Real Analysis

Chapter 9. Metric Spaces: General Properties 9.6. Separable Metric Spaces—Proofs of Theorems

Real Analysis

December 10, 2022

1 / 6

()

Real Analysis

December 10, 2022

3 /

Proposition 9.2

Proposition 9.25

Proposition 9.25. A metric space X is separable if and only if there is a countable collection $\{\mathcal{O}_n\}_{n=1}^{\infty}$ of open subsets of X such that any open subset of X is the union of a subcollection of $\{\mathcal{O}_n\}_{n=1}^{\infty}$.

Proof. First, suppose X is separable. Let D be a countable dense subset of X. If D is finite then by its denseness in X we must have X = D. So without loss of generality, we can assume that D is countably infinite. Let $\{x_n\}$ be an enumeration of D. Then $\{B(x_n,1/m)\}_{n,m\in\mathbb{N}}$ is a countable collection of open subsets of X. Let \mathcal{O} be an open subset of X. Let $x\in\mathcal{O}$. Since \mathcal{O} is open, then there is $m\in\mathbb{N}$ for which $B(x,1/m)\subset\mathcal{O}$. Now x is a point of closure of D by Note 9.6.A, so there is $n\in\mathbb{N}$ for which $x_n\in D\cap B(x,1/(2m))$. Then with $n,m\in\mathbb{N}$ satisfying these conditions, $x\in B(x_n,1/(2m))$ and $x\in B(x_n,1/(2m))\subseteq B(x,1/m)\subset\mathcal{O}$. Since x is an arbitrary element of \mathcal{O} , we have that open set \mathcal{O} is the union of some subcollection of $\{B(x_n,1/m)\}_{n,m\in\mathbb{N}}$, as claimed.

Proposition 9.24

Proposition 9.24. A compact metric space is separable.

Proof. Let X be a compact metric space. By Propositions 9.18 and 9.19, X is totally bounded. By the definition of "totally bounded," for each $n \in \mathbb{N}$ space X can be covered by a finite number of balls of radius 1/n. Consider the (countable) collection of all such balls for $n \in \mathbb{N}$. Let D be the collection of points that are centers of one of these balls. Then D is countable and (since for any $\varepsilon > 0$ we have $\varepsilon < 1/n$ for some $n \in \mathbb{N}$) dense in X. Therefore, by the definition of separable, X is a separable metric space, as claimed.

Proposition 9.2

Proposition 9.25 (continued)

Proposition 9.25. A metric space X is separable if and only if there is a countable collection $\{\mathcal{O}_n\}_{n=1}^{\infty}$ of open subsets of X such that any open subset of X is the union of a subcollection of $\{\mathcal{O}_n\}_{n=1}^{\infty}$.

Proof (continued). Second, suppose there is a countable collection $\{\mathcal{O}_n\}_{n=1}^\infty$ of open sets such that any open subsets of X is the union of a subcollection of $\{\mathcal{O}_n\}_{n=1}^\infty$. For each $n \in \mathbb{N}$, choose a point in \mathcal{O}_n and label it x_n . Then the set $\{x_n\}_{n=1}^\infty$ is countable and is dense since every nonempty open subset of X is the union of some subcollection of $\{\mathcal{O}_n\}_{n=1}^\infty$ and therefore contains points in $\{x_n\}_{n=1}^\infty$. Hence X is separable, as claimed.

 Real Analysis
 December 10, 2022
 4 / 6
 ()
 Real Analysis
 December 10, 2022
 5 /

Proposition 9.26

Proposition 9.26. Every subspace of a separable metric space is separable.

Proof. Let E be a subspace of separable metric space X. Since X is separable, by Proposition 9.25 there is a countable collection $\{\mathcal{O}_n\}_{n=1}^{\infty}$ of open sets in X such that each open set in X is a union of some subcollection of $\{\mathcal{O}_n\}_{n=1}^{\infty}$. Thus $\{\mathcal{O}_n \cap E\}_{n=1}^{\infty}$ is a countable collection of subsets of E, each of which is open by Proposition 9.2. Since each open subset of E is the intersection of E with an open subset of E, every open subset of E is a union of a subcollection of $\{\mathcal{O}_n \cap E\}_{n=1}^{\infty}$. Then by Proposition 9.25, E is seprable, as claimed.

() Real Analysis December 10, 2022 6 / 6