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Lemma 9.5.A

Lemma 9.5.A.

Lemma 9.5.A. If a metric space X is totally bounded then it is bounded
in the sense that its diameter is finite.

Proof. Let ε = 1. Since X is totally bounded, then there are a finite
number of open balls {B(xk , 1)}n

k=1 such that X ⊆ ∪n
k=1B(xk , 1). Let d

be the maximum distance between the centers of the open balls,
d = max{ρ(xi , xj) | 1 ≤ i < j ≤ n}. Then by the Triangle Inequality,
diam(X ) ≤ c where c = 2 + d . That is, X is bounded, as claimed.
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Proposition 9.15

Proposition 9.15

Proposition 9.15. A subset of Euclidean space Rn is bounded if and only
if it is totally bounded.

Proof. By Lemma 9.5.A a totally bounded metric space is bounded, so if
a subset of Rn is totally bounded then it is bounded.

Now let E be a bounded subset of Rn. Let ε > 0. Since E is bounded, we
may take a > 0 large enough so that E is contained in the hypercube
[−a, a]× [−a, a]× · · · × [−a, a]. Let Pk be a partition of [−a, a] into closed
intervals where each interval has length less than 1/k (this is possible
since [−a, a] is bounded). Then Pk × Pk × · · · × Pk induces a partition of
[−a, a]× [−a, a]× · · · × [−a, a] into closed rectangles of diameter at most√

n/k. Choose k such that
√

n/k < ε. Consider the finite collection of
balls of radius ε with centers (x1, x2, . . . , xn) where x1, x2, . . . , xn are
partition points of Pk . Then this finite collection of balls of radius
ε >

√
n/k covers the hypercube [−a, a]× [−a, a]× · · · × [−a, a] and

therefore also covers E .
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Proposition 9.17

Proposition 9.17

Proposition 9.17. If a metric space X is complete and totally bounded,
then it is compact.

Proof. ASSUME {Oλ}λ∈Λ is an open cover of X for which there is no
finite subcover. Since X is totally bounded, we may chose a finite
collection of open balls of radius less than 1/2 that cover X . There must
be one of these balls that cannot be covered by a finite subcollection of
{Oλ}λ∈Λ (or else {Oλ} does have a finite subcover of X ). Select such a
ball and label its closure F1. Then F1 is closed and diam(F1) ≤ 1. Using
the total boundedness of X again, there is a finite collection of open balls
of radius less than 1/4 that cover X , so so also covers F1.

Again, there
must be one of the balls whose intersection with F1 cannot be covered by
a finite subcollection of {Oλ}λ∈Λ. Define F2 to be the closure of the
intersection of such a ball with F1. Then F1 and F2 are closed, F2 ⊆ F1

with diam(F1) ≤ 1 and diam(F2) ≤ 1/2.
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Proposition 9.17

Proposition 9.17 (continued)

Proposition 9.17. If a metric space X is complete and totally bounded,
then it is compact.

Proof (continued). Continuing in this way iteratively we obtain a
contracting sequence of nonempty, closed sets {Fn} with the property that
each Fn cannot be covered by a finite subcollection of {Oλ}λ∈Λ. But X is
complete, so by the Cantor Intersection Theorem (of Section 9.4) there is
a single point x0 ∈ X that belongs to the intersection ∩∞n=1Fn. Since
{Oλ}λ∈Λ is a covering of X , there is some index λ0 such thatOλ0 contains
x0 and since Oλ0 is open, there is a ball centered at x0, B(x0, r), such that
B(x0, r) ⊆ Oλ0 . Since limn→∞ diam(Fn) = 0 and x0 ∈ ∩∞n=1Fn, there is an
index n such that Fn ⊆ Oλ0 . This is a CONTRADICTION to the fact that
each Fn was chosen as being a set that cannot be covered by a finite
subcollection of {Oλ}λ∈Λ. So the assumption that there is an open cover
of X for which there is no finite subcover is false. That is, every open
cover of X has a finite subcover so that X is compact, as claimed.

