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Proposition 9.10

Proposition 9.10

Proposition 9.10. Let [a, b] be a closed, bounded interval of real
numbers. Then C ([a, b]), with the metric induced by the max norm, is
complete.

Proof. Let {fn} be a Cauchy sequence in C [a, b]. First, suppose there is a
convergent series of real numbers

∑∞
k=1 ak such that

‖fk+1 − fk‖max ≤ ak for all k. (2)

Since fn+k − fn =
∑n+k−1

j=n (fj+1 − fj) for all n, k (it behaves like a
telescoping series), then by the triangle inequality in C [a, b] and (2)

‖fn+k − fn‖max ≤
n+k−1∑

j=n

‖fj+1 − fj‖max ≤
∞∑
j=n

aj for all n, k.

Let x be an arbitrary element of [a, b]. Then

|fn+k(x)− fn(x)| ≤ ‖fk+1 − fk‖max ≤ ak for all k. (3)
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Proposition 9.10

Proposition 9.10 (continued 1)

Proof (continued). Since the series
∑∞

k=1 ak converges, then the
sequence of real numbers {fn(x)} is a Cauchy sequence and, since the real
numbers are complete, this sequence converges to some real number which
we denote as f (x). Since x is an arbitrary element of [a, b], taking the
limit as k →∞ in (3) we have

|f (x)− fn(x)| ≤
∞∑
j=n

aj for all n and all x ∈ [a, b].

That is, {fn} converges uniformly on [a, b] to f . Since each fn is
continuous, the f is also continuous and so f ∈ C [a, b] (see Theorem 8-2
in my online notes for Analysis 1 [MATH 4217/5217] on Section 8.1.
Sequences of Functions). So the result holds under the assumption of the
existence of the Cauchy sequence

∑∞
k=1 ak given above.

() Real Analysis April 25, 2023 4 / 8

https://faculty.etsu.edu/gardnerr/4217/notes/8-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/8-1.pdf


Proposition 9.10

Proposition 9.10 (continued 2)

Proposition 9.10. Let [a, b] be a closed, bounded interval of real
numbers. Then C ([a, b]), with the metric induced by the max norm, is
complete.

Proof (continued). The general case follows from the fact that every
Cauchy sequence {fn} has a subsequence {fnk

} such that equation (2)
holds:

‖fnk+1
− fnk

‖max ≤ ak for all k

for some sequence of real numbers {ak} such that
∑∞

k=1 ak (we can take
ε = ak = 1/2k and choose nk based on this; then {ak} determines a
convergent geometric series). We can then apply the above result to show
that the subsequence {fnk

} converges in C [a, b]. A Cauchy sequence with
a convergent subsequence is convergent (by Problem 9.38) so the general
result holds, as claimed.
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Proposition 9.11

Proposition 9.11

Proposition 9.11. If E is a subset of the complete metric space X , then
the metric subspace E is complete if and only if E is a closed subset of X .

Proof. First, suppose that E is a closed subset of X . Let {xn} be a
Cauchy sequence in E . Then {xn} can be considered as a Cauchy sequence
in X , and X is complete by hypothesis. So {xn} converges to some point
x ∈ X . By Proposition 9.6, since E is a closed subset of X then the limit
of a convergent sequence in E belongs to E . So x ∈ E and, since {xn} is
an arbitrary Cauchy sequence in E then E is a complete metric space.

Second, for the converse suppose that E is a complete metric space. By
Proposition 9.6, to show that E is closed it is sufficient to show that the
limit of a convergent sequence in E also belongs to E . Let {xn} be a
sequence in E that converges to x ∈ X . But a convergent sequence is
Cauchy (by the Triangle Inequality), so by the hypothesized completeness
of E , {xn} converges to a point in E . But a convergent sequence in a
metric space has only one limit, so x ∈ E . That is E is closed, as
claimed.
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Theorem 9.4.A. The Cantor Intersection Theorem

Theorem 9.4.A. The Cantor Intersection Theorem

Theorem 9.4.A. The Cantor Intersection Theorem. Let X be a metric
space. Then X is complete if and only if whenever {Fn}∞n=1 is a
contracting sequence of nonempty closed subsets of X , there is a point
x ∈ X for which ∩∞n=1Fn = {x}.

Proof. First, assume X is a complete metric space. Let {Fn}∞n=1 be a
contracting sequence of nonempty closed subsets of X . For each index n,
select xn ∈ Fn (which can be done since each Fn is nonempty). Let ε > 0.
Since {Fn} is a contracting sequence, then there is an index N for which
diam(FN) < ε. Since {Fn} is descending, if n,m ≥ N then xn and xm

belong to FN so that ρ(xn, xm) ≤ diam(FN) < ε. Therefore {xn} is a
Cauchy sequence.

Since X is complete, then {xn} converges to some
x ∈ X . Since each Fn is closed by hypothesis and xk ∈ Fn for k ≥ n then
x ∈ Fn. Thus x ∈ ∩∞n=1Fn. Notice that the intersection cannot contain
two points x and y , for then limn→∞ diam(Fn) ≥ ρ(x , y) 6= 0, and we
must have ∩∞n=1Fn = {x}, as claimed.
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Theorem 9.4.A. The Cantor Intersection Theorem

Theorem 9.4.A. The Cantor Intersection Theorem (cont.)

Proof (continued). Second, assume that for any contracting sequence
{Fn}∞n=1 of nonempty closed subsets of X , there is a point x ∈ X for
which ∩∞n=1Fn = {x}. Let {xn} be a Cauchy sequence in X . For each
index n, define Fn to be the closure of the nonempty set {xk | k ≥ n}.
Then {Fn} is a descending sequence of nonempty closed sets. Since {xn}
is Cauchy (by choice), then diam(Fn) → 0 as n →∞; that is, {Fn} is
contracting. So by our hypotheses in this case, there is a point x ∈ X for
which {x} = ∩∞n=1Fn. Since x ∈ Fn for each index n then x is a point of
closure of {xk | k ≥ n} and therefore any ball centered at x has nonempty
intersection with {xk | k ≥ n} (by the definition of point of closure).
Hence we may inductively select a strictly increasing sequence of natural
numbers {nk} such that for each index k, we have ρ(x , xnk

) < 1/k (i.e.,
we take ε = 1/k and choose xnk

accordingly). Then subsequence {xnk
}

converges to x . Since {xn} is Cauchy and has a subsequence that
converges to x , then the sequence {xn} converges to x (by Problem 38).
Since {xn} is an arbitrary Cauchy sequence in X , then X is complete.
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