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Proposition 9.10

Proposition 9.10

Proposition 9.10. Let [a, b] be a closed, bounded interval of real

numbers. Then C([a, b]), with the metric induced by the max norm, is
complete.
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Proposition 9.10

Proposition 9.10. Let [a, b] be a closed, bounded interval of real
numbers. Then C([a, b]), with the metric induced by the max norm, is
complete.

Proof. Let {f,} be a Cauchy sequence in C|a, b]. First, suppose there is a
convergent series of real numbers Y ; ax such that

kaJrl - fk”max < ag for all k. (2)
Since fpik — fn = Z}’i:_l(ﬁ-ﬂ — ;) for all n, k (it behaves like a
telescoping series), then by the triangle inequality in Cla, b] and (2)
n+k—1 00
[ fork — fallmax < Z [fi+1 = fillmax < Zaj for all n, k.
j=n j=n
Let x be an arbitrary element of [a, b]. Then
‘fnJrk(X) — fn(X)‘ < ka+1 — kamax < ak for all k. (3)
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Proposition 9.10 (continued 1)

Proof (continued). Since the series Y7 ; ax converges, then the
sequence of real numbers {f,(x)} is a Cauchy sequence and, since the real
numbers are complete, this sequence converges to some real number which
we denote as f(x). Since x is an arbitrary element of [a, b], taking the
limit as kK — oo in (3) we have

|f(x) — fo(x)| < Zaj for all n and all x € [a, b].

Jj=n

That is, {f,} converges uniformly on [a, b] to f. Since each f, is
continuous, the f is also continuous and so f € C|a, b] (see Theorem 8-2
in my online notes for Analysis 1 [MATH 4217/5217] on Section 8.1.
Sequences of Functions). So the result holds under the assumption of the
existence of the Cauchy sequence )}~ ; ax given above.
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Proposition 9.10 (continued 2)

Proposition 9.10. Let [a, b] be a closed, bounded interval of real
numbers. Then C([a, b]), with the metric induced by the max norm, is
complete.

Proof (continued). The general case follows from the fact that every
Cauchy sequence {f,} has a subsequence {f,, } such that equation (2)
holds:

ank+1 - fnkaax < ak for all k

for some sequence of real numbers {ax} such that > ;2 ax (we can take
£ = ax = 1/2% and choose ny based on this; then {ax} determines a
convergent geometric series). We can then apply the above result to show
that the subsequence {f,, } converges in C[a, b]. A Cauchy sequence with
a convergent subsequence is convergent (by Problem 9.38) so the general
result holds, as claimed. Ol
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Proposition 9.11

Proposition 9.11. If E is a subset of the complete metric space X, then
the metric subspace E is complete if and only if E is a closed subset of X.
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Proposition 9.11

Proposition 9.11. If E is a subset of the complete metric space X, then
the metric subspace E is complete if and only if E is a closed subset of X.
Proof. First, suppose that E is a closed subset of X. Let {x,} be a
Cauchy sequence in E. Then {x,} can be considered as a Cauchy sequence
in X, and X is complete by hypothesis. So {x,} converges to some point
x € X. By Proposition 9.6, since E is a closed subset of X then the limit
of a convergent sequence in E belongs to E. So x € E and, since {x,} is
an arbitrary Cauchy sequence in E then E is a complete metric space.
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Proposition 9.11

Proposition 9.11. If E is a subset of the complete metric space X, then
the metric subspace E is complete if and only if E is a closed subset of X.

Proof. First, suppose that E is a closed subset of X. Let {x,} be a
Cauchy sequence in E. Then {x,} can be considered as a Cauchy sequence
in X, and X is complete by hypothesis. So {x,} converges to some point
x € X. By Proposition 9.6, since E is a closed subset of X then the limit
of a convergent sequence in E belongs to E. So x € E and, since {x,} is
an arbitrary Cauchy sequence in E then E is a complete metric space.