() Real Analysis December 13, 2022 6 / 18



Proposition 9.17

Proposition 9.17 (continued)

Proposition 9.17. If a metric space X is complete and totally bounded,
then it is compact.

Proof (continued). Continuing in this way iteratively we obtain a
contracting sequence of nonempty, closed sets {Fn} with the property that
each Fn cannot be covered by a finite subcollection of {Oλ}λ∈Λ. But X is
complete, so by the Cantor Intersection Theorem (of Section 9.4) there is
a single point x0 ∈ X that belongs to the intersection ∩∞n=1Fn. Since
{Oλ}λ∈Λ is a covering of X , there is some index λ0 such thatOλ0 contains
x0 and since Oλ0 is open, there is a ball centered at x0, B(x0, r), such that
B(x0, r) ⊆ Oλ0 . Since limn→∞ diam(Fn) = 0 and x0 ∈ ∩∞n=1Fn, there is an
index n such that Fn ⊆ Oλ0 . This is a CONTRADICTION to the fact that
each Fn was chosen as being a set that cannot be covered by a finite
subcollection of {Oλ}λ∈Λ. So the assumption that there is an open cover
of X for which there is no finite subcover is false. That is, every open
cover of X has a finite subcover so that X is compact, as claimed.

() Real Analysis December 13, 2022 6 / 18



Proposition 9.18

Proposition 9.18

Proposition 9.18. If a metric space X is compact, then it is sequentially
compact.

Proof. Let X be compact and let {xn} be a sequence in X . For each
n ∈ N, let Fn be the closure of the nonempty set {xk | k ≥ n}. Then {Fn}
is a descending sequence of nonempty closed sets which satisfy the finite
intersection property. Therefore, by Proposition 9.14 there is a point
x0 ∈ X such that x0 ∈ ∩∞n=1Fn. Since for each n ∈ N, x0 is in the closure
of {xk | k ≥ n}, the ball B(x0, 1/k) has nonempty intersection with
{xk | k ≥ n}.

By induction we may select a strictly increasing sequence of
indices {nk} such that for each index k, we have ρ(x0, xnk

) < 1/k (choose
xn1 in B(x,1), choose xn2 in B(x , 1/2) where n2 > n1, etc.). The
subsequence converges to x0. That is, (arbitrary) sequence {xn} has
convergent subsequence {xnk

} and hence X is sequentially compact, as
claimed.
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Proposition 9.19

Proposition 9.19

Proposition 9.19. If a metric space X is sequentially compact, then it is
complete and totally bounded.

Proof. Let metric space X be sequentially compact. ASSUME X is not
totally bounded. Then for some ε > 0 there is not cover of X by a finite
number of open balls of radius ε. Select a point x1 ∈ X . Since X is not
contained in B(x1, ε), we may choose x2 ∈ X such that ρ(x1, x2) ≥ ε. Now
since X is not contained in B(x1, ε) ∪ B(x2, ε), we may choose x2 ∈ X for
which ρ(x3, x2) ≥ ε and ρ(x3, x1) ≥ ε. In this way we obtain a sequence
{xn} in X with the property that ρ(xn, xk) ≥ ε for n 6= k.

Then the
sequence {xn} can have no convergent subsequence, since any to different
terms of any subsequence are a distance ε or more apart. Therefore, X is
not sequentially compact. This CONTRADICTION show that the
assumption that X is not totally bounded is false. Hence, if X is
sequentially compact the X is totally bounded, as claimed.
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Proposition 9.19

Proposition 9.19 (continued)

Proposition 9.19. If a metric space X is sequentially compact, then it is
complete and totally bounded.

