Real Analysis J

Chapter 9. Metric Spaces: General Properties
9.5. Compact Metric Spaces—Proofs of Theorems

REAL
ANALYSIS

H.L.Royden * P.M. Fitzpatrick Fourth
Edition

Real Analysis December 13, 2022 1/18

Proposition 9.15

Proposition 9.15

Proposition 9.15. A subset of Euclidean space R" is bounded if and only
if it is totally bounded.

Proof. By Lemma 9.5.A a totally bounded metric space is bounded, so if
a subset of R” is totally bounded then it is bounded.

Now let E be a bounded subset of R". Let € > 0. Since E is bounded, we
may take a > 0 large enough so that E is contained in the hypercube
[—a,a] x [—a,a] x -+ x[—a,a]. Let Py be a partition of [—a, a] into closed
intervals where each interval has length less than 1/k (this is possible
since [—a, a] is bounded). Then Py x Py X --- X Py induces a partition of
[—a,a] x [-a,a] x -+ x [—a, a] into closed rectangles of diameter at most
v/n/k. Choose k such that /n/k < e. Consider the finite collection of
balls of radius € with centers (x, x2, ..., x,) where x1,xp,..., X, are
partition points of P,. Then this finite collection of balls of radius

e > +/n/k covers the hypercube [—a, a] x [—a,a] X --- x [—a, a] and
therefore also covers E. O
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Lemma 9.5.A

Lemma 9.5.A.

Lemma 9.5.A. If a metric space X is totally bounded then it is bounded
in the sense that its diameter is finite.

Proof. Let ¢ = 1. Since X is totally bounded, then there are a finite
number of open balls {B(xk,1)}7_; such that X C U]_,B(xk,1). Let d
be the maximum distance between the centers of the open balls,

d = max{p(x;,x;) | 1 <i < j < n}. Then by the Triangle Inequality,
diam(X) < ¢ where ¢ =2+ d. That is, X is bounded, as claimed. O
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Proposition 9.17

Proposition 9.17

Proposition 9.17. If a metric space X is complete and totally bounded,
then it is compact.

Proof. ASSUME {O,}aen is an open cover of X for which there is no
finite subcover. Since X is totally bounded, we may chose a finite
collection of open balls of radius less than 1/2 that cover X. There must
be one of these balls that cannot be covered by a finite subcollection of
{Ox}xen (or else {Ox} does have a finite subcover of X). Select such a
ball and label its closure F;. Then F; is closed and diam(F;) < 1. Using
the total boundedness of X again, there is a finite collection of open balls
of radius less than 1/4 that cover X, so so also covers Fi. Again, there
must be one of the balls whose intersection with F; cannot be covered by
a finite subcollection of {O)}aea. Define F; to be the closure of the
intersection of such a ball with F{. Then F; and F5 are closed, F> C 4
with diam(F;) <1 and diam(F) < 1/2.
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Proposition 9.17

Proposition 9.17 (continued)

Proposition 9.17. If a metric space X is complete and totally bounded,
then it is compact.

Proof (continued). Continuing in this way iteratively we obtain a
contracting sequence of nonempty, closed sets {F,} with the property that
each F, cannot be covered by a finite subcollection of {O)}xea. But X is
complete, so by the Cantor Intersection Theorem (of Section 9.4) there is
a single point xp € X that belongs to the intersection N, F,,. Since
{Ox}xen is a covering of X, there is some index A\g such thatO,, contains
xo and since O}, is open, there is a ball centered at xg, B(xp, r), such that
B(xp, r) € O,,. Since lim,_, diam(F,) = 0 and xp € N, F,,, there is an
index n such that F, C O,,. This isa CONTRADICTION to the fact that
each F, was chosen as being a set that cannot be covered by a finite
subcollection of {O)}xca. So the assumption that there is an open cover
of X for which there is no finite subcover is false. That is, every open
cover of X has a finite subcover so that X is compact, as claimed. O
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Proposition 9.19

Proposition 9.19. If a metric space X is sequentially compact, then it is
complete and totally bounded.

Proof. Let metric space X be sequentially compact. ASSUME X is not
totally bounded. Then for some ¢ > Q there is not cover of X by a finite
number of open balls of radius €. Select a point x; € X. Since X is not
contained in B(xy, ), we may choose x, € X such that p(x1,x2) > €. Now
since X is not contained in B(xi,e) U B(x2,¢), we may choose x» € X for
which p(x3,x2) > € and p(x3,x1) > €. In this way we obtain a sequence
{xn} in X with the property that p(x,, xx) > ¢ for n # k. Then the
sequence {x,} can have no convergent subsequence, since any to different
terms of any subsequence are a distance € or more apart. Therefore, X is
not sequentially compact. This CONTRADICTION show that the
assumption that X is not totally bounded is false. Hence, if X is
sequentially compact the X is totally bounded, as claimed.
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Proposition 9.18

Proposition 9.18

Proposition 9.18. If a metric space X is compact, then it is sequentially
compact.

