## **Real Analysis**

#### **Chapter 9. Metric Spaces: General Properties** 9.6. Separable Metric Spaces—Proofs of Theorems







#### Proposition 9.24. A compact metric space is separable.

**Proof.** Let X be a compact metric space. By Propositions 9.18 and 9.19, X is totally bounded. By the definition of "totally bounded," for each  $n \in \mathbb{N}$  space X can be covered by a finite number of balls of radius 1/n. Consider the (countable) collection of all such balls for  $n \in \mathbb{N}$ . Let D be the collection of points that are centers of one of these balls. Then D is countable and (since for any  $\varepsilon > 0$  we have  $\varepsilon < 1/n$  for some  $n \in \mathbb{N}$ ) dense in X. Therefore, by the definition of separable, X is a separable metric space, as claimed.

Proposition 9.24. A compact metric space is separable.

**Proof.** Let X be a compact metric space. By Propositions 9.18 and 9.19, X is totally bounded. By the definition of "totally bounded," for each  $n \in \mathbb{N}$  space X can be covered by a finite number of balls of radius 1/n. Consider the (countable) collection of all such balls for  $n \in \mathbb{N}$ . Let D be the collection of points that are centers of one of these balls. Then D is countable and (since for any  $\varepsilon > 0$  we have  $\varepsilon < 1/n$  for some  $n \in \mathbb{N}$ ) dense in X. Therefore, by the definition of separable, X is a separable metric space, as claimed.

**Proposition 9.25.** A metric space X is separable if and only if there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open subsets of X such that any open subset of X is the union of a subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ .

**Proof.** First, suppose X is separable. Let D be a countable dense subset of X. If D is finite then by its denseness in X we must have X = D. So without loss of generality, we can assume that D is countably infinite. Let  $\{x_n\}$  be an enumeration of D. Then  $\{B(x_n, 1/m)\}_{n,m\in\mathbb{N}}$  is a countable collection of open subsets of X.

**Proposition 9.25.** A metric space X is separable if and only if there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open subsets of X such that any open subset of X is the union of a subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ .

**Proof.** First, suppose X is separable. Let D be a countable dense subset of X. If D is finite then by its denseness in X we must have X = D. So without loss of generality, we can assume that D is countably infinite. Let  $\{x_n\}$  be an enumeration of D. Then  $\{B(x_n, 1/m)\}_{n,m\in\mathbb{N}}$  is a countable collection of open subsets of X. Let  $\mathcal{O}$  be an open subset of X. Let  $x \in \mathcal{O}$ . Since  $\mathcal{O}$  is open, then there is  $m \in \mathbb{N}$  for which  $B(x, 1/m) \subset \mathcal{O}$ . Now x is a point of closure of D by Note 9.6.A, so there is  $n \in \mathbb{N}$  for which  $x_n \in D \cap B(x, 1/(2m))$ . Then with  $n, m \in \mathbb{N}$  satisfying these conditions,  $x \in B(x_n, 1/(2m))$  and  $x \in B(x_n, 1/(2m)) \subseteq B(x, 1/m) \subset \mathcal{O}$ . Since x is an arbitrary element of  $\mathcal{O}$ , we have that open set  $\mathcal{O}$  is the union of some subcollection of  $\{B(x_n, 1/m)\}_{n,m\in\mathbb{N}}$ , as claimed.

**Proposition 9.25.** A metric space X is separable if and only if there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open subsets of X such that any open subset of X is the union of a subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ .

**Proof.** First, suppose X is separable. Let D be a countable dense subset of X. If D is finite then by its denseness in X we must have X = D. So without loss of generality, we can assume that D is countably infinite. Let  $\{x_n\}$  be an enumeration of D. Then  $\{B(x_n, 1/m)\}_{n,m\in\mathbb{N}}$  is a countable collection of open subsets of X. Let  $\mathcal{O}$  be an open subset of X. Let  $x \in \mathcal{O}$ . Since  $\mathcal{O}$  is open, then there is  $m \in \mathbb{N}$  for which  $B(x, 1/m) \subset \mathcal{O}$ . Now x is a point of closure of D by Note 9.6.A, so there is  $n \in \mathbb{N}$  for which  $x_n \in D \cap B(x, 1/(2m))$ . Then with  $n, m \in \mathbb{N}$  satisfying these conditions,  $x \in B(x_n, 1/(2m))$  and  $x \in B(x_n, 1/(2m)) \subseteq B(x, 1/m) \subset \mathcal{O}$ . Since x is an arbitrary element of  $\mathcal{O}$ , we have that open set  $\mathcal{O}$  is the union of some subcollection of  $\{B(x_n, 1/m)\}_{n,m\in\mathbb{N}}$ , as claimed.

## Proposition 9.25 (continued)

**Proposition 9.25.** A metric space X is separable if and only if there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open subsets of X such that any open subset of X is the union of a subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ .

**Proof (continued).** Second, suppose there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open sets such that any open subsets of X is the union of a subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ . For each  $n \in \mathbb{N}$ , choose a point in  $\mathcal{O}_n$  and label it  $x_n$ . Then the set  $\{x_n\}_{n=1}^{\infty}$  is countable and is dense since every nonempty open subset of X is the union of some subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  and therefore contains points in  $\{x_n\}_{n=1}^{\infty}$ . Hence X is separable, as claimed.

# **Proposition 9.26.** Every subspace of a separable metric space is separable.

**Proof.** Let *E* be a subspace of separable metric space *X*. Since *X* is separable, by Proposition 9.25 there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open sets in *X* such that each open set in *X* is a union of some subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ . Thus  $\{\mathcal{O}_n \cap E\}_{n=1}^{\infty}$  is a countable collection of subsets of *E*, each of which is open by Proposition 9.2. Since each open subset of *E* is the intersection of *E* with an open subset of *X*, every open subset of *E* is a union of a subcollection of  $\{\mathcal{O}_n \cap E\}_{n=1}^{\infty}$ . Then by Proposition 9.25, *E* is seprable, as claimed.

**Proposition 9.26.** Every subspace of a separable metric space is separable.

**Proof.** Let *E* be a subspace of separable metric space *X*. Since *X* is separable, by Proposition 9.25 there is a countable collection  $\{\mathcal{O}_n\}_{n=1}^{\infty}$  of open sets in *X* such that each open set in *X* is a union of some subcollection of  $\{\mathcal{O}_n\}_{n=1}^{\infty}$ . Thus  $\{\mathcal{O}_n \cap E\}_{n=1}^{\infty}$  is a countable collection of subsets of *E*, each of which is open by Proposition 9.2. Since each open subset of *E* is the intersection of *E* with an open subset of *X*, every open subset of *E* is a union of a subcollection of  $\{\mathcal{O}_n \cap E\}_{n=1}^{\infty}$ . Then by Proposition 9.25, *E* is seprable, as claimed.