Proof (continued). Again, let metric space X be sequentially compact.
To show that X is complete, suppose {xn} is a Cauchy sequence in X .
Since X is sequentially compact, a subsequence of {xn} converges to some
point x ∈ X . A Cauchy sequence with a convergent subsequence is
convergent (by Problem 9.38), so Cauchy sequence {xn} converges and X
is complete, as claimed.
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Proposition 9.21

Proposition 9.21

Proposition 9.21. Let f be a continuous mapping from a compact metric
space X to a metric space Y . Then its image f (X ) is also compact.

Proof. Let {On}λ∈Λ be an open covering of f (X ). Since f is continuous,
Proposition 9.8 implies that each f −1(Oλ) is open, so that {f −1(Oλ)}λ∈Λ

is an open cover of X . Since X is compact by hypothesis, there is a finite
subcollection {f −1(Oλ1), f

−1(Oλ2), . . . , f
−1(Oλn)} that also covers X .

Since f maps X onto f (X ), the finite collection {Oλ1 ,Oλ2 , . . . ,Oλn}
covers f (X ). Since {On}λ∈Λ is an arbitrary cover of f (X ), then f (X ) is
compact, as claimed.
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem.
Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof. First, suppose X is compact. Let the function f : X → R be
continuous. By Proposition 9.21, f (X ) is a compact set of real numbers.
By Theorem 9.20 ((ii) implies (i)), f (X ) is closed and bounded. Since R is
complete (so set f (X ) with upper and lower bounds has a lub and glb)
and f (X ) is closed (it contains is lub and glb), the f has a maximum value
(namely the lub of f (X )) and a minimum value (namely the glb of f (X )).

Second, suppose every continuous real-valued function on X takes on a
maximum and minimum value. By Theorem 9.17, to show that X is
compact it is sufficient to show that X is totally bounded and complete.
We argue by contradiction to show that X is totally bounded.

() Real Analysis December 13, 2022 11 / 18



Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem.
Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof. First, suppose X is compact. Let the function f : X → R be
continuous. By Proposition 9.21, f (X ) is a compact set of real numbers.
By Theorem 9.20 ((ii) implies (i)), f (X ) is closed and bounded. Since R is
complete (so set f (X ) with upper and lower bounds has a lub and glb)
and f (X ) is closed (it contains is lub and glb), the f has a maximum value
(namely the lub of f (X )) and a minimum value (namely the glb of f (X )).

Second, suppose every continuous real-valued function on X takes on a
maximum and minimum value. By Theorem 9.17, to show that X is
compact it is sufficient to show that X is totally bounded and complete.
We argue by contradiction to show that X is totally bounded.

() Real Analysis December 13, 2022 11 / 18



Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem.
Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof. First, suppose X is compact. Let the function f : X → R be
continuous. By Proposition 9.21, f (X ) is a compact set of real numbers.
By Theorem 9.20 ((ii) implies (i)), f (X ) is closed and bounded. Since R is
complete (so set f (X ) with upper and lower bounds has a lub and glb)
and f (X ) is closed (it contains is lub and glb), the f has a maximum value
(namely the lub of f (X )) and a minimum value (namely the glb of f (X )).

Second, suppose every continuous real-valued function on X takes on a
maximum and minimum value. By Theorem 9.17, to show that X is
compact it is sufficient to show that X is totally bounded and complete.
We argue by contradiction to show that X is totally bounded.

() Real Analysis December 13, 2022 11 / 18



Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem (continued 1)

Proof (continued). ASSUME that X is not totally bounded. As shown in
the proof of Proposition 9.19 (the first half where X is assumed to be not
totally bounded), there is some r > 0 and sequence {xn}∞n=1 in X such
that the collection of open balls {B(xn, t)}∞n=1 is disjoint. For each n ∈ N,
define the function fn : X → R by

fn(x) =

{
r/2− ρ(x , xn) if ρ(x , xn) ≤ r/2

0 otherwise.

The define the function f : X → R by

f (x) =
∞∑

n=1

nfn(x) for all x ∈ X .

