.e., xn € B(x,1/n)) while o(f(x), f(xn)) > €0, or f(xo) & B(f(f(x),e0)).
We then have sequence {x,} in X that converges to x, but {f(x,)} does
not converge to f(x) since p(f(x), f(xn)) > €o for all n > 1/§. But this
CONTRADICTS the definition of continuity of f : X — Y at x € X. So
the assumption that such ¢ > 0 does not exist is false and so for all ¢ > 0
there is § > 0, as claimed.
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Theorem 9.3.A. The /6 Criterion for Continuity.

Theorem 9.3.A. The ¢/ Criterion for Continuity
(continued).

Theorem 9.3.A. The ¢/§ Criterion for Continuity.

A mapping f from a metric space (X, p) to a metric space (Y,0) is
continuous at the point x € X if and only if for every point ¢ > 0 there is
d > 0 for which if p(x,x’) < ¢ then o(f(x), f(x")) < e; that is,

f(B(x,9)) C B(f(x),e).

Proof (continued). For the converse, suppose the /4§ criterion holds.
Let {xn} be a sequence in X that converges to x. Let € > 0. Then there is
0 > 0 for which f(B(x,d)) C B(f(x),e). Since {x,} — x thereis N € N
such that x, € B(x,d) for n > N. Then f(x,) € B(f(x),¢) for n > N;
that is, o(f(x), f(xn)) < e for n > N. So {f(xn)} — f(x). Since {x,} is
an arbitrary sequence in X which converges to x, then f is continuous at x
by definition. O

Real Analysis TR



Proposition 9.8

Proposition 9.8

Proposition 9.8. A mapping f from metric space X to metric space Y is
continuous if and only if for each open subset O of Y, the inverse image
under f of O, f~1(0), is an open subset of X.
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Proposition 9.8

Proposition 9.8. A mapping f from metric space X to metric space Y is
continuous if and only if for each open subset O of Y, the inverse image
under f of O, f~1(0), is an open subset of X.

Proof. Suppose f is continuous. Let O be open in Y. Let x € f~1(0).
Then f(x) € O and since O is open there is some r > 0 such that
B(f(x),r) C O. Since f is continuous by hypothesis, then by the £/
criterion for continuity, there is § > 0 such that

f(B(x,8)) C B(f(x),r) C O. Thus B(x,d) C f~1(O) and so f~}(O) is
open in X.
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Proposition 9.8

Proposition 9.8. A mapping f from metric space X to metric space Y is
continuous if and only if for each open subset O of Y, the inverse image
under f of O, f~1(0), is an open subset of X.

Proof. Suppose f is continuous. Let O be open in Y. Let x € f~1(0).
Then f(x) € O and since O is open there is some r > 0 such that
B(f(x),r) C O. Since f is continuous by hypothesis, then by the £/
criterion for continuity, there is § > 0 such that

f(B(x,8)) C B(f(x),r) C O. Thus B(x,d) C f~1(O) and so f~}(O) is
open in X.

Now suppose the inverse image under f of each open set is open. Let

x € X. Let € > 0. The ball B(f(x),¢) is open in Y. So by hypothesis
f~1(B(f(x),¢)) is open in X. So there is § > 0 with

B(x,d) C f~Y(B(f(x),¢)). Thatis, f(B(x,d)) C B(f(x),e) as

claimed. O
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Proposition 9.9

Proposition 9.9. The composition of continuous mappings between
metric spaces, when defined, is continuous.
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Proposition 9.9

Proposition 9.9. The composition of continuous mappings between
metric spaces, when defined, is continuous.

Proof. Let f : X — Y be continuous and g : Y — Z be continuous where
X,Y,Z are metric spaces. Let O be open in Z. Since g is continuous
then g~1(0O) is open in Y since f is continuous then

f~Y(g 1 (0)) = (g o f)~H(O) is open in X. Therefore, by Proposition 9.8,
g o f is continuous. O
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