Second, for the converse suppose that E is a complete metric space. By
Proposition 9.6, to show that E is closed it is sufficient to show that the
limit of a convergent sequence in E also belongs to E. Let {x,} be a
sequence in E that converges to x € X. But a convergent sequence is
Cauchy (by the Triangle Inequality), so by the hypothesized completeness
of E, {x,} converges to a point in E. But a convergent sequence in a
metric space has only one limit, so x € E. That is E is closed, as

claimed. []
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Theorem 9.4.A. The Cantor Intersection Theorem

Theorem 9.4.A. The Cantor Intersection Theorem. Let X be a metric
space. Then X is complete if and only if whenever {F,}°, is a

contracting sequence of nonempty closed subsets of X, there is a point
x € X for which N0, F, = {x}.
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Theorem 9.4.A. The Cantor Intersection Theorem

Theorem 9.4.A. The Cantor Intersection Theorem. Let X be a metric
space. Then X is complete if and only if whenever {F,}°, is a
contracting sequence of nonempty closed subsets of X, there is a point

x € X for which N0, F, = {x}.

Proof. First, assume X is a complete metric space. Let {F,}°°, be a
contracting sequence of nonempty closed subsets of X. For each index n,
select x, € F, (which can be done since each F, is nonempty). Let € > 0.
Since {F,} is a contracting sequence, then there is an index N for which
diam(Fy) < e. Since {F,} is descending, if n,m > N then x, and xx,
belong to Fy so that p(xp, xm) < diam(Fy) < €. Therefore {x,} is a
Cauchy sequence.
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Theorem 9.4.A. The Cantor Intersection Theorem

Theorem 9.4.A. The Cantor Intersection Theorem. Let X be a metric
space. Then X is complete if and only if whenever {F,}°, is a
contracting sequence of nonempty closed subsets of X, there is a point

x € X for which N0, F, = {x}.

Proof. First, assume X is a complete metric space. Let {F,}°°, be a
contracting sequence of nonempty closed subsets of X. For each index n,
select x, € F, (which can be done since each F, is nonempty). Let € > 0.
Since {F,} is a contracting sequence, then there is an index N for which
diam(Fy) < e. Since {F,} is descending, if n,m > N then x, and xx,
belong to Fy so that p(xp, xm) < diam(Fy) < €. Therefore {x,} is a
Cauchy sequence. Since X is complete, then {x,} converges to some

x € X. Since each F, is closed by hypothesis and x, € F, for k > n then
x € Fp. Thus x € N2, F,. Notice that the intersection cannot contain
two points x and y, for then lim,_. diam(F,) > p(x,y) # 0, and we
must have N, F, = {x}, as claimed.
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Theorem 9.4.A. The Cantor Intersection Theorem (cont.)

Proof (continued). Second, assume that for any contracting sequence
{Fn}52; of nonempty closed subsets of X, there is a point x € X for
which N%, F, = {x}. Let {x,} be a Cauchy sequence in X. For each
index n, define F, to be the closure of the nonempty set {xx | k > n}.
Then {F,} is a descending sequence of nonempty closed sets. Since {x,}
is Cauchy (by choice), then diam(F,) — 0 as n — oo; that is, {F,} is
contracting. So by our hypotheses in this case, there is a point x € X for
which {x} = N> F,.

Real Analysis Y



Theorem 9.4.A. The Cantor Intersection Theorem (cont.)

Proof (continued). Second, assume that for any contracting sequence
{Fn}52; of nonempty closed subsets of X, there is a point x € X for
which N%, F, = {x}. Let {x,} be a Cauchy sequence in X. For each
index n, define F, to be the closure of the nonempty set {xx | k > n}.
Then {F,} is a descending sequence of nonempty closed sets. Since {x,}
is Cauchy (by choice), then diam(F,) — 0 as n — oo; that is, {F,} is
contracting. So by our hypotheses in this case, there is a point x € X for
which {x} =N%;F,. Since x € F, for each index n then x is a point of
closure of {xx | k > n} and therefore any ball centered at x has nonempty
intersection with {xx | k > n} (by the definition of point of closure).
Hence we may inductively select a strictly increasing sequence of natural
numbers {nx} such that for each index k, we have p(x, xp,) < 1/k (i.e.,
we take € = 1/k and choose x,, accordingly). Then subsequence {x,, }
converges to x. Since {x,} is Cauchy and has a subsequence that
converges to x, then the sequence {x,} converges to x (by Problem 38).
Since {x,} is an arbitrary Cauchy sequence in X, then X is complete. [
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