Since each fn is continuous and vanishes outside B(xn, r/2) and the
collection {B(xn, r)}∞n=1 is disjoint, then f is “properly defined” (or
“well-defined”) and continuous.
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem (continued 2)

Proof (continued). Since r > 0 is fixed and f (xn) = nr/2 for each
n ∈ N, then f is unbounded above and therefore does not take on a
maximum value. But this is a CONTRADICTION to the fact that f takes
on a maximum and minimum value. So the assumption that X is not
totally bounded is false. Hence X is totally bounded.

Now we show that X is complete. Let {xn} be a Cauchy sequence in X .
Let ε > 0. Then for some N ∈ N we have for all m, n ≥ N that
ρ(xn, xm) < ε. Then for each x ∈ X and for m, n ≥ N we have
ρ(x , xn) ≤ ρ(x , xm) + ρ(xm, xn) and ρ(x , xm) ≤ ρ(x , xn) + ρ(xn, xm), and
for m, n ≥ N we have ρ(x , xn)− ρ(x , xm) ≤ ρ(xm, xn) ≤ ε and
ρ(x , xm)− ρ(x , xn) ≤ ρ(xn, xm) ≤ ε. That is, for m, n ≥ N we have
|ρ(x , xn)− ρ(x , xm)| ≤ ε so that {ρ(x , xn)}∞n=1 is a Cauchy sequence of
real numbers for every x ∈ X . Since R is complete, then {ρ(x , xn)}∞n=1

converges to some real number. Define g : X → R by
g(x) = limn→∞ ρ(x , xn) for all x ∈ X . Notice g is nonnegative.
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Proof (continued). Since r > 0 is fixed and f (xn) = nr/2 for each
n ∈ N, then f is unbounded above and therefore does not take on a
maximum value. But this is a CONTRADICTION to the fact that f takes
on a maximum and minimum value. So the assumption that X is not
totally bounded is false. Hence X is totally bounded.

Now we show that X is complete. Let {xn} be a Cauchy sequence in X .
Let ε > 0. Then for some N ∈ N we have for all m, n ≥ N that
ρ(xn, xm) < ε. Then for each x ∈ X and for m, n ≥ N we have
ρ(x , xn) ≤ ρ(x , xm) + ρ(xm, xn) and ρ(x , xm) ≤ ρ(x , xn) + ρ(xn, xm), and
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem (continued 3)

Proposition 9.22. Extreme Value Theorem.
Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof (continued). We now show that g is continuous. Let ε > 0 and
x ∈ X . Consider arbitrary y ∈ X with ρ(x , y) < δ = ε. Now
limn→∞ ρ(x , xn) = f (x) and limn→∞ ρ(y , xn) = f (y). By the triangle
inequality, for all x , y , xn ∈ X we have ρ(x , xn) ≤ ρ(x , y) + ρ(y , xn), or
ρ(x , xn)− ρ(y , xn) ≤ ρ(x , y). Then with ρ(x , y) < δ = ε we have

|g(x)− g(y)| = | lim
n→∞

ρ(x , xn)− lim
n→∞

ρ(y , xn)|

= | lim
n→∞

(ρ(x , xn)− ρ(y , xn))| ≤ | lim
n→∞

ρ(x , y)| = ρ(x , y) < ε.

Therefore g is continuous at x and, since x is an arbitrary element of X ,
then g is continuous on X . By hypothesis, there is z ∈ X at which g takes
on a minimum value.
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Proposition 9.22. Extreme Value Theorem

Proposition 9.22. Extreme Value Theorem (continued 4)

Proposition 9.22. Extreme Value Theorem.
Let X be a metric space. Then X is compact if and only if every
continuous real-valued function on X takes a maximum and a minimum
value.