Proof. Let X be compact and let {x,} be a sequence in X. For each

n €N, let F, be the closure of the nonempty set {xx | k > n}. Then {F,}
is a descending sequence of nonempty closed sets which satisfy the finite
intersection property. Therefore, by Proposition 9.14 there is a point

xp € X such that xg € N7, F,. Since for each n € N, xp is in the closure
of {xx | k > n}, the ball B(xp,1/k) has nonempty intersection with

{xx | k > n}. By induction we may select a strictly increasing sequence of
indices {ny} such that for each index k, we have p(xo, xs,) < 1/k (choose
Xp, in B(x 1), choose xp, in B(x,1/2) where ny > ny, etc.). The
subsequence converges to xp. That is, (arbitrary) sequence {x,} has
convergent subsequence {x,, } and hence X is sequentially compact, as
claimed. O
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Proposition 9.19

Proposition 9.19 (continued)

Proposition 9.19. If a metric space X is sequentially compact, then it is
complete and totally bounded.

Proof (continued). Again, let metric space X be sequentially compact.
To show that X is complete, suppose {x,} is a Cauchy sequence in X.
Since X is sequentially compact, a subsequence of {x,} converges to some
point x € X. A Cauchy sequence with a convergent subsequence is
convergent (by Problem 9.38), so Cauchy sequence {x,} converges and X
is complete, as claimed. O
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Proposition 9.21

Proposition 9.21

Proposition 9.21. Let f be a continuous mapping from a compact metric
space X to a metric space Y. Then its image f(X) is also compact.

Proof. Let {O,} en be an open covering of f(X). Since f is continuous,
Proposition 9.8 implies that each f=1(0,) is open, so that {f ~1(Ox)}ren
is an open cover of X. Since X is compact by hypothesis, there is a finite
subcollection {f=1(Oy,), f1(Oy,),...,f1(O,,)} that also covers X.
Since f maps X onto f(X), the finite collection {O),,Os,,...,0x,}
covers f(X). Since {Op}ren is an arbitrary cover of f(X), then f(X) is
compact, as claimed. O
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Proposition 9.22. Extreme Value Theorem (continued 1)

Proof (continued). ASSUME that X is not totally bounded. As shown in
the proof of Proposition 9.19 (the first half where X is assumed to be not
totally bounded), there is some r > 0 and sequence {x,}7°; in X such
that the collection of open balls {B(x,, t)}°°, is disjoint. For each n € N,
define the function f, : X — R by

f'( )_ r/2_p(X7Xn) if[)(X,Xn)Sr/2
n\X) = 0 otherwise.

The define the function f : X — R by

f(x) = i nfy(x) for all x € X.

n=1

Since each f, is continuous and vanishes outside B(xp, r/2) and the
collection {B(x,, r)}5° is disjoint, then f is “properly defined” (or
“well-defined") and continuous.
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem.

Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof. First, suppose X is compact. Let the function ¥ : X — R be
continuous. By Proposition 9.21, f(X) is a compact set of real numbers.
By Theorem 9.20 ((ii) implies (i)), f(X) is closed and bounded. Since R is
complete (so set f(X) with upper and lower bounds has a lub and glb)
and f(X) is closed (it contains is lub and glb), the f has a maximum value
(namely the lub of (X)) and a minimum value (namely the glb of (X)).

Second, suppose every continuous real-valued function on X takes on a
maximum and minimum value. By Theorem 9.17, to show that X is
compact it is sufficient to show that X is totally bounded and complete.
We argue by contradiction to show that X is totally bounded.
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem (continued 2)

Proof (continued). Since r > 0 is fixed and f(x,) = nr/2 for each

n € N, then f is unbounded above and therefore does not take on a
maximum value. But this is a CONTRADICTION to the fact that f takes
on a maximum and minimum value. So the assumption that X is not
totally bounded is false. Hence X is totally bounded.

Now we show that X is complete. Let {x,} be a Cauchy sequence in X.
Let € > 0. Then for some N € N we have for all m,n > N that

P(Xn, Xm) < . Then for each x € X and for m,n > N we have

p(x,xn) < p(x,Xm) + p(Xm, Xn) and p(x, xm) < p(x,Xn) + p(Xn, Xm), and
for m,n > N we have p(x, x,) — p(X, Xm) < p(Xm, xn) < € and

(X, xm) — p(x, xn) < p(Xn, xm) < €. That is, for m,n > N we have
lp(x, xn) — p(x,xm)| < € so that {p(x,x,)}°°, is a Cauchy sequence of
real numbers for every x € X. Since R is complete, then {p(x, x,)} 7,
converges to some real number. Define g : X — R by

g(x) = limp—o0 p(x, xp) for all x € X. Notice g is nonnegative.
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Proposition 9.22. Extreme Value Theorem (continued 3)

Proposition 9.22. Extreme Value Theorem.

Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof (continued). We now show that g is continuous. Let ¢ > 0 and
x € X. Consider arbitrary y € X with p(x,y) < d =e. Now

limp—o00 p(X, Xn) = f(x) and lim,_ p(y, x,) = f(y). By the triangle
inequality, for all x,y, x, € X we have p(x, xn) < p(x,y) + p(y, xn), or
p(x,xn) — p(¥, xn) < p(x,y). Then with p(x,y) < 0 = ¢ we have

0)— 8| = | lim p(xxn) — lim_ply. x)]

= [ lim (p(x,xa) = p(y; %)) < | lim p(x,y)| = p(x,y) <e.

Therefore g is continuous at x and, since x is an arbitrary element of X,
then g is continuous on X. By hypothesis, there is z € X at which g takes
on a minimum value.

The Lebesgue Covering Lemma

The Lebesgue Covering Lemma. Let {O)},ca be an open cover of a
compact metric space X. Then there is a number € > 0, such that for each
x € X, the open ball B(x,¢) is contained in some member of the cover.

Proof. ASSUME there is no such positive Lebesgue number. Then for
each n € N, 1/n fails to be a Lebesgue number. That is, there is a ball
B(xn,1/n), centered at some point x,, which fails to be contained in any
member of the cover. Consider the resulting sequence {x,}. Since X is
hypothesized to be compact, then it is sequentially compact by the
Characterization of Compactness for a Metric Space (Theorem 9.16; the
(i) implies (iii) part). Hence there is a subsequence {x,, } of {x,} that
converges to some point xp € X. There is some index \g € A for which
xo inOy,. Since Oy, is open, then there is a ball centered at xo, B(xp, 1),
for which B(xp, r0) C Oa,.
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem (continued 4)

Proposition 9.22. Extreme Value Theorem.

Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof (continued). Since {x,} is Cauchy, then for all £ > 0, there exists
N € N such that for m,n > N we have p(xm, xn) < €. Therefore with

k € N and € = 1/k, there is some x,, in {x,} such that

g(xn,) = limp_oo p(Xn,, xn) < 1/k. Since g is nonnegative, this implies
that the infimum of function values is 0. So the minimum of g must be 0
and g(z) = 0. Then g(z) = limp—o0 p(z,%,) = 0; that is, limp_0o X, = 2z
so that {x,} converges. Since {x,} is an arbitrary Cauchy sequence, then
X is complete, as claimed. O

Note. Function g is defined in terms of Cauchy sequence {x,}, and this
determines point z. That is, point z is dependent on the Cauchy

sequence, as we would expect.
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The Lebesgue Covering Lemma

The Lebesgue Covering Lemma (continued)

The Lebesgue Covering Lemma. Let {O)},cn be an open cover of a
compact metric space X. Then there is a number € > 0, such that for each
x € X, the open ball B(x,¢) is contained in some member of the cover.

Proof (continued). Since {x,, } converges to xg, the we may choose k
for which p(xo, xn,) < ro/2 and 1/nx < ry/2. For x € B(xpn,,1/ny) we
have p(x, xn,) < 1/nk so that, by the Triangle Inequality,

p(x,%0) < p(x, Xn,) + p(Xng, X0) < 1/nk+r0/2 <ro/2+ /2 =r.

That is, B(xn,,1/nk) € Oy,. But this CONTRADICTS the choice of xp,
as a point for which B(xy,,1/n) fails to be contained in some member of
the cover. Therefore, the assumption that there is no such positive
Lebesgue number is false, and so there is Lebesgue number € > 0 as
claimed. O
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Proposition 9.23

Proposition 9.23

Proposition 9.23. A continuous mapping from a compact metric space
(X, p) into a metric space (Y, o) is uniformly continuous.

Proof. Let f be a continuous mapping from X to Y. Let € > 0. By the
/6 Criterion for Continuity (Theorem 9.3.A), for each x € X there is
dx > 0 for which if p(x, x") < dx then o(f(x), f(x")) < £/2. With

Ox = B(x, dx) we have (by the triangle inequality for metric o):

o)f(u), f(v)) < o(f(u),f(x))+o(f(x),f(v)) <eif u,ve O (5)

Since (X, p) is compact, by the Lebesgue Covering Lemma the open cover
{On}xex has a Lebesgue number, say 0. Then for u,v € X, if p(u,v) < ¢
then there is some x € X for which u € B(v,0) C Ox. Therefore, by (5),

o(f(u),f(v)) < e; that is, f is uniformly continuous on X. O