Proof (continued). Since {xn} is Cauchy, then for all ε > 0, there exists
N ∈ N such that for m, n ≥ N we have ρ(xm, xn) < ε. Therefore with
k ∈ N and ε = 1/k, there is some xnk

in {xn} such that
g(xnk

) = limn→∞ ρ(xnk
, xn) < 1/k. Since g is nonnegative, this implies

that the infimum of function values is 0. So the minimum of g must be 0
and g(z) = 0. Then g(z) = limn→∞ ρ(z , xn) = 0; that is, limn→∞ xn = z
so that {xn} converges. Since {xn} is an arbitrary Cauchy sequence, then
X is complete, as claimed.

Note. Function g is defined in terms of Cauchy sequence {xn}, and this
determines point z . That is, point z is dependent on the Cauchy
sequence, as we would expect.
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The Lebesgue Covering Lemma

The Lebesgue Covering Lemma

The Lebesgue Covering Lemma. Let {Oλ}λ∈Λ be an open cover of a
compact metric space X . Then there is a number ε > 0, such that for each
x ∈ X , the open ball B(x , ε) is contained in some member of the cover.

Proof. ASSUME there is no such positive Lebesgue number. Then for
each n ∈ N, 1/n fails to be a Lebesgue number. That is, there is a ball
B(xn, 1/n), centered at some point xn, which fails to be contained in any
member of the cover. Consider the resulting sequence {xn}. Since X is
hypothesized to be compact, then it is sequentially compact by the
Characterization of Compactness for a Metric Space (Theorem 9.16; the
(ii) implies (iii) part). Hence there is a subsequence {xnk

} of {xn} that
converges to some point x0 ∈ X . There is some index λ0 ∈ Λ for which
x0 inOλ0 . Since Oλ0 is open, then there is a ball centered at x0, B(x0, r0),
for which B(x0, r0) ⊆ Oλ0 .
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The Lebesgue Covering Lemma

The Lebesgue Covering Lemma (continued)

The Lebesgue Covering Lemma. Let {Oλ}λ∈Λ be an open cover of a
compact metric space X . Then there is a number ε > 0, such that for each
x ∈ X , the open ball B(x , ε) is contained in some member of the cover.

Proof (continued). Since {xnk
} converges to x0, the we may choose k

for which ρ(x0, xnk
) < r0/2 and 1/nk < r0/2. For x ∈ B(xnk

, 1/nk) we
have ρ(x , xnk

) < 1/nk so that, by the Triangle Inequality,

ρ(x , x0) ≤ ρ(x , xnk
) + ρ(xnk

, x0) < 1/nk + r0/2 < r0/2 + r0/2 = r0.

That is, B(xnk
, 1/nk) ⊆ Oλ0 . But this CONTRADICTS the choice of xnk

as a point for which B(xnk
, 1/nk) fails to be contained in some member of

the cover. Therefore, the assumption that there is no such positive
Lebesgue number is false, and so there is Lebesgue number ε > 0 as
claimed.
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Proposition 9.23

Proposition 9.23

Proposition 9.23. A continuous mapping from a compact metric space
(X , ρ) into a metric space (Y , σ) is uniformly continuous.

Proof. Let f be a continuous mapping from X to Y . Let ε > 0. By the
ε/δ Criterion for Continuity (Theorem 9.3.A), for each x ∈ X there is
δx > 0 for which if ρ(x , x ′) < δx then σ(f (x), f (x ′)) < ε/2. With
Ox = B(x , δx) we have (by the triangle inequality for metric σ):

σ)f (u), f (v)) ≤ σ(f (u), f (x)) + σ(f (x), f (v)) < ε if u, v ∈ Ox . (5)

Since (X , ρ) is compact, by the Lebesgue Covering Lemma the open cover
{On}x∈X has a Lebesgue number, say δ. Then for u, v ∈ X , if ρ(u, v) < δ
then there is some x ∈ X for which u ∈ B(v , δ) ⊆ Ox . Therefore, by (5),
σ(f (u), f (v)) < ε; that is, f is uniformly continuous on X